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Introduction

 Let ଵ 
ୃ be a data point, a linear 

regression model assumes

is a linear function of ଵ 

 Advantages
 They are simple and often provide an adequate 

and interpretable description 
 They can sometimes outperform nonlinear 

models
 Small numbers of training cases, low signal-to-

noise ratio or sparse data
 Finally, linear methods can be applied to 

transformations of the inputs
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Linear Regression Models

 The Linear Regression Model

’s are unknown coefficients

 The variable  could be
 Quantitative inputs
 Transformations of quantitative inputs
 Log, square-root or square

 Basis expansions ( ଶ ଵ
ଶ

ଷ ଵ
ଷ)

 Numeric coding of qualitative inputs

݂ ܺ ൌ ߚ  ܺߚ
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Least Squares

 Given a set of training data ଵ ଵ

ே ே where  ଵ ଶ 
ୃ

 Minimize the Residual Sum of Squares

 Valid if the ’s are conditionally 
independent given the inputs 



A Geometric Interpretation





Optimization (1)

 Let be a matrix with each row an 
input vector

 ଵ 
ୃ and ଵ ே

ୃ

 Then, we have

܆ ൌ

1 ଵଵݔ ଵଶݔ ⋯ ଵݔ
1 ଶଵݔ ଶଶݔ ⋯ ଶݔ
⋮ ⋮ ⋮ ⋮ ⋮
1 ேଵݔ ேଶݔ ⋯ ேݔ

∈ Թேൈሺାଵሻ



Optimization (2)

 Differentiate with respect to 

 Set the derivative to zero

 Assume ୃ is invertible



Predictions

 The Prediction of 

 The Predictions of Training Data

 Let  ଵ 

 is the orthogonal projection of onto 
the subspace spanned by  ଵ 

ଶ
ଶ



Predictions

 The Prediction of 

 The Predictions of Training Data



Understanding (1)

 Assume the linear model is right, but 
the observation contains noise

 Where ଶ

 Then መߚ ൌ ܆ୃ܆ ିଵܡୃ܆
ൌ 	 ܆ୃ܆ ିଵୃ܆ ߚ܆  

ൌ ܆ୃ܆ ିଵ +ߚ܆ୃ܆ ܆ୃ܆ ିଵୃ܆

ൌ +ߚ ܆ୃ܆ ିଵୃ܆

 ൌ ߳ଵ,… , ߳ே ୃ



Understanding (2)

 Since ଵ ே
ୃ is a Gaussian 

random vector, thus

is also a Gaussian random vector

 Thus ୃ ିଵ ଶ

መߚ ൌ +ߚ ܆ୃ܆ ିଵୃ܆

E መߚ ൌ ߚ  E ܆ୃ܆ ିଵୃ܆
ൌ ߚ  ܆ୃ܆ ିଵୃ܆E  ൌ ߚ

Cov መߚ ൌ Cov ܆ୃ܆ ିଵୃ܆
ൌ ܆ୃ܆ ିଵୃ܆Cov  ܆ ܆ୃ܆ ିଵ

ൌ ଶߪ ܆ୃ܆ ିଵ܆ୃ܆ ܆ୃ܆ ିଵ ൌ ܆ୃ܆ ିଵߪଶ



Expected Prediction Error (EPE)

 Given a test point , assume

 The EPE of               is

 The Mean Squared Error (MSE) 
MSE ሚ݂ ݔ ൌ E ෨ߚୃݔ െ ݂ ݔ

ଶ

ൌ E ෨ߚୃݔ െ E ෨ߚୃݔ
ଶ
 E ෨ߚୃݔ െ ݂ ݔ

ଶ

Bias ෨Varianceߚୃݔ ෨ߚୃݔ

߳~ܰ 0, ଶܻߪ ൌ ݂ ݔ  ߳

ൌ



EPE of Least Squares

 Under the assumption that

 The EPE of  
ୃ is

 The Mean Squared Error (MSE) 

݂ ݔ ൌ ߚୃݔ ߳~ܰ 0, ଶܻߪ ൌ ݂ ݔ  ߳

E ܻ െ መ݂ ݔ
ଶ
ൌ ଶߪ  E መߚୃݔ െ ߚୃݔ

ଶ

ൌ ଶߪ  MSE መߚୃݔ
ଶ

MSE መߚୃݔ ൌ E መߚୃݔ െ ߚୃݔ
ଶ

ൌ E መߚୃݔ െ E መߚୃݔ
ଶ

ൌ Varሺݔୃߚመሻ



The Gauss–Markov Theorem

 has the smallest variance among all 
linear unbiased estimates.

 We aim to estimate  
ୃ , the 

estimation of  
ୃ is

 From precious discussions, we have

and for all ୃ such that ୃ

ୃ

መߚୃݔ ൌ ୃݔ ܆ୃ܆ ିଵܡୃ܆

E መߚୃݔ ൌ ୃEݔ መߚ ൌ ߚୃݔ

Var መߚୃݔ  Var ܡୃܿ



Multiple Outputs (1)

 Suppose we aim to predict outputs 
ଵ ଶ , and assume

 Given training data, we have

 Where ேൈ is the response matrix
 ேൈሺାଵሻ is the data matrix
 ାଵ ൈ is the matrix of parameters
 ேൈ is the matrix of errors



Multiple Outputs (2)

 The Residual Sum of Squares

 The Solution

 It is equivalent to performing 
independent least squares
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Subset Selection

 Limitations of Least Squares
 Prediction Accuracy: the least squares 

estimates often have low bias but large 
variance

 Interpretation: We often would like to 
determine a smaller subset that exhibit 
the strongest effects

 Shrink or Set Some Coefficients to 
Zero
 We sacrifice a little bit of bias to reduce 

the variance of the predicted values



Best-Subset Selection

 Select the subset of variables (features) 
such that the RSS is minimized

 ൌ 8



Forward- and Backward-
Stepwise Selection

 Forward-stepwise Selection
1. Start with the intercept
2. Sequentially add into the model the 

predictor that most improves the fit
 Backward-stepwise Selection

1. Start with the full model
2. Sequentially delete the predictor that 

has the least impact on the fit
 Both are greedy algorithms
 Both can be solved quite efficiently



Forward-Stagewise Regression

1. Start with an intercept equal to and 
centered predictors with coefficients 
initially all 

2. Identify the variable most correlated 
with the current residual

3. Compute the simple linear regression 
coefficient of the residual on this chosen 
variable

 None of the other variables are adjusted
when a term is added to the model



Comparisons
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Shrinkage Methods

 Limitation of  Subset Selection
 A discrete process—variables are either 

retained or discarded
 It often exhibits high variance, and so 

doesn’t reduce the prediction error
 Shrinkage Methods
 More continuous, low variance

 Ridge Regression
 The Lasso
 Least Angle Regression



Ridge Regression

 Shrink the regression coefficients
 By imposing a penalty on their size

 The Objective

 is a complexity parameter
 An Equivalent Form

Coefficients cannot be 
too large even when 

variables are correlated



Optimization (1)

 Let be a matrix with each row an 
input vector

ଵ 
ୃ and ଵ ே

ୃ

 The Objective Becomes

 Where ே
ୃ ே

܆ ൌ

ଵଵݔ ଵଶݔ ⋯ ଵݔ
ଶଵݔ ଶଶݔ ⋯ ଶݔ
⋮ ⋮ ⋮ ⋮
ேଵݔ ேଶݔ ⋯ ேݔ

∈ Թேൈ

min
ఉబ∈Թ,ఉ∈Թ

ܡ െ ߚ܆ െ ேߚ ଶ
ଶ  ߣ ߚ ଶ

ଶ



Optimization (2)

 Differentiate with respect to  and 
set it to zero

 Differentiate with respect to and set 
it to zero

െ2 ⋅ ேୃ ܡ െ ߚ܆ െ ேߚ ൌ 0

ߚ ൌ
1
ܰ ே

ୃ ܡ െ ߚ܆

2 ⋅ ୃ܆ ߚ܆ െ ܡ  ேߚ  2 ⋅ ߚߣ ൌ 0

ୃ܆ ߚ܆ െ ܡ െ
1
ܰ ேே

ୃ ߚ܆ െ ܡ  ߚߣ ൌ 0

ୃ܆ ܫ െ
1
ܰ ேே

ୃ ܆  ۷ߣ ߚ ൌ ୃ܆ ܫ െ
1
ܰ ேே

ୃ ܡ



Optimization (3)

 The Final Solution
 Let ଵ

ே ே ே
ୃ be the centering matrix

 Always invertible

∗ߚ ൌ ܆ܪୃ܆  ۷ߣ ିଵܡܪୃ܆

∗ߚ ൌ
1
ܰ ே

ୃ ܡ െ ∗ߚ܆



Understanding (1)

 Assume is centered, then

 Let the SVD of be

 ܃ ൌ ሾܝଵ,… , ሿܝ contains the left singular 
vectors

 ۲ is a diagonal matrix with diagonal entries 
݀ଵ  ݀ଶ  ⋯  ݀  0

 Then, we examine the prediction of 
training data 



Understanding (2)

 Least Squares

 Ridge Regression

 Shrink the coordinates by 
ௗೕ
మ

ௗೕ
మାఒ

ൌ 				ܝܝୃܡ


ୀଵ



Understanding (3)

 Connection with PCA



An Example



The Lasso

 The Objective

 It is equivalent to
ℓଵℓଵ-norm



Optimization

 The First Formulation

 Gradient descent followed by Projection [1]
 The Second Formulation

 Convex Composite Optimization [2]



An Example

Hit 0
Piece-wise linear



Subset Selection, Ridge, Lasso

 Columns of are orthonormal

Soft-thresholdingHard-thresholding Scaling



Ridge v.s. Lasso (1)

 Ridge Regression

 ଶ-norm appears in the constraint
 Lasso

 ଵ-norm appears in the constraint



Ridge v.s. Lasso (2)



Generalization (1)

 A General Formulation

 Contours of Constant Value of 






Generalization (2)

 A Mixed Formulation
 The elastic-net penalty



Least Angle Regression (LAR)

 The Procedure
1. Identify the variable most correlated with 

the response
2. Move the coefficient of this variable 

continuously toward its least squares value 
3. As soon as another variable “catches up” in 

terms of correlation with the residual, the 
process is paused

4. The second variable then joins the active 
set, and their coefficients are moved 
together in a way that keeps their 
correlations tied and decreasing



An Example



LAS v.s. Lasso



Comparisons
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Methods Using Derived Input 
Directions

 We have a large number of inputs
 Often very correlated

1. Generate a small number of linear 
combinations

of the original inputs 

2. Use  in place of  as inputs in the 
regression

 Linear Dimensionality Reduction + 
Regression

ܼ,݉ ൌ 1,… ܯ,



Principal Components 
Regression (PCR)

 The linear combinations  are 
generated by PCA

 is centered, and  is the -th right 
singular vector

 Since ’s are orthogonal

 where

ܢ ൌ ݒ܆



PCR v.s. Ridge



Partial Least Squares (PLS)

 The Procedure
1. Compute ଵ  for each feature 

2. Construct the 1st derived input ଵ
ଵ 

is regressed on ଵ giving coefficient ଵ

4. Orthogonalize ଵ  with respect to ଵ

5. Repeat the above process
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Discussions (1)
 Model complexity 

increases as we 
move from left to 
right.



Discussions (2)



Discussions (3)
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Summary

 Linear Regression Models
 Least Squares
 Shrinkage Methods
 Ridge Regression
 Lasso
 Least Angle Regression (LAR)

 Methods Using Derived Input 
Directions
 Principal Components Regression (PCR)
 Partial Least Squares (PLS)
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