Linear Methods for Regression

Lijun Zhang <u>zlj@nju.edu.cn</u> http://cs.nju.edu.cn/zlj

Outline

Introduction

- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- Summary

Introduction

□ Let $X = [X_1, ..., X_p]^T$ be a data point, a linear regression model assumes E(Y|X)is a linear function of $X_1, ..., X_p$

- □ Advantages
 - They are simple and often provide an adequate and interpretable description
 - They can sometimes outperform nonlinear models
 - Small numbers of training cases, low signal-tonoise ratio or sparse data
 - Finally, linear methods can be applied to transformations of the inputs

Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- Summary

Linear Regression Models

The Linear Regression Model $f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$

 β_j 's are unknown coefficients

- \Box The variable X_i could be
 - Quantitative inputs
 - Transformations of quantitative inputs
 - ✓ Log, square-root or square
 - Basis expansions $(X_2 = X_1^2, X_3 = X_1^3)$
 - Numeric coding of qualitative inputs

Least Squares

□ Given a set of training data $(x_1, y_1) \cdots$ (x_N, y_N) where $x_i = [x_{i1}, x_{i2}, \dots, x_{ip}]^\top$ □ Minimize the Residual Sum of Squares

$$\operatorname{RSS}(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

Valid if the y_i 's are conditionally independent given the inputs x_i

A Geometric Interpretation

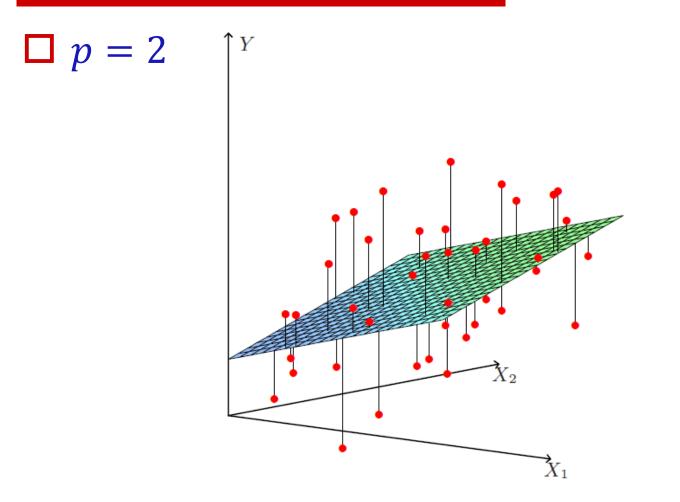


FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Optimization (1)

Let X be a matrix with each row an input vector

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix} \in \mathbb{R}^{N \times (p+1)}$$
$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0, \beta_1, \dots, \beta_p \end{bmatrix}^{\mathsf{T}} \text{ and } \mathbf{y} = \begin{bmatrix} y_1, \dots, y_N \end{bmatrix}^{\mathsf{T}}$$

□ Then, we have

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

Optimization (2)

\Box Differentiate with respect to β

$$\frac{\partial \text{RSS}}{\partial \beta} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\beta)$$

□ Set the derivative to zero

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta) = 0$$

 \Box Assume $X^{\top}X$ is invertible

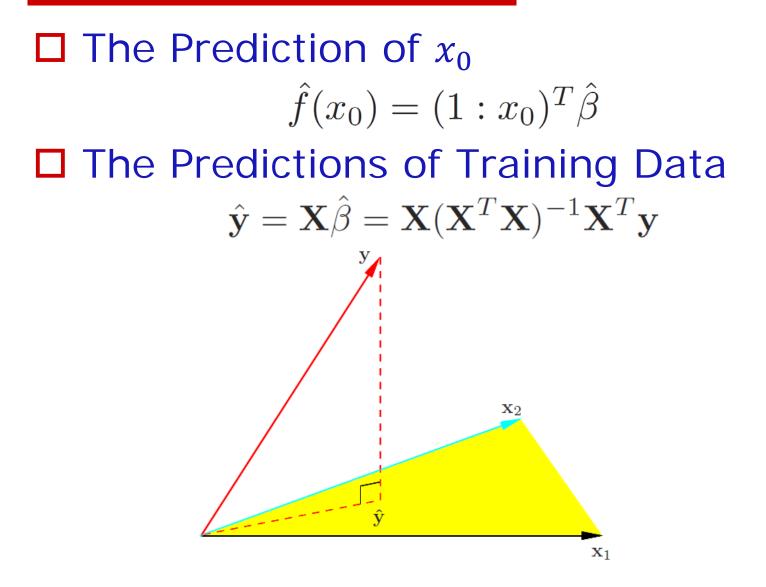
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Predictions

□ The Prediction of x_0 $\hat{f}(x_0) = (1 : x_0)^T \hat{\beta}$ □ The Predictions of Training Data $\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ □ Let $\mathbf{X} = [\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p]$ $\hat{\beta} = \operatorname{argmin} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$

ŷ is the orthogonal projection of y onto the subspace spanned by x₀, x₁, ..., x_p

Predictions



Understanding (1)

Assume the linear model is right, but the observation contains noise

$$Y = E(Y|X_1, \dots, X_p) + \varepsilon$$
$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon,$$

Where $\epsilon \sim N(0, \sigma^2)$ Then $\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\beta + \epsilon) \quad \epsilon = [\epsilon_1, \dots, \epsilon_N]^{\mathsf{T}}$ $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$ $= \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$

Understanding (2)

Since $\boldsymbol{\epsilon} = [\epsilon_1, \dots, \epsilon_N]^{\top}$ is a Gaussian random vector, thus $\hat{\beta} = \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$ is also a Gaussian random vector $\mathbf{E}(\hat{\beta}) = \beta + \mathbf{E}((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon})$ $= \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{E}(\boldsymbol{\epsilon}) = \beta$ $\operatorname{Cov}(\hat{\beta}) = \operatorname{Cov}((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon})$ $= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathrm{Cov}(\boldsymbol{\epsilon})\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ $= \sigma^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X} (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \sigma^2$ \square Thus $\hat{\beta} \sim N(\beta, (\mathbf{X}^{\top}\mathbf{X})^{-1}\sigma^2)$

Given a test point x_0 , assume $Y_0 = f(x_0) + \epsilon_0 \qquad \epsilon_0 \sim N(0, \sigma^2)$ The EPE of $\tilde{f}(x_0) = x_0^T \tilde{\beta}$ is

$$E(Y_0 - \tilde{f}(x_0))^2 = \sigma^2 + E(x_0^T \tilde{\beta} - f(x_0))^2$$

= $\sigma^2 + MSE(\tilde{f}(x_0)).$

 $\square \text{ The Mean Squared Error (MSE)}$ $MSE(\tilde{f}(x_0)) = E(x_0^T \tilde{\beta} - f(x_0))^2$ $= E(x_0^T \tilde{\beta} - E(x_0^T \tilde{\beta}))^2 + (E(x_0^T \tilde{\beta}) - f(x_0))^2$ $= Variance(x_0^T \tilde{\beta}) + Bias(x_0^T \tilde{\beta})$

EPE of Least Squares

Under the assumption that $Y_0 = f(x_0) + \epsilon_0 \qquad f(x_0) = x_0^{\mathsf{T}}\beta \qquad \epsilon_0 \sim N(0, \sigma^2)$ \Box The EPE of $\hat{f}(x_0) = x_0^{\mathsf{T}} \hat{\beta}$ is $\mathbf{E}\left(Y_0 - \hat{f}(x_0)\right)^2 = \sigma^2 + \mathbf{E}\left(x_0^{\mathsf{T}}\hat{\beta} - x_0^{\mathsf{T}}\beta\right)^2$ $= \sigma^2 + \text{MSE}(x_0^{\mathsf{T}}\hat{\beta})^2$ □ The Mean Squared Error (MSE) $MSE(x_0^{\mathsf{T}}\hat{\beta}) = E(x_0^{\mathsf{T}}\hat{\beta} - x_0^{\mathsf{T}}\beta)^2$ $= \mathrm{E}\left(x_0^{\mathsf{T}}\hat{\beta} - \mathrm{E}(x_0^{\mathsf{T}}\hat{\beta})\right)^2$ = Var $(x_0^{\mathsf{T}}\hat{\beta})$

The Gauss–Markov Theorem

- $\square \hat{\beta}$ has the smallest variance among all linear unbiased estimates.
- □ We aim to estimate $f(x_0) = x_0^T \beta$, the estimation of $\hat{f}(x_0) = x_0^T \hat{\beta}$ is

 $x_0^{\mathsf{T}}\hat{\beta} = x_0^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

□ From precious discussions, we have $E(x_0^{\mathsf{T}}\hat{\beta}) = x_0^{\mathsf{T}}E(\hat{\beta}) = x_0^{\mathsf{T}}\beta$ and for all $c^{\mathsf{T}}\mathbf{y}$ such that $E(c^{\mathsf{T}}\mathbf{y}) = x_0^{\mathsf{T}}\beta$ $Var(x_0^{\mathsf{T}}\hat{\beta}) \leq Var(c^{\mathsf{T}}\mathbf{y})$

Multiple Outputs (1)

□ Suppose we aim to predict *K* outputs $Y_1, Y_2, ..., Y_K$, and assume

$$Y_k = \beta_{0k} + \sum_{j=1}^p X_j \beta_{jk} + \varepsilon_k$$
$$= f_k(X) + \varepsilon_k.$$

Given N training data, we have

 $\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{E}.$

- Where $\mathbf{Y} \in \mathbb{R}^{N \times K}$ is the response matrix
- **X** $\in \mathbb{R}^{N \times (p+1)}$ is the data matrix
- **B** $\in \mathbb{R}^{(p+1) \times K}$ is the matrix of parameters
- **E** $\in \mathbb{R}^{N \times K}$ is the matrix of errors

Multiple Outputs (2)

□ The Residual Sum of Squares

$$RSS(\mathbf{B}) = \sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(x_i))^2$$
$$= \operatorname{tr}[(\mathbf{Y} - \mathbf{X}\mathbf{B})^T(\mathbf{Y} - \mathbf{X}\mathbf{B})]$$

□ The Solution

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

It is equivalent to performing K independent least squares

Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

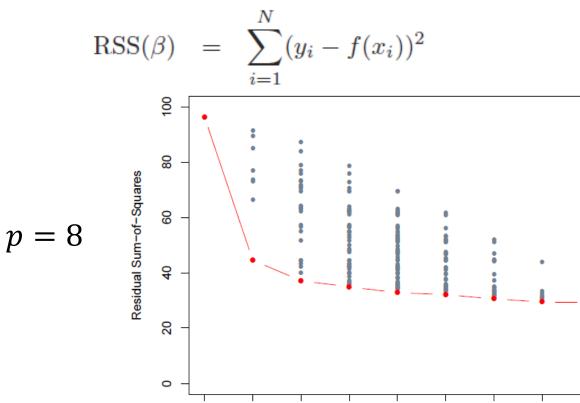
Subset Selection

Limitations of Least Squares

- Prediction Accuracy: the least squares estimates often have low bias but large variance
- Interpretation: We often would like to determine a smaller subset that exhibit the strongest effects
- Shrink or Set Some Coefficients to Zero
 - We sacrifice a little bit of bias to reduce the variance of the predicted values

Best-Subset Selection

Select the subset of variables (features) such that the RSS is minimized



Forward- and Backward-Stepwise Selection

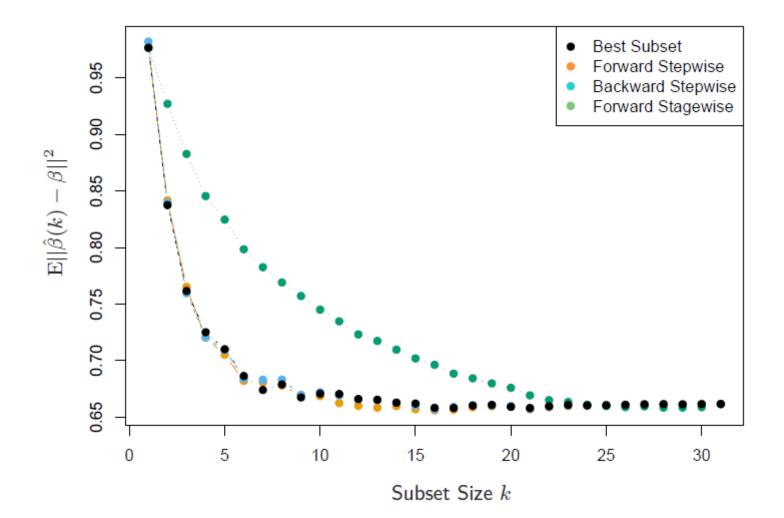
□ Forward-stepwise Selection

- 1. Start with the intercept
- 2. Sequentially add into the model the predictor that most improves the fit
- □ Backward-stepwise Selection
 - 1. Start with the full model
 - 2. Sequentially delete the predictor that has the least impact on the fit
- □ Both are greedy algorithms
- □ Both can be solved quite efficiently

Forward-Stagewise Regression

- 1. Start with an intercept equal to \bar{y} and centered predictors with coefficients initially all 0
- 2. Identify the variable most correlated with the current residual
- Compute the simple linear regression coefficient of the residual on this chosen variable
- None of the other variables are adjusted when a term is added to the model

Comparisons



Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- Summary

Shrinkage Methods

□ Limitation of Subset Selection

- A discrete process—variables are either retained or discarded
- It often exhibits high variance, and so doesn't reduce the prediction error
- Shrinkage Methods
 - More continuous, low variance
 - Ridge Regression
 - The Lasso
 - Least Angle Regression

Ridge Regression

Shrink the regression coefficients
 By imposing a penalty on their size
 The Objective

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

 $\lambda \ge 0$ is a complexity parameter **An Equivalent Form**

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2,$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

Coefficients cannot be too large even when variables are correlated

Optimization (1)

Let X be a matrix with each row an input vector

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix} \in \mathbb{R}^{N \times p}$$
$$\boldsymbol{\beta} = \begin{bmatrix} \beta_1, \dots, \beta_p \end{bmatrix}^{\mathsf{T}} \text{ and } \mathbf{y} = \begin{bmatrix} y_1, \dots, y_N \end{bmatrix}^{\mathsf{T}}$$

□ The Objective Becomes $\min_{\beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\beta - \mathbf{1}_N \beta_0\|_2^2 + \lambda \|\beta\|_2^2$ ■ Where $\mathbf{1}_N = [1, ..., 1]^\top \in \mathbb{R}^N$

Optimization (2)

□ Differentiate with respect to β_0 and set it to zero

$$-2 \cdot \mathbf{1}_{N}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{1}_{N}\boldsymbol{\beta}_{0}) = 0$$
$$\boldsymbol{\beta}_{0} = \frac{1}{N}\mathbf{1}_{N}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

□ Differentiate with respect to β and set it to zero

$$2 \cdot \mathbf{X}^{\mathsf{T}} (\mathbf{X}\beta - \mathbf{y} + \mathbf{1}_{N}\beta_{0}) + 2 \cdot \lambda\beta = 0$$
$$\mathbf{X}^{\mathsf{T}} \left(\mathbf{X}\beta - \mathbf{y} - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} (\mathbf{X}\beta - \mathbf{y}) \right) + \lambda\beta = 0$$
$$\left(\mathbf{X}^{\mathsf{T}} \left(I - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} \right) \mathbf{X} + \lambda \mathbf{I} \right) \beta = \mathbf{X}^{\mathsf{T}} \left(I - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} \right) \mathbf{y}$$

Optimization (3)

The Final Solution
Let $H = \mathbf{I} - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^T$ be the centering matrix $\beta^* = (\mathbf{X}^T H \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T H \mathbf{y}$

✓ Always invertible

$$\beta_0^* = \frac{1}{N} \mathbf{1}_N^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \beta^*)$$

Understanding (1)

Assume X is centered, then

 $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

Let the SVD of X be

 $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$

- U = $[\mathbf{u}_1, ..., \mathbf{u}_p]$ contains the left singular vectors
- **D** is a diagonal matrix with diagonal entries $d_1 \ge d_2 \ge \cdots \ge d_p \ge 0$

Then, we examine the prediction of training data X

Understanding (2)

Least Squares

$$\begin{aligned} \mathbf{X} \hat{\beta}^{\text{ls}} &= \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{U} \mathbf{U}^T \mathbf{y}, \\ &= \sum_{j=1}^p \mathbf{u}_j \mathbf{u}_j^\mathsf{T} \mathbf{y} \end{aligned}$$

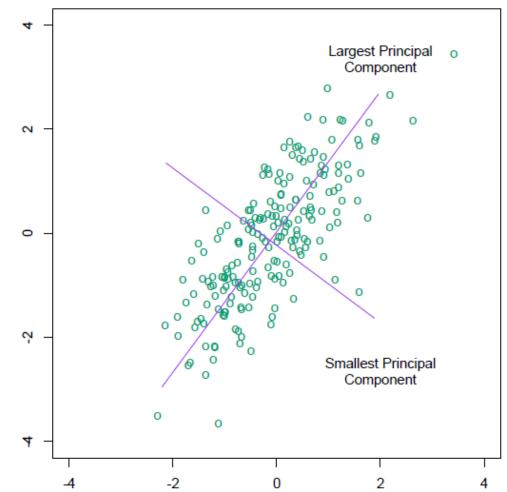
□ Ridge Regression

$$\begin{aligned} \mathbf{X} \hat{\beta}^{\text{ridge}} &= \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y} \\ &= \mathbf{U} \mathbf{D} (\mathbf{D}^2 + \lambda \mathbf{I})^{-1} \mathbf{D} \mathbf{U}^T \mathbf{y} \\ &= \sum_{j=1}^p \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T \mathbf{y}, \end{aligned}$$

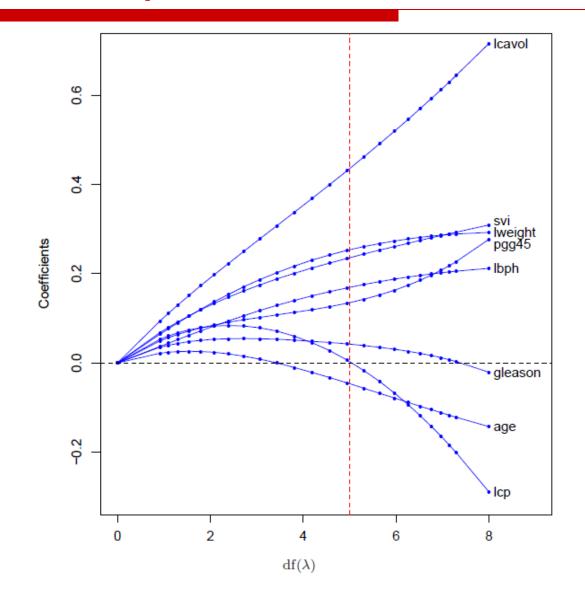
Shrink the coordinates by $\frac{d_j^2}{d_j^2 + \lambda} \le 1$

Understanding (3)

Connection with PCA

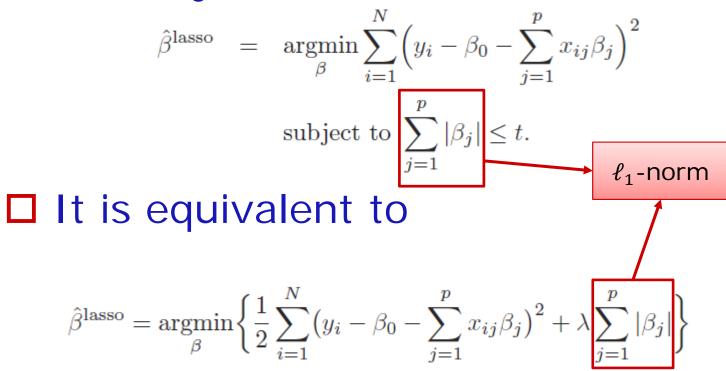


An Example



The Lasso

□ The Objective



Optimization

□ The First Formulation

$$\hat{\beta}^{\text{lasso}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

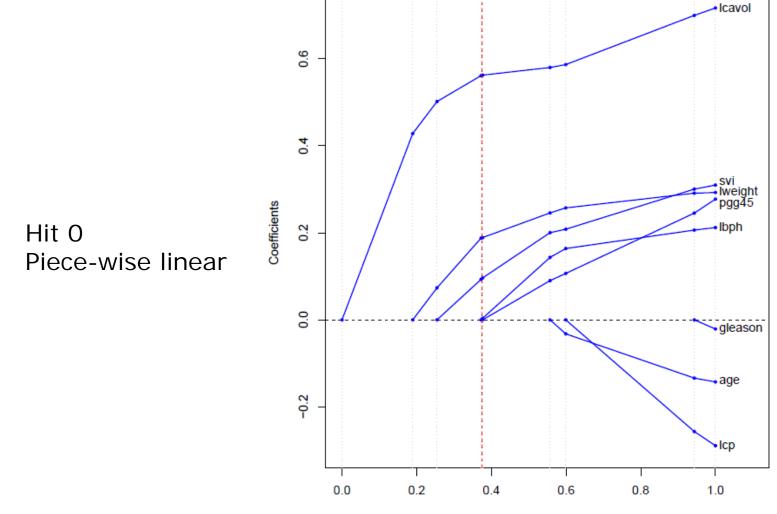
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

Gradient descent followed by Projection [1]
 The Second Formulation

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Convex Composite Optimization [2]

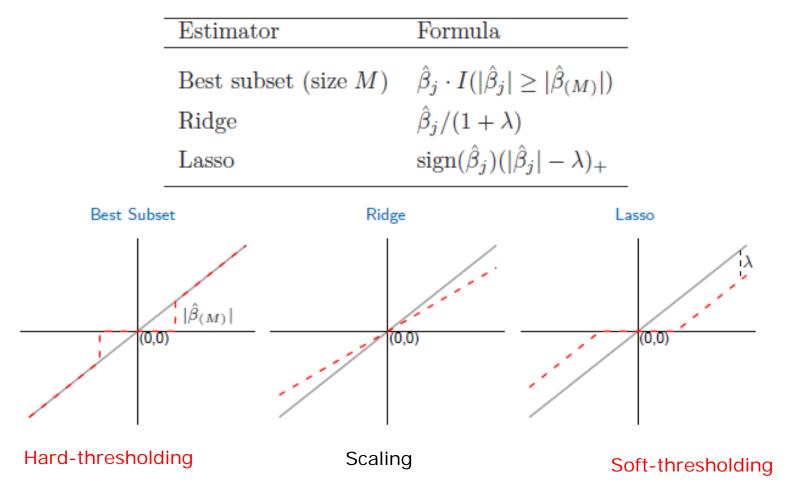
An Example



Shrinkage Factor s

Subset Selection, Ridge, Lasso

Columns of X are orthonormal



Ridge v.s. Lasso (1)

Ridge Regression

Lasso

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2,$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

 \blacksquare ℓ_2 -norm appears in the constraint

$$\hat{\beta}^{\text{lasso}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

 \boldsymbol{l}_1 -norm appears in the constraint

Ridge v.s. Lasso (2)

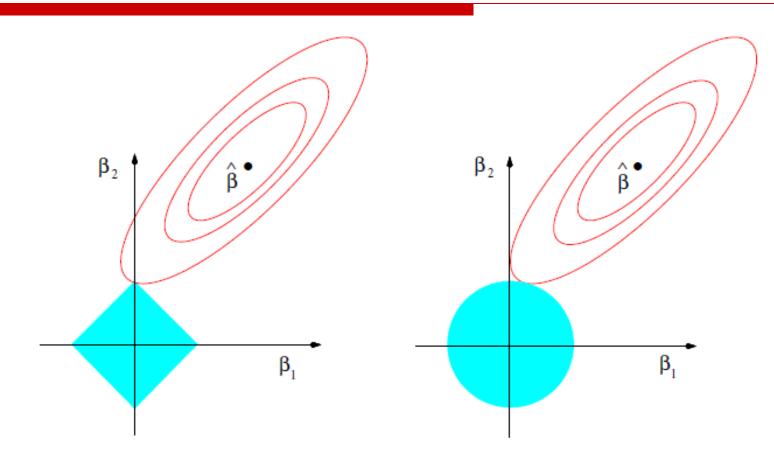


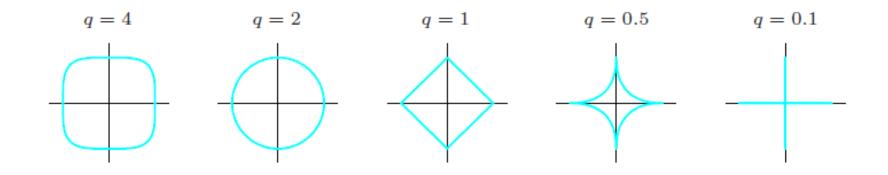
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \leq t$ and $\beta_1^2 + \beta_2^2 \leq t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Generalization (1)

□ A General Formulation

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

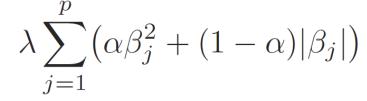
 \Box Contours of Constant Value of $\sum_{j} |\beta_{j}|^{q}$



Generalization (2)

A Mixed Formulation

The *elastic-net* penalty



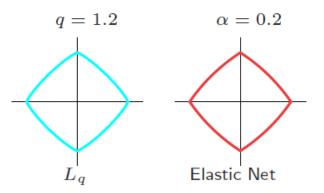


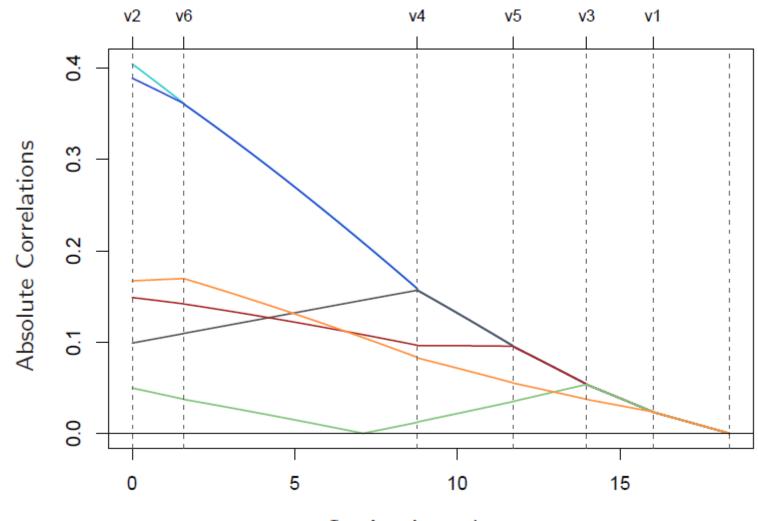
FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1-\alpha)|\beta_{j}|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

Least Angle Regression (LAR)

□ The Procedure

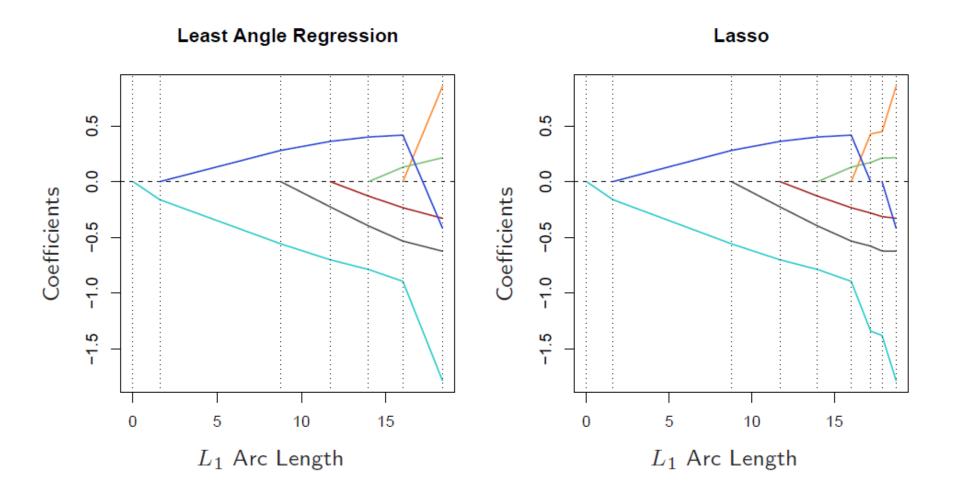
- Identify the variable most correlated with the response
- 2. Move the coefficient of this variable continuously toward its least squares value
- As soon as another variable "catches up" in terms of correlation with the residual, the process is paused
- The second variable then joins the active set, and their coefficients are moved together in a way that keeps their correlations tied and decreasing

An Example

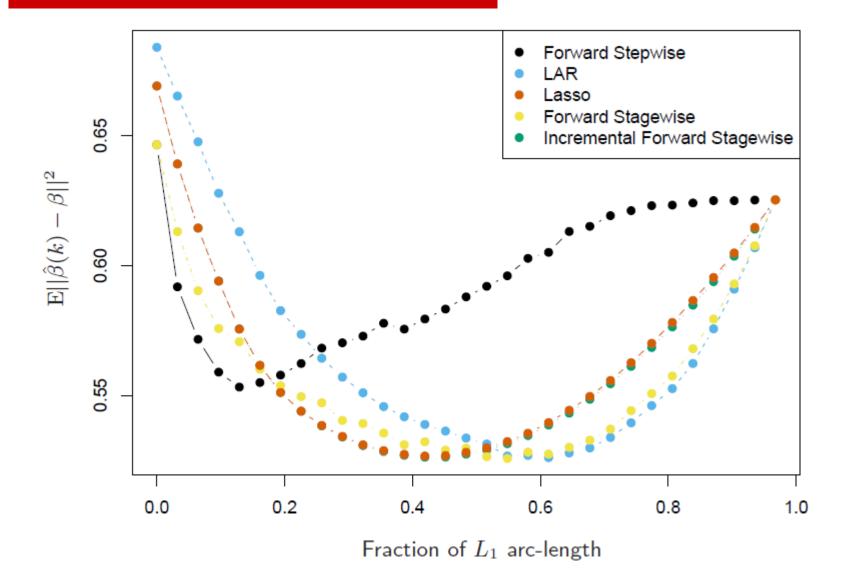


 L_1 Arc Length

LAS v.s. Lasso



Comparisons



Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Methods Using Derived Input Directions

We have a large number of inputs
 Often very correlated

1. Generate a small number of linear combinations

$$Z_m, m = 1, ..., M$$

of the original inputs X_j

- 2. Use Z_m in place of X_j as inputs in the regression
- Linear Dimensionality Reduction + Regression

Principal Components Regression (PCR)

The linear combinations Z_m are generated by PCA

 $\mathbf{z}_m = \mathbf{X} \boldsymbol{\nu}_m$

X is centered, and v_m is the *m*-th right singular vector

 \Box Since \mathbf{z}_m 's are orthogonal

$$\hat{\mathbf{y}}_{(M)}^{\text{pcr}} = \bar{y}\mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_m \mathbf{z}_m \qquad \hat{\beta}^{\text{pcr}}(M) = \sum_{m=1}^{M} \hat{\theta}_m v_m.$$
where $\hat{\theta}_m = \langle \mathbf{z}_m, \mathbf{y} \rangle / \langle \mathbf{z}_m, \mathbf{z}_m \rangle$

PCR v.s. Ridge

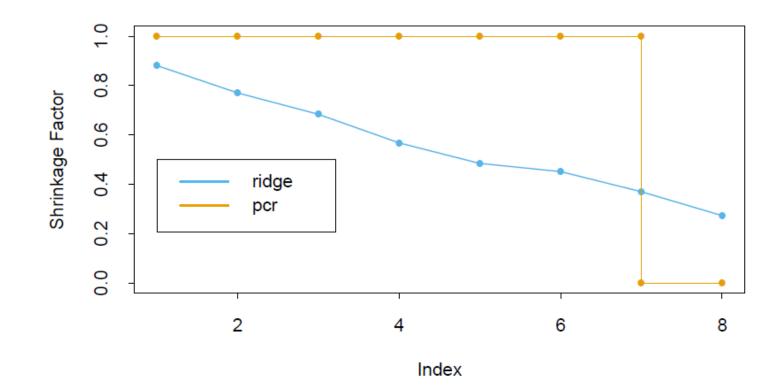


FIGURE 3.17. Ridge regression shrinks the regression coefficients of the principal components, using shrinkage factors $d_j^2/(d_j^2 + \lambda)$ as in (3.47). Principal component regression truncates them. Shown are the shrinkage and truncation patterns corresponding to Figure 3.7, as a function of the principal component index.

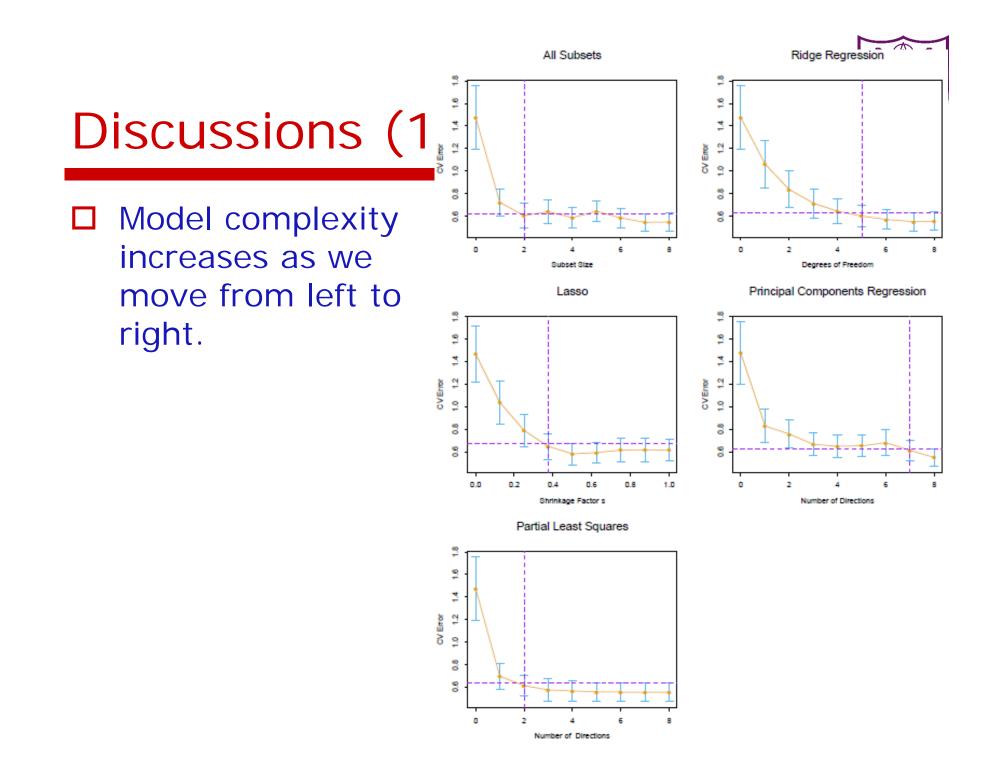
Partial Least Squares (PLS)

□ The Procedure

- 1. Compute $\hat{\varphi}_{1i} = \langle \mathbf{x}_i, \mathbf{y} \rangle$ for each feature \mathbf{x}_i
- 2. Construct the 1st derived input $z_1 =$ $\sum_{i} \hat{\varphi}_{1i} \mathbf{x}_{i}$
- **3.** y is regressed on z_1 giving coefficient $\hat{\theta}_1$
- 4. Orthogonalize $\mathbf{x}_1, \dots, \mathbf{x}_p$ with respect to \mathbf{z}_1
- 5. Repeat the above process

Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- **Discussions**
- □ Summary



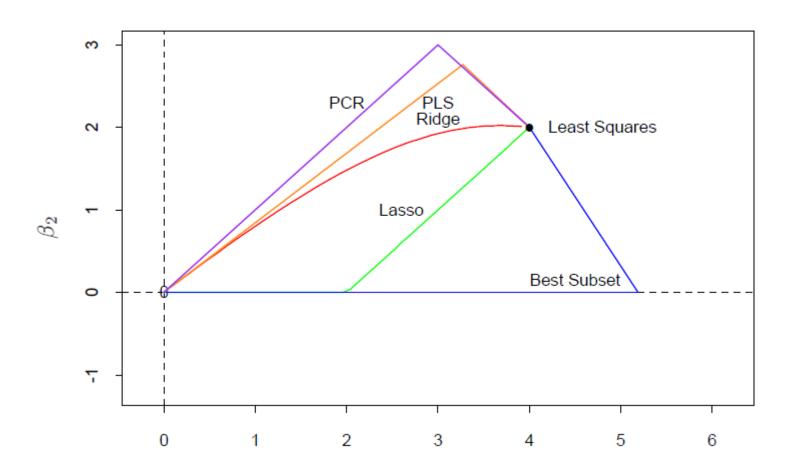
Discussions (2)

TABLE 3.3. Estimated coefficients and test error results, for different subset and shrinkage methods applied to the prostate data. The blank entries correspond to variables omitted.

Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	2.465	2.477	2.452	2.468	2.497	2.452
lcavol	0.680	0.740	0.420	0.533	0.543	0.419
lweight	0.263	0.316	0.238	0.169	0.289	0.344
age	-0.141		-0.046		-0.152	-0.026
lbph	0.210		0.162	0.002	0.214	0.220
svi	0.305		0.227	0.094	0.315	0.243
lcp	-0.288		0.000		-0.051	0.079
gleason	-0.021		0.040		0.232	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152

Discussions (3)

 $\rho = 0.5$



Outline

- Introduction
- Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- **Summary**

Summary

Linear Regression Models

Least Squares

Shrinkage Methods

Ridge Regression

Lasso

Least Angle Regression (LAR)

Methods Using Derived Input Directions

Principal Components Regression (PCR)

Partial Least Squares (PLS)

Reference

- □ [1] Duchi et al. Efficient projections onto the ℓ₁-ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pp. 272-279, 2008.
- [2] Nesterov. Gradient methods for minimizing composite functions.
 Mathematical Programming, 140(1): 125-161, 2013.