Convex Optimization

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf

Outline

Introduction

Convex Sets & Functions

Convex Optimization Problems

Duality

Convex Optimization Methods

□ Summary

Mathematical Optimization

Optimization Problem

minimize $f_0(x)$ subject to $f_i(x) \le b_i$, i = 1, ..., m

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Applications

Dimensionality Reduction (PCA)

 $\max_{\mathbf{w}\in\mathbb{R}^d} \quad \mathbf{w}^{\mathsf{T}}C\mathbf{w}$
s.t. $\|\mathbf{w}\|_2^2 = 1$

□ Clustering (NMF)

 $\min_{\substack{U \in \mathbb{R}^{d \times k}, V \in \mathbb{R}^{n \times k} \\ \text{s.t.}}} \|X - UV^{\top}\|_{F}^{2}$

□ Classification (SVM)

$$\min_{\overline{W}\in\mathbb{R}^d,b\in\mathbb{R}} O = \frac{||\overline{W}||^2}{2} + C\sum_{i=1}^n \max\{0,1-y_i[\overline{W}\cdot\overline{X_i}+b]\}.$$

Least-squares

□ The Problem

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

Given $\alpha_i \in \mathbb{R}^d$, predict $b_i \in \mathbb{R}$ by $a_i^T x$ **Properties**

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

Linear Programming

□ The Problem

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$

Here the vectors $c, a_1, \ldots, a_m \in \mathbf{R}^n$ and scalars $b_1, \ldots, b_m \in \mathbf{R}$ are problem parameters that specify the objective and constraint functions.

Properties

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

Convex Optimization Problem

□ The Problem

minimize $f_0(x)$ subject to $f_i(x) \le b_i$, $i = 1, \dots, m$

Conditions

• objective and constraint functions are convex:

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Convex Optimization Problem

The Problem

minimize $f_0(x)$ subject to $f_i(x) \le b_i$, $i = 1, \dots, m$

Properties

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

Nonlinear Optimization

Definition

- The objective or constraint functions are not linear
- Could be convex or nonconvex

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

Introduction

Convex Sets & Functions

Convex Optimization Problems

Duality

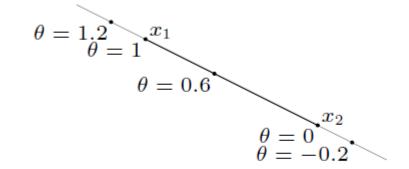
Convex Optimization Methods

□ Summary

Affine Set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$



affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

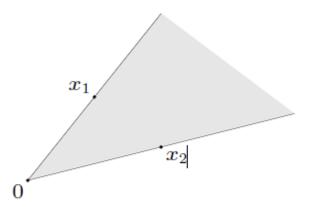
examples (one convex, two nonconvex sets)

Convex Cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

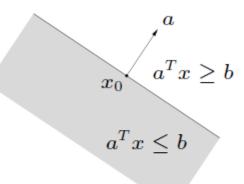


convex cone: set that contains all conic combinations of points in the set

Some Examples (1)

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$



x $a^T x = b$

 x_0

- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Some Examples (2)

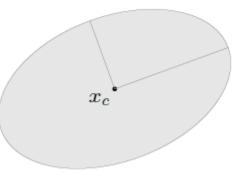
(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^{n}$ (*i.e.*, P symmetric positive definite)



other representation: $\{x_c + Au \mid ||u||_2 \leq 1\}$ with A square and nonsingular

Some Examples (3)

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x+y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm norm ball with center x_c and radius r: $\{x \mid \|x - x_c\| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$ Euclidean norm cone is called secondorder cone $\begin{array}{c}1\\ \bullet 0.5\\ 0\\ 1\\ 0\\ x_2 - 1 - 1\\ x_1\end{array}$

norm balls and cones are convex

Operations that Preserve Convexity

practical methods for establishing convexity of a set ${\cal C}$

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

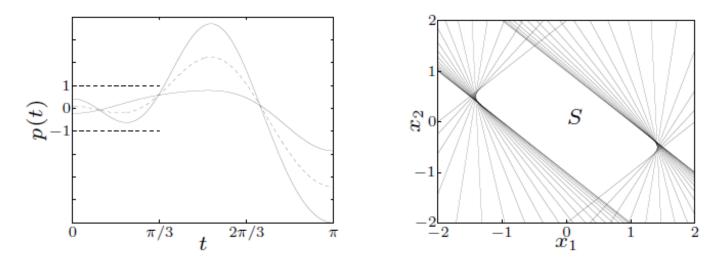
the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m = 2:



Affine Function

suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality {x | x₁A₁ + · · · + x_mA_m ≤ B} (with A_i, B ∈ S^p)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and Linear-Fractional Function

perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \qquad \text{dom}\, f = \{x \mid c^T x + d > 0\}$$

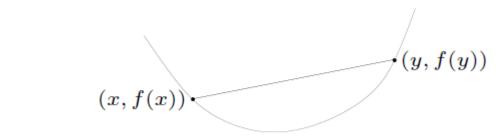
images and inverse images of convex sets under linear-fractional functions are convex

Convex Functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

for all $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$



- f is concave if -f is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Examples on \mathbb{R}

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on \mathbf{R} , for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a Convex Function to a Line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{dom} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable example. $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0, V$); hence f is concave

First-order Conditions

f is differentiable if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{dom} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

f(y) $f(x) + \nabla f(x)^{T}(y - x)$ (x, f(x))first-order approximation of f is global underestimator

Second-order Conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{dom} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

 $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = P|x+q, \qquad \nabla^2 f(x) = P$$

 $\mathsf{convex} \text{ if } P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

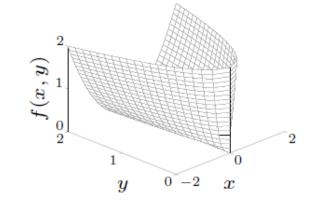
$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear:
$$f(x, y) = x^2/y$$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0



Operations that Preserve Convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive Weighted Sum & Composition with Affine Function

nonnegative multiple: αf is convex if f is convex, $\alpha \ge 0$ **sum:** $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise Maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$ proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Hinge loss: $\ell(w) = \max(0, 1 - y_i x_i^T w)$

Pointwise Supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with Scalar Functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

f(x) = h(g(x))

f is convex if $\begin{array}{c}g \text{ convex}, \ h \text{ convex}, \ \tilde{h} \text{ nondecreasing}\\g \text{ concave}, \ h \text{ convex}, \ \tilde{h} \text{ nonincreasing}\end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector Composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex}, h \text{ convex}, \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave}, h \text{ convex}, \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \qquad C \succ$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T) x$ g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

0

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \mid x/t \in \text{dom } f, t > 0\}$$

 \boldsymbol{g} is convex if \boldsymbol{f} is convex

examples

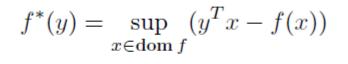
- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if f is convex, then

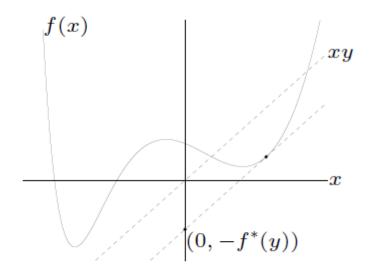
$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex on $\{x\mid c^Tx+d>0,\ (Ax+b)/(c^Tx+d)\in \operatorname{\mathbf{dom}} f\}$

The Conjugate Function

the ${\bf conjugate}$ of a function f is





- f^* is convex (even if f is not)
- will be useful in chapter 5

Examples

• negative logarithm $f(x) = -\log x$

$$\begin{array}{lll} f^*(y) &=& \sup_{x>0} (xy + \log x) \\ &=& \left\{ \begin{array}{ll} -1 - \log(-y) & y < 0 \\ \infty & & \text{otherwise} \end{array} \right. \end{array}$$

• strictly convex quadratic $f(x) = (1/2) x^T Q x$ with $Q \in \mathbf{S}_{++}^n$

$$f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)$$
$$= \frac{1}{2} y^T Q^{-1} y$$

Outline

Introduction

- Convex Sets & Functions
- **Convex Optimization Problems**
- Duality
- Convex Optimization Methods
- □ Summary

Optimization Problem in Standard Form

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

 $p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$

- $p^{\star} = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and Locally Optimal Points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints

- a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points
- \boldsymbol{x} is **locally optimal** if there is an R>0 such that \boldsymbol{x} is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, dom $f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

Implicit Constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Convex Optimization Problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

Example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f₁ is not convex, h₁ is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and Global Optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$

 \boldsymbol{x} locally optimal means there is an R>0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$

- $\|y x\|_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z x\|_2 = R/2$ and

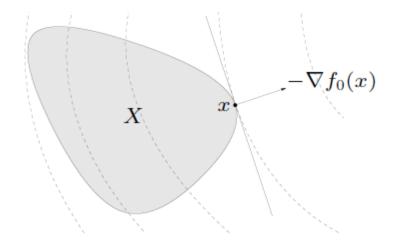
$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality Criterion for Differentiable f_0

 \boldsymbol{x} is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y



if nonzero, $abla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Examples

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad \nabla f_0(x) = 0$$

• equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

 $x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$

• minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

Popular Convex Problems

- □ Linear Program (LP)
- Linear-fractional Program
- Quadratic Program (QP)
- Quadratically Constrained Quadratic program (QCQP)
- Second-order Cone Programming (SOCP)
- Geometric Programming (GP)
- Semidefinite Program (SDP)

Outline

Introduction

Convex Sets & Functions

Convex Optimization Problems

Duality

Convex Optimization Methods

Summary

standard form problem (not necessarily convex)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^{\star}

standard form problem (not necessarily convex)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^\star

Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with dom $L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$,

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- ν_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange Dual Function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , u

Lagrange Dual Function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$
$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ , u

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$

proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm Solution of Linear Equations

 $\begin{array}{ll} \text{minimize} & x^T x\\ \text{subject to} & Ax = b \end{array}$

dual function

- Lagrangian is $L(x,\nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \quad \Longrightarrow \quad x = -(1/2)A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T\nu - b^T\nu$$

a concave function of ν

lower bound property: $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν

Lagrange Dual and Conjugate Function

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax \preceq b, \quad Cx = d \end{array}$

dual function

$$g(\lambda,\nu) = \inf_{x \in \text{dom } f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$

= $-f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$

• recall definition of conjugate $f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$

• simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The Dual Problem

Lagrange dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- finds best lower bound on $p^\star,$ obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d^{\star}
- λ , ν are dual feasible if $\lambda \succeq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

example: standard form LP and its dual (page 5-5)

 $\begin{array}{lll} \mbox{minimize} & c^T x & \mbox{maximize} & -b^T \nu \\ \mbox{subject to} & Ax = b & \mbox{subject to} & A^T \nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$

Weak and Strong Duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$

subject to $W + \operatorname{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

Weak and Strong Duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$

subject to $W + \operatorname{diag}(\nu) \succeq 0$

gives a lower bound for the two-way partitioning problem on page 5-7

strong duality: $d^{\star} = p^{\star}$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's Constraint Qualification

strong duality holds for a convex problem

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

if it is strictly feasible, *i.e.*,

$$\exists x \in \operatorname{int} \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- can be sharpened: e.g., can replace int D with relint D (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications

Complementary Slackness

assume strong duality holds, x^{\star} is primal optimal, $(\lambda^{\star}, \nu^{\star})$ is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$
$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$
$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$ (known as complementary slackness):

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \leq 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p$
- 2. dual constraints: $\lambda \succeq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT Conditions for Convex Problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

if Slater's condition is satisfied:

x is optimal if and only if there exist $\lambda,\,\nu$ that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

An Example—SVM (1)

□ The Optimization Problem

$$\min_{\mathbf{w}\in\mathbb{R}^{d},b\in\mathbb{R}} \quad \sum_{i=1}^{n} \max\left(0,1-y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b)\right) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$$

Define the hinge loss as $\ell(x) = \max(0, 1 - x)$

□ Its Conjugate Function is

$$\ell^*(y) = \sup_x (yx - \ell(x)) = \begin{cases} y, & -1 \le y \le 0\\ \infty, & \text{otherwise} \end{cases}$$

An Example—SVM (2)

The Optimization Problem becomes

$$\min_{\mathbf{w}\in\mathbb{R}^d,b\in\mathbb{R}}\quad\sum_{i=1}^n\ell\left(y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)\right)+\frac{\lambda}{2}\|\mathbf{w}\|_2^2$$

$\Box \text{ It is Equivalent to} \\ \underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^{n}}{\min} \sum_{i=1}^{n} \ell(u_{i}) + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \\ \text{s.t.} \qquad u_{i} = y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} + b), \ i = 1 \dots, n \end{aligned}$

□ The Lagrangian is

$$\mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = \sum_{i=1}^{n} \ell(u_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{n} v_i \left(u_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b) \right)$$

An Example—SVM (3)

□ The Lagrange Dual Function is

$$g(\mathbf{v}) = \inf_{\mathbf{w},b,\mathbf{u}} \mathcal{L}(\mathbf{w},b,\mathbf{u},\mathbf{v})$$

= $\inf_{\mathbf{w},b,\mathbf{u}} \sum_{i=1}^{n} \ell(u_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{n} v_i \left(u_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b)\right)$
= $\inf_{\mathbf{w},b,\mathbf{u}} \sum_{i=1}^{n} \left(\ell(u_i) + v_i u_i\right) + \left(\frac{\lambda}{2} \|\mathbf{w}\|_2^2 - \mathbf{w}^\top \sum_{i=1}^{n} v_i y_i \mathbf{x}_i\right) - b \sum_{i=1}^{n} v_i y_i$

Minimize w, b, u one by one

 $\inf_{u_i} \left(\ell(u_i) + v_i u_i \right) = -\sup_{u_i} \left(-v_i u_i - \ell(u_i) \right) = -\ell^*(-v_i) = v_i, \text{ if } 0 \le v_i \le 1$ $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = \lambda \mathbf{w} - \sum_{i=1}^n v_i y_i \mathbf{x}_i = 0 \Rightarrow \mathbf{w} = \frac{1}{\lambda} \sum_{i=1}^n v_i y_i \mathbf{x}_i$ $\nabla_b \mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = -\sum_{i=1}^n v_i y_i = 0$

An Example—SVM (4)

□ Finally, We Obtain

$$g(\mathbf{v}) = \sum_{i=1}^{n} v_i - \frac{1}{2\lambda} \sum_{i=1}^{n} \sum_{j=1}^{n} v_i v_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j$$

□ The Dual Problem is

$$\max_{\mathbf{v}\in\mathbb{R}^n} \quad \sum_{i=1}^n v_i - \frac{1}{2\lambda} \sum_{i=1}^n \sum_{j=1}^n v_i v_j y_i y_j \mathbf{x}_i^\top \mathbf{x}_j$$
s. t. $0 \le v_i \le 1, \ i = 1 \dots, n$
s. t. $\sum_{i=1}^n v_i y_i = 0$

An Example—SVM (5)

 u_i

□ Karush-Kuhn-Tucker (KKT) Conditions

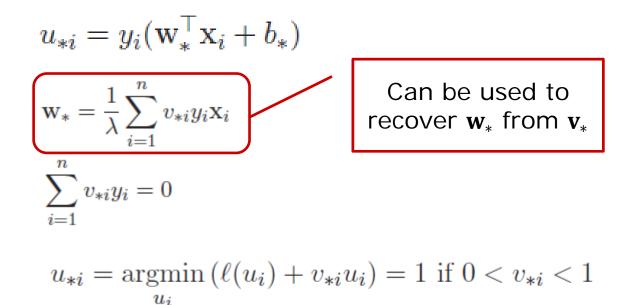
Let $(\mathbf{w}_*, b_*, \mathbf{u}_*)$ and \mathbf{v}_* are primal and dual solutions.

$$u_{*i} = y_i (\mathbf{w}_*^\top \mathbf{x}_i + b_*)$$
$$\mathbf{w}_* = \frac{1}{\lambda} \sum_{i=1}^n v_{*i} y_i \mathbf{x}_i$$
$$\sum_{i=1}^n v_{*i} y_i = 0$$
$$u_{*i} = \operatorname{argmin} \left(\ell(u_i) + v_{*i} u_i \right) = 1 \text{ if } 0 < v_{*i} < 1$$

An Example—SVM (5)

□ Karush-Kuhn-Tucker (KKT) Conditions

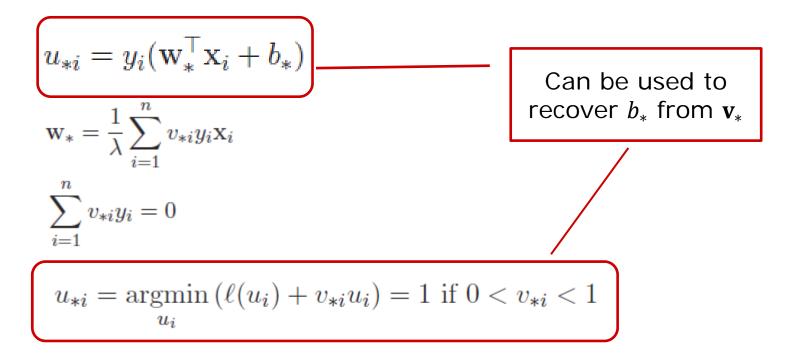
Let $(\mathbf{w}_*, b_*, \mathbf{u}_*)$ and \mathbf{v}_* are primal and dual solutions.



An Example—SVM (5)

□ Karush-Kuhn-Tucker (KKT) Conditions

Let $(\mathbf{w}_*, b_*, \mathbf{u}_*)$ and \mathbf{v}_* are primal and dual solutions.



Outline

Introduction

Convex Sets & Functions

Convex Optimization Problems

Duality

Convex Optimization Methods

□ Summary

More Assumptions

Lipschitz continuous $|f(x) - f(y)| \le G ||x - y||$ $\|\nabla f(x)\| \leq G$ Strong Convexity $\nabla^2 f(x) \succeq mI$ $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$ $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge m ||x - y||^2$ $f(ax + (1 - a)y) \le af(x) + (1 - a)f(y) - a(1 - a)\frac{m}{2}||x - y||^2$ Smooth $\nabla^2 f(x) \preceq MI$ $f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2,$ $\langle \nabla f(x) - \nabla f(y), x - y \rangle \le M ||x - y||^2$

Performance Measure

 $\square \text{ The Problem } \min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{w})$

- Convergence Rate
 - After *T* iterations, the gap between objectives $f(\mathbf{w}_T) - f(\mathbf{w}_*) \le O\left(\frac{1}{\sqrt{T}}\right), \ O\left(\frac{1}{T}\right), \ O\left(\frac{1}{T^2}\right), \ O\left(\frac{1}{\alpha^T}\right)$
- Iteration Complexity

• To ensure
$$f(\mathbf{w}_{T}) - f(\mathbf{w}_{*}) \le \epsilon$$
, the order of T
 $T \le O\left(\frac{1}{\epsilon^{2}}\right), O\left(\frac{1}{\epsilon}\right), O\left(\frac{1}{\sqrt{\epsilon}}\right), O\left(\log\frac{1}{\epsilon}\right)$

Gradient-based Methods

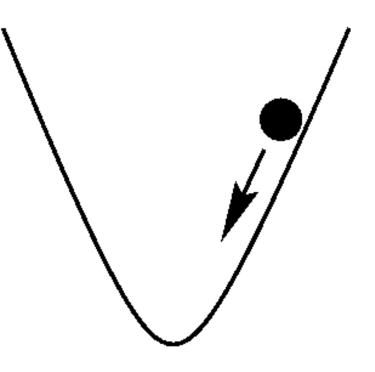
□ The Convergence Rate

Lipschitz Continuous	Strongly Convex	Smooth	Smooth Strongly Convex
GD $O\left(\frac{1}{\sqrt{T}}\right)$	$\mathrm{EGD}/\mathrm{SGD}_{\alpha} \ O\left(\frac{1}{T}\right)$	AGD $O\left(\frac{1}{T^2}\right)$	$\mathrm{GD}/\mathrm{AGD} \ O\left(\frac{1}{\alpha^T}\right)$

- GD—Gradient Descent
- AGD—Nesterov's Accelerated Gradient Descent [Nesterov, 2005, Nesterov, 2007, Tseng, 2008]
- EGD—Epoch Gradient Descent [Hazan and Kale, 2011]
- SGD_{α} —SGD with α -suffix Averaging [Rakhlin et al., 2012]

Gradient Descent (1)

Move along the opposite direction of gradients



Gradient Descent (2)

Gradient Descent with Projection

for t = 1, ..., T do

$$\mathbf{w}_{t+1}' = \mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)$$
$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}}(\mathbf{w}_{t+1}')$$
end for
return $\bar{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_t$

Projection Operator

$$\Pi_{\mathcal{W}}(\mathbf{y}) = \underset{\mathbf{x}\in\mathcal{W}}{\operatorname{argmin}} \|\mathbf{x}-\mathbf{y}\|_2$$

Analysis (1)

For any $\mathbf{w} \in \mathcal{W}$, we have $f(\mathbf{w}_t) - f(\mathbf{w})$ $\leq \langle \nabla f(\mathbf{w}_t), \mathbf{w}_t - \mathbf{w} \rangle$ $=\frac{1}{m}\langle \mathbf{w}_t - \mathbf{w}'_{t+1}, \mathbf{w}_t - \mathbf{w} \rangle$ $= \frac{1}{2m} \left(\|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}_{t+1}' - \mathbf{w}\|_2^2 + \|\mathbf{w}_t - \mathbf{w}_{t+1}'\|_2^2 \right)$ $=\frac{1}{2m}\left(\|\mathbf{w}_{t}-\mathbf{w}\|_{2}^{2}-\|\mathbf{w}_{t+1}'-\mathbf{w}\|_{2}^{2}\right)+\frac{\eta_{t}}{2}\|\nabla f(\mathbf{w}_{t})\|_{2}^{2}$ $\leq \frac{1}{2n_{t}} \left(\|\mathbf{w}_{t} - \mathbf{w}\|_{2}^{2} - \|\mathbf{w}_{t+1} - \mathbf{w}\|_{2}^{2} \right) + \frac{\eta_{t}}{2} \|\nabla f(\mathbf{w}_{t})\|_{2}^{2}$

To simplify the above inequality, we assume $\eta_t = \eta$, $\|\nabla f(\mathbf{w})\|_2 \leq G$, $\forall \mathbf{w} \in \mathcal{W}$, and $\|\mathbf{x} - \mathbf{y}\|_2 \leq D$, $\forall \mathbf{x}, \mathbf{y} \in \mathcal{W}$

Analysis (2)

Then, we have

$$f(\mathbf{w}_t) - f(\mathbf{w}) \le \frac{1}{2\eta} \left(\|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}_{t+1} - \mathbf{w}\|_2^2 \right) + \frac{\eta}{2} G^2$$

By adding the inequalities of all iterations, we have

$$\begin{split} \sum_{t=1}^{T} f(\mathbf{w}_{t}) &- Tf(\mathbf{w}) \\ \leq & \frac{1}{2\eta} \left(\|\mathbf{w}_{1} - \mathbf{w}\|_{2}^{2} - \|\mathbf{w}_{T+1} - \mathbf{w}\|_{2}^{2} \right) + \frac{\eta T}{2} G^{2} \\ \leq & \frac{1}{2\eta} \|\mathbf{w}_{1} - \mathbf{w}\|_{2}^{2} + \frac{\eta T}{2} G^{2} \\ \leq & \frac{1}{2\eta} D^{2} + \frac{\eta T}{2} G^{2} = GD\sqrt{T} \\ \end{split}$$
 where we set
$$\eta = \frac{D}{G\sqrt{T}}$$

Then, we have

$$f(\bar{\mathbf{w}}_T) - f(\mathbf{w}) = f\left(\frac{1}{T}\sum_{t=1}^T \mathbf{w}_t\right) - f(\mathbf{w})$$
$$\leq \frac{1}{T}\sum_{t=1}^T f(\mathbf{w}_t) - f(\mathbf{w}) \leq \frac{1}{T}GD\sqrt{T} = \frac{GD}{\sqrt{T}}$$

A Key Step (1)

Evaluate the Gradient or Subgradient Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$
$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$
$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

A Key Step (1)

Evaluate the Gradient or Subgradient
 Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$
$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$
$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

Hinge loss $\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^\top \mathbf{w})$

A vector λ is a *sub-gradient* of a function f at w if for all $u \in A$ we have that

$$f(\mathbf{u}) - f(\mathbf{w}) \ge \langle \mathbf{u} - \mathbf{w}, \boldsymbol{\lambda} \rangle$$
.

A Key Step (2)

Evaluate the Gradient or Subgradient
 Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$
$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$
$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

Hinge loss $\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^\top \mathbf{w})$ $\partial \max(0, 1 - z) = \begin{cases} -1, & z < 1 \\ 0, & z > 1 \\ [-1, 0], & z = 1 \end{cases} \xrightarrow{\mathbf{0}} 1$

A Key Step (3)

Evaluate the Gradient or Subgradient
 Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$
$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$
$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

Hinge loss $\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^\top \mathbf{w})$ $\partial \ell_i(\mathbf{w}) = \begin{cases} -y_i \mathbf{x}_i, & y_i \mathbf{x}_i^\top \mathbf{w} < 1\\ 0, & y_i \mathbf{x}_i^\top \mathbf{w} > 1\\ \{-\alpha y_i \mathbf{x}_i : \alpha \in [0, 1]\}, & y_i \mathbf{x}_i^\top \mathbf{w} = 1 \end{cases}$

Outline

Introduction

Convex Sets & Functions

Convex Optimization Problems

Duality

Convex Optimization Methods

Summary

Summary

Convex Sets & Functions Definitions, Operations that Preserve Convexity Convex Optimization Problems Definitions, Optimality Criterion Duality Lagrange, Dual Problem, KKT Conditions Convex Optimization Methods Gradient-based Methods

Reference (1)

□ Hazan, E. and Kale, S. (2011)

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learning Theory, pages 421–436.

□ Nesterov, Y. (2005)

Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152.

□ Nesterov, Y. (2007).

Gradient methods for minimizing composite objective function. Core discussion papers.

Reference (2)

Tseng, P. (2008).

On acclerated proximal gradient methods for convexconcave optimization. Technical report, University of Washington.

- Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
- Rakhlin, A., Shamir, O., and Sridharan, K. (2012)

Making gradient descent optimal for strongly convex stochastic optimization. In Proceedings of the 29th International Conference on Machine Learning, pages 449–456.