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Vector and Matrix

Scalar
x ∈ R

Vector
x ∈ R

d

Matrix
X = [x1, x2, . . . , xn] ∈ R

d×n, where xi ∈ R
d

X = [z⊤1 ; x
⊤

2 ; . . . ; z
⊤

d ] ∈ R
d×n, where zi ∈ R
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Product

Matrix Product
Matrices X = [x1, . . . , xn],Y = [y1, . . . , yn] ∈ R

d×n

XY⊤ =
n

∑

i=1

xiy⊤

i ∈ R
d×d

Outer Product
Vectors x, y ∈ R

d

xy⊤ ∈ R
d×d

Inner Product
Vectors x, y ∈ R

d

〈x, y〉 = x⊤y = y⊤x =
d
∑

i=1

xiyi

Matrices X = [x1, . . . , xn],Y = [y1, . . . , yn] ∈ R
d×n

〈X ,Y 〉 = trace(X⊤Y ) = trace(Y⊤X ) =
∑

i,j

XijYij =
n

∑

i=1

〈xi , yi〉
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Rank

Linear Independence

The vectors x1, . . . , xn are said to be linearly independent if the
equation

n
∑

i=1

xiαi = 0

can only be satisfied by α1 = α2 = · · · = αn = 0. Otherwise,
they are linearly dependent.

Rank

The rank of a matrix X is the dimension of the vector space
spanned by its columns. This is the same as the dimension of
the space spanned by its rows. It is also the maximal number of
linearly independent columns or rows of X .
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Eigen Decomposition of a Matrix

Eigenvalue and Eigenvector of a Square Matrix X ∈ R
d×d

Xv = λv

Eigen-decomposition of a Matrix

If eigenvectors of X are linearly independent
X = VΛV−1

where Λ = diag(λ1, . . . , λd) is diagonal

Real and Symmetric Matrices

X = VΛV⊤ =
d
∑

i=1

λiviv⊤

i

where V is orthogonal matrix (VV⊤ = V⊤V = I) and
Λ = diag(λ1, . . . , λd)
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Singular Value Decomposition (SVD)

For a matrix X ∈ R
m×n with m ≤ n

X = UΣV⊤ =
m
∑

i=1

σiuiv⊤

i

where U ∈ R
m×m, Σ = diag(σ1, . . . , σm) ∈ R

m×m,
V ∈ R

n×m, U⊤U = UU⊤ = I, V⊤V = I, and σi ≥ 0.

rank(X ) = |{i : σi > 0}|

Compact SVD

X = UrΣr V⊤

r =
r

∑

i=1

σiuiv⊤

i

where Ur ∈ R
m×r , Σr = diag(σ1, . . . , σr ) ∈ R

r×r , Vr ∈ R
n×r ,

U⊤
r Ur = I, V⊤

r Vr = I, and σi > 0.
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Positive Semi-definite (PSD) Matrices

A symmetric matrix X ∈ R
d×d is PSD if

x⊤Xx ≥ 0, ∀x ∈ R
d

X = UU⊤

all the eigenvalues are nonnegative
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Norm

Vector Norm

‖x‖1 =
∑d

i=1 |xi |, ‖x‖2 =
√

∑d
i=1 x2

i , ‖x‖∞ = max |xi |,

‖x‖0 = |{i : xi 6= 0}|, which is non-convex

Matrix Norm X = UΣV⊤

Nuclear Norm: ‖X‖∗ =
∑n

i=1 σi = ‖(σ1, . . . , σn)‖1

Frobenius norm:
‖X‖F =

√

∑

ij X 2
ij =

√

trace(X⊤X ) = ‖(σ1, . . . , σn)‖2

Spectral Norm: ‖X‖2 = maxi σi = ‖(σ1, . . . , σn)‖∞

Rank: rank(X ) = |{i : σi > 0}| = ‖(σ1, . . . , σn)‖0, which is
non-convex
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Questions

Eigen-decomposition versus SVD

For a real and symmetric matrix A, what is the difference
between its Eigen-decomposition and SVD?



Linear Algebra Analysis Probability and Statistics Convex Optimization

Outline

1 Linear Algebra

2 Analysis

3 Probability and Statistics

4 Convex Optimization



Linear Algebra Analysis Probability and Statistics Convex Optimization

Analysis I

Function

Continuous

Differentiable

Derivative

Gradient/Subgradient

Chain rule

The Challenge

How to evaluate the gradient of functions where the variable is
a vector or a matrix?

f (x) = w⊤x, ∇f (x) = w
f (x) = x⊤Ax, ∇f (x) = 2Ax

A good reference is “The Matrix Cookbook”.
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Probability and Statistics

Random Variable

Independent

Expectation

Variance/Covariance

Probability Density Function

Common Distributions

Concentration Inequalities
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Hoeffding’s inequality

Let X1, . . . ,Xn be independent random variables. Assume that
the Xi are almost surely bounded, that is,

Pr(Xi ∈ [ai , bi ]) = 1, 1 ≤ i ≤ n
Denote

X =
1
n

n
∑

i=1

Xi

Then, we have

Pr
(

X − E[X ] ≥ t
)

≤ exp
(

−
2n2t2

∑n
i=1(bi − ai)2

)

Pr
(

X − E[X ] ≤ −t
)

≤ exp
(

−
2n2t2

∑n
i=1(bi − ai)2

)

Corollary 1

Assume bi − ai ≤ c. With a probability at least 1 − 2δ, we have

−

√

c
2n

log
1
δ
≤ X − E[X ] ≤

√

c
2n

log
1
δ
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Convex Optimization

Convexity

Optimal Solution

The Lagrange Dual Problem

KKT Optimality Conditions

Gradient Descent

Stochastic Optimization

A good reference is “Stephen Boyd and Lieven Vandenberghe.
Convex Optimization, Cambridge University Press, 2004.”
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