Association Pattern Mining

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Outline

Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Introduction

□ Transactions

Sets of items bought by customers

□ The Goal

- Determine associations between groups of items bought by customers
- Quantification of the Level of Association
 - Frequencies of sets of items
- □ The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

Applications

Supermarket Data Target marketing, shelf placement Text Mining Identifying co-occurring terms Generalization to Dependencyoriented Data Types Web log analysis, software bug detection Other Major Data Mining Problems Clustering, classification, and outlier analysis

Association Rules

Generated from Frequent Itemsets

 $\Box \quad Formulation \ X \Rightarrow Y$

- {Beer} \Rightarrow {Diapers}
- {Eggs,Milk} \Rightarrow {Yogurt}

Applications

- Promotion
- Shelf placement

Conditional Probability

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)}$$

Outline

□ Introduction

- The Frequent Pattern Mining Model
- Association Rule Generation Framework
- **□** Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

The Frequent Pattern Mining Model

 \Box U is a set of d iterms

- $\Box \mathcal{T}$ is a set of *n* transactions T_1, \ldots, T_n
 - $\blacksquare T_i \subseteq U$
- **D** Binary Representation of T_1, \ldots, T_n
 - U = {Bread, Butter, Cheese, Eggs, Milk, Yogurt}

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110

The Frequent Pattern Mining Model

 \Box U is a set of d iterms

- $\Box \mathcal{T}$ is a set of *n* transactions T_1, \ldots, T_n
 - $\blacksquare T_i \subseteq U$
- **D** Binary Representation of T_1, \ldots, T_n
 - U = {Bread, Butter, Cheese, Eggs, Milk, Yogurt}

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110

- □ Itemset, *k*-itemset
 - A set of items, A set of k items

Definitions

□ Support

Definition 4.2.1 (Support) The support of an itemset I is defined as the fraction of the transactions in the database $\mathcal{T} = \{T_1 \dots T_n\}$ that contain I as a subset.

Denoted by sup(I)

Frequent Itemset Mining

Definition 4.2.2 (Frequent Itemset Mining) Given a set of transactions $\mathcal{T} = \{T_1 \ldots T_n\}$, where each transaction T_i is a subset of items from U, determine all itemsets I that occur as a subset of at least a predefined fraction minsup of the transactions in \mathcal{T} .

minsup is the minimum support

Definition 4.2.3 (Frequent Itemset Mining: Set-wise Definition) Given a set of sets $\mathcal{T} = \{T_1 \dots T_n\}$, where each element of the set T_i is drawn on the universe of elements U, determine all sets I that occur as a subset of at least a predefined fraction minsup of the sets in \mathcal{T} .

An Example

□ A Market Basket Data Set

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

support of {Bread, Milk} is $\frac{2}{5} = 0.4$ support of {Cheese, Yogurt} is $\frac{1}{5} = 0.2$

 \Box minsup = 0.3

{Bread, Milk} is a frequent itemset

Properties

The smaller *minsup* is, the larger the number of frequent itemsets is. Support Monotonicity Property

Property 4.2.1 (Support Monotonicity Property) The support of every subset J of I is at least equal to that of the support of itemset I.

$$sup(J) \ge sup(I) \quad \forall J \subseteq I$$
 (4.1)

When an itemset I is contained in a transaction, all its subsets will also be contained in the transaction.

Downward Closure Property

Property 4.2.2 (Downward Closure Property) Every subset of a frequent itemset is also frequent.

Maximal Frequent Itemsets

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a given minimum support level minsup, if it is frequent, and no superset of it is frequent.

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

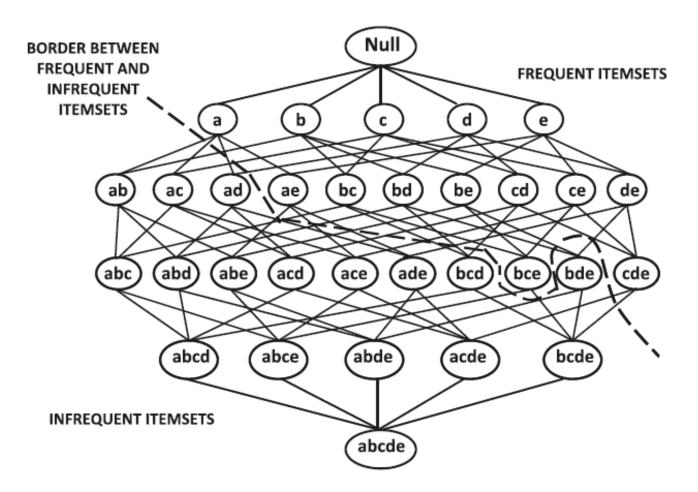
- \square Maximal frequent patterns at minsup = 0.3
 - {Bread,Milk}, {Cheese,Milk}, {Eggs,Milk, Yogurt}
- □ Frequent Patterns at *minsup* = 0.3
 - The total number is 11
 - Subsets of the maximal frequent patterns

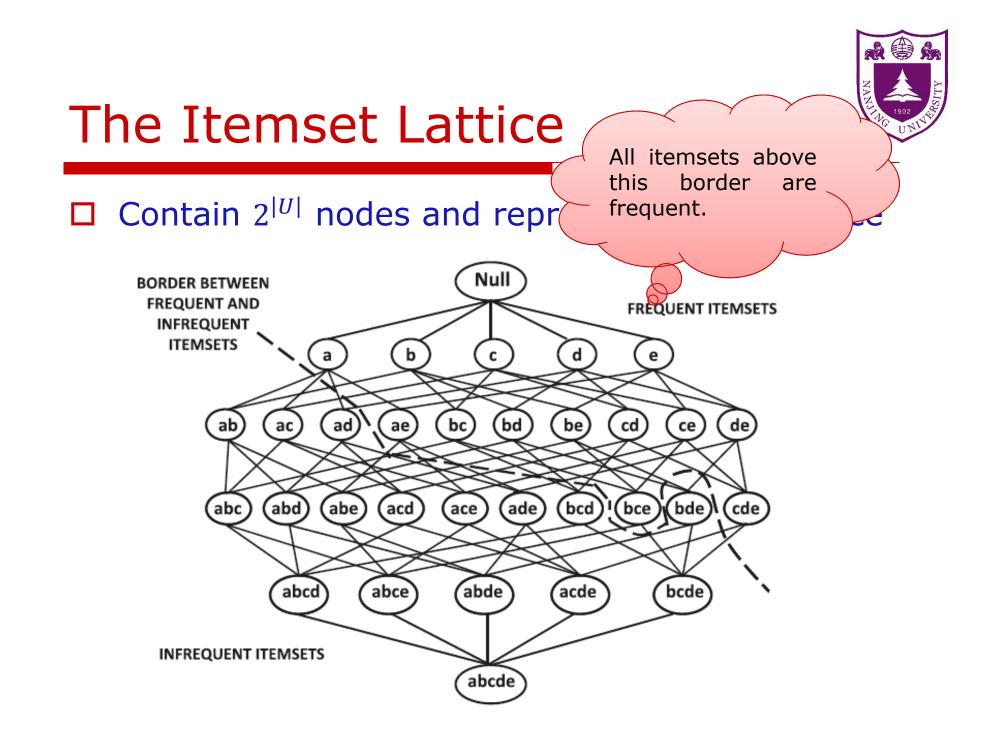
Maximal Frequent Itemsets

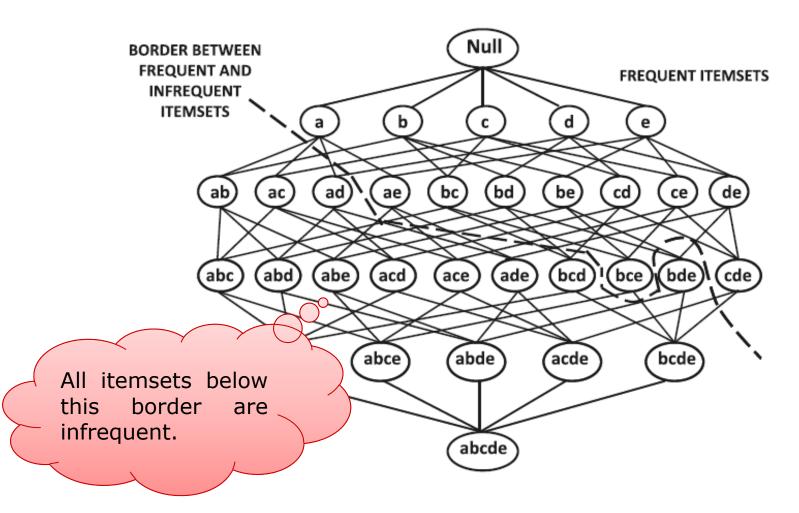
Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a given minimum support level minsup, if it is frequent, and no superset of it is frequent.

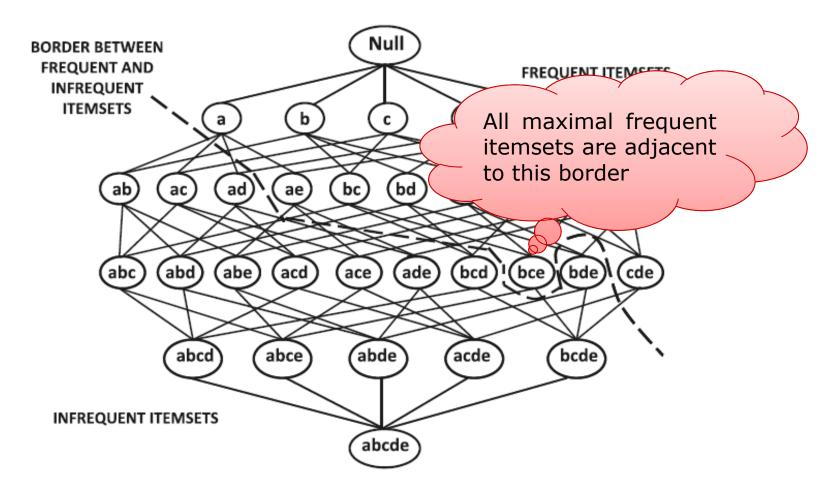
tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

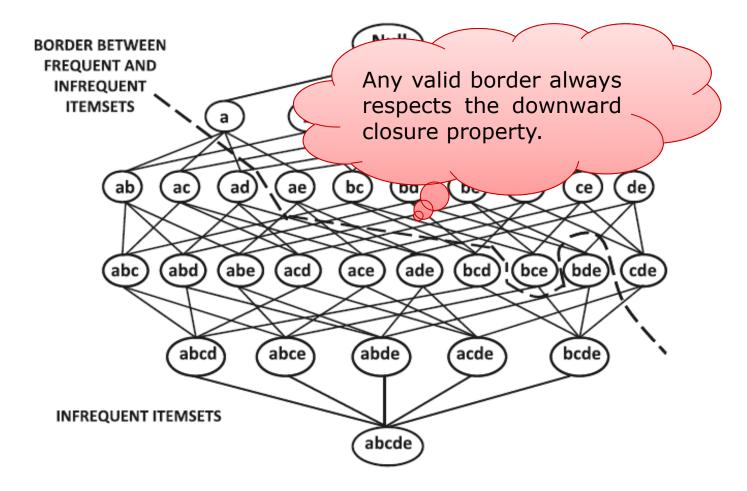
- The maximal patterns can be considered condensed representations of the frequent patterns.
- However, this condensed representation does not retain information about the support values of the subsets.











Outline

□ Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Definitions

\Box The confidence of a rule $X \Rightarrow Y$

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence $conf(X \Rightarrow Y)$ of the rule $X \Rightarrow Y$ is the conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X. Therefore, the confidence $conf(X \Rightarrow Y)$ is defined as follows:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}.$$
 (4.2)

- X and Y are said to be the antecedent and the consequent
- In the previous table

$$conf(\{Eggs, Milk\} \Rightarrow \{Yogurt\}) = \frac{sup(\{Eggs, Milk, Yogurt\})}{sup(\{Eggs, Milk\})} = \frac{0.4}{0.6} = \frac{2}{3}$$

Definitions

\Box The confidence of a rule $X \Rightarrow Y$

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence $conf(X \Rightarrow Y)$ of the rule $X \Rightarrow Y$ is the conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X. Therefore, the confidence $conf(X \Rightarrow Y)$ is defined as follows:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}.$$
 (4.2)

□ Association Rules

Definition 4.3.2 (Association Rules) Let X and Y be two sets of items. Then, the rule $X \Rightarrow Y$ is said to be an association rule at a minimum support of minsup and minimum confidence of minconf, if it satisfies both the following criteria:

- 1. The support of the itemset $X \cup Y$ is at least minsup.
- 2. The confidence of the rule $X \Rightarrow Y$ is at least minconf.
 - A sufficient number of transactions are relevant
 - A sufficient strength in terms of conditional probabilities

The Overall Framework

- In the first phase, all the frequent itemsets are generated at the minimum support of *minsup*.
 - The most difficult step
- 2. In the second phase, the association rules are generated from the frequent itemsets at the minimum confidence level of *minconf*.
 - Relatively straightforward

Implementation of 2nd Phase

□ A Straightforward Implentation

- Given a frequent itemset *I*
- Generate all possible partitions X and Y = I X
- Examine the confidence of each $X \Rightarrow Y$

□ Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X_1 , X_2 , and I be itemsets such that $X_1 \subset X_2 \subset I$. Then the confidence of $X_2 \Rightarrow I - X_2$ is at least that of $X_1 \Rightarrow I - X_1$.

$$conf(X_2 \Rightarrow I - X_2) \ge conf(X_1 \Rightarrow I - X_1)$$

$$(4.3)$$

$$sup(X_2) \le sup(X_1) \Rightarrow \frac{sup(I)}{sup(X_2)} \ge \frac{sup(I)}{sup(X_1)}$$

Implementation of 2nd Phase

□ A Straightforward Implentation

- Given a frequent itemset *I*
- Generate all possible partitions X and Y = I X
- Examine the confidence of each $X \Rightarrow Y$
- Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X_1 , X_2 , and I be itemsets such that $X_1 \subset X_2 \subset I$. Then the confidence of $X_2 \Rightarrow I - X_2$ is at least that of $X_1 \Rightarrow I - X_1$.

$$conf(X_2 \Rightarrow I - X_2) \ge conf(X_1 \Rightarrow I - X_1)$$

$$(4.3)$$

Techniques for frequent itemsets mining can also be applied here

Outline

□ Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Frequent Itemset Mining Algorithms

Brute Force Algorithms

The Apriori Algorithm
 The 2nd homework

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern Growth Methods

Brute Force Algorithms (1)

□ The Naïve Approach

- Generate all these candidate itemsets
 - ✓ For a universe of items U, there are a total of $2^{|U|} 1$ distinct subsets
 - ✓ When U = 1000, $2^{1000} \ge 10^{300}$
- Count their support against the transaction database
- Observation
 - no (k + 1)-patterns are frequent if no k-patterns are frequent.

Brute Force Algorithms (2)

□ A Improved Approach

- Generate all candidate k-itemsets with k
- Count their support against the transaction database
- If no frequent itemsets are found, then stop; Otherwise, k + + and continue;
- □ A Significant Improvement
 - Let l be the final value of k

$$\sum_{i=1}^{l} \binom{|U|}{i} \ll 2^{|U|}$$

|U| = 1000 and $l = 10$, it is $O(10^{23})$

Brute Force Algorithms (3)

A very minor application of the downward closure property made the algorithm much faster

□ To Further Improve the Efficiency

- 1. Reducing the size of the explored search space (lattice of Fig. 4.1) by pruning candidate *itemsets* (lattice nodes) using tricks, such as the *downward closure* property.
- 2. Counting the support of each candidate more efficiently by pruning *transactions* that are known to be irrelevant for counting a candidate itemset.
- 3. Using compact data structures to represent either candidates or transaction databases that support efficient counting.

Frequent Itemset Mining Algorithms

Brute Force Algorithms

The Apriori Algorithm
 The 2nd homework

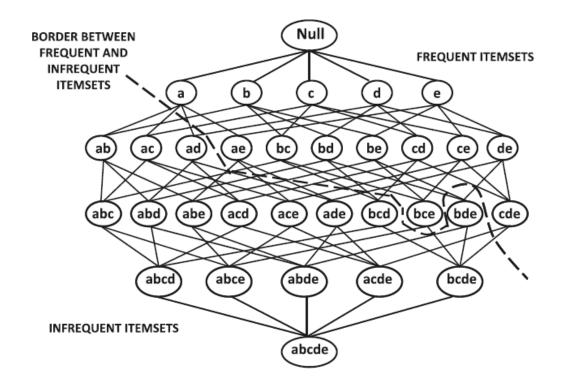
Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern Growth Methods

The Apriori Algorithm

□ The Basic Idea

Use the downward closure property to prune the candidate search space



The Apriori Algorithm

□ The Basic Idea

Use the downward closure property to prune the candidate search space

□ The Overall Procedure (level-wise)

- Using the frequent k-itemsets to generate (k + 1)-candidates
- Prune the candidates before counting
- Counts the supports of the remaining (k + 1)-candidates
- Stop if there is no frequent (k + 1)itemsets

The pseudocode

Algorithm Apriori(Transactions: \mathcal{T} , Minimum Support: minsup) begin

 $\begin{aligned} k &= 1; \\ \mathcal{F}_1 &= \{ \text{ All Frequent 1-itemsets } \}; \\ \text{while } \mathcal{F}_k \text{ is not empty do begin} \\ \text{ Generate } \mathcal{C}_{k+1} \text{ by joining itemset-pairs in } \mathcal{F}_k; \\ \text{ Prune itemsets from } \mathcal{C}_{k+1} \text{ that violate downward closure;} \\ \text{ Determine } \mathcal{F}_{k+1} \text{ by support counting on } (\mathcal{C}_{k+1}, \mathcal{T}) \text{ and retaining} \\ \text{ itemsets from } \mathcal{C}_{k+1} \text{ with support at least } minsup; \\ k &= k+1; \\ \text{end;} \\ \text{return}(\cup_{i=1}^k \mathcal{F}_i); \end{aligned}$

Candidates Generation (1)

A Naïve Approach

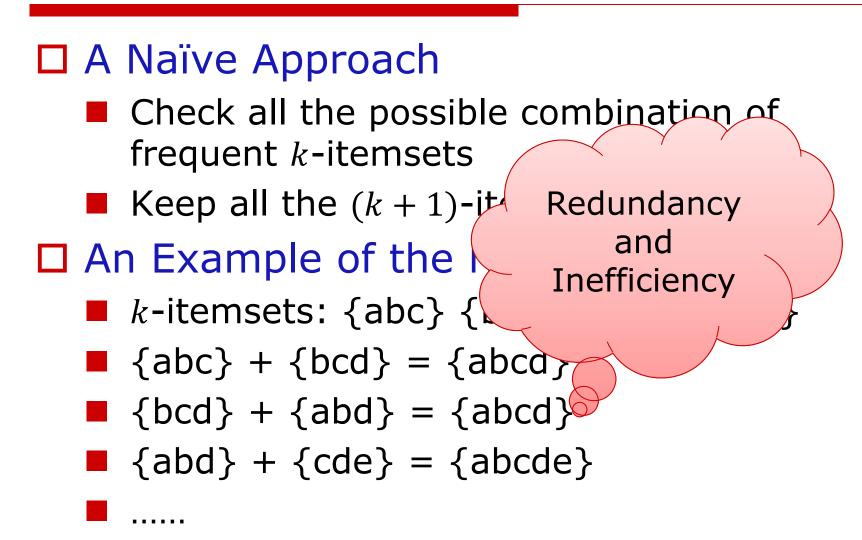
.

Check all the possible combination of frequent k-itemsets

• Keep all the (k + 1)-itemsets

- □ An Example of the Naive Approach
 - k-itemsets: {abc} {bcd} {abd} {cde}
 - {abc} + {bcd} = {abcd}
 - {bcd} + {abd} = {abcd}
 - {abd} + {cde} = {abcde}

Candidates Generation (1)



Candidates Generation (2)

□ Introduction of Ordering

- Items in U have a lexicographic ordering
- Itemsets can be order as strings

□ A Better Approach

- Order the frequent k-itemsets
- Merge two itemset if the first k 1 items of them are the same

Candidates Generation (3)

- Examples of the New Methods
 - k-itemsets: {abc} {abd} {bcd}
 - {abc} + {abd} = {abcd}
 - k-itemsets: {abc} {acd} {bcd}
 - No (k + 1)-candidates
 - Early stop is possible
 - Donot need to check {abc} + {bcd} after checking {abc} + {acd}
 - Do we miss {abcd}?
 - ✓ No, due to the Downward Closure Property

Level-wise Pruning Trick

- \Box Let F_k be the set of frequent k-itemsets
- □ Let C_{k+1} be the set of (k + 1)candidates
- □ For an $I \in C_{k+1}$, it is frequent only if all the all the *k*-subsets of *I* are frequent
- □ Pruning
 - Generate all the k-subsets of I
 - If any one of them does not belong to F_k , then remove I

Support Counting (1)

A Naïve Approach

- For each candidate $I_i \in C_{k+1}$
 - ✓ For each transaction T_j in the transaction database T
 - Check whether I_i appears in T_j

The Limitation

Inefficient if both $|C_{k+1}|$ and |T| are very large

Support Counting (2)

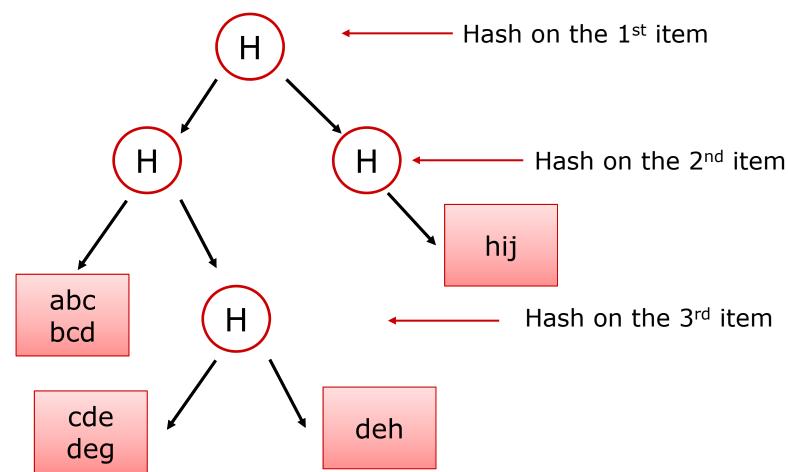
- □ A Better Apporach
 - Organize the candidate patterns in C_{k+1} with a hash tree
 - ✓ Hash tree construction
 - Use the hash tree to accelerate counting
 - ✓ Each transaction T_i is examined with a small number of candidates in C_{k+1}

Hash Tree

- A tree with a fixed degree of the internal nodes
- Each internal node is associated with a random hash function that maps an item to one of its children
- □ A leaf node contains a list of lexicographically sorted itemsets
- □ Every itemset in C_{k+1} is contained in exactly one leaf node of the hash tree.

Hash Tree of C₃

\Box The Maximum Depth is 3 + 1



Counting based on Hash Tree

□ For each T_j , identify leaves in the hash tree that might contain subset items

□ The Procedure

- Root node hash on all items in T_i
 - Suppose the *i*-th item of T_j is hashed to one node, then pass this position *i* to that node
- If we are at a leaf find all itemsets contained in T_j
- If we are at an interior node hash on each item after the given position
 - Suppose the *i*-th item of T_j is hashed to one node, then pass this position *i* to that node

Frequent Itemset Mining Algorithms

Brute Force Algorithms

The Apriori Algorithm
 The 2nd homework

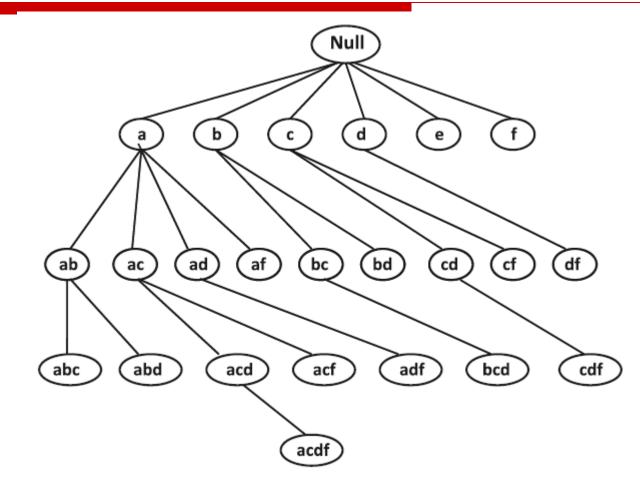
Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern Growth Methods

Enumeration-Tree

- □ Lexicographic Tree
 - A node exists in the tree corresponding to each frequent itemset.
 - The root of the tree corresponds to the null itemset.
 - Let $I = \{i_1, ..., i_k\}$ be a frequent itemset, where $i_1, ..., i_k$ are listed in lexicographic order. The parent of the node I is the itemset $\{i_1, ..., i_{k-1}\}$

An Example



□ Frequent Tree Extension

An item that is used to extend a node

Enumeration Tree Algorithms

```
Algorithm GenericEnumerationTree(Transactions: \mathcal{T},
Minimum Support: minsup)
```

 \mathbf{begin}

```
Initialize enumeration tree \mathcal{ET} to single Null node;
```

while any node in \mathcal{ET} has not been examined do begin

Select one of more unexamined nodes \mathcal{P} from \mathcal{ET} for examination;

```
Generate candidates extensions C(P) of each node P \in \mathcal{P};
```

Determine frequent extensions $F(P) \subseteq C(P)$ for each $P \in \mathcal{P}$ with support counting;

Extend each node $P \in \mathcal{P}$ in \mathcal{ET} with its frequent extensions in F(P);

 end

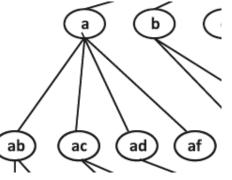
```
return enumeration tree \mathcal{ET};
```

 \mathbf{end}

□ Let *Q* be the parent of *P* □ Let *F*(*Q*) be the frequent extensions of *Q* □ Then, $C(P) \subseteq F(Q)$

Enumeration-Tree-Based Interpretation of Apriori

- Apriori constructs the enumeration tree in breadth-first manner
- □ Apriori generates candidate (k + 1)itemsets by merging two frequent kitemsets of which the first k-1 items of are the same



 $\Box \text{ Extend } \{ab\} \text{ with } \{cdf\} \subseteq F(\{a\})$

TreeProjection (1)

□ The Goal

- Reuse the counting work that has already been done before
- Projected Databases
 - Each projected transaction database is specific to an enumeration-tree node.
 - Transactions that do not contain the itemset P are removed.
 - Projected database at node P can be expressed only in terms of the items in C(P)

TreeProjection (2)

□ The Algorithm

Algorithm $ProjectedEnumerationTree(Transactions: \mathcal{T}, Minimum Support: minsup)$

begin

```
Initialize enumeration tree \mathcal{ET} to a single (Null, \mathcal{T}) root node;
while any node in \mathcal{ET} has not been examined do begin
Select an unexamined node (P, \mathcal{T}(P)) from \mathcal{ET} for examination;
Generate candidates item extensions C(P) of node (P, \mathcal{T}(P));
Determine frequent item extensions F(P) \subseteq C(P) by support counting
of individual items in smaller projected database \mathcal{T}(P);
Remove infrequent items in \mathcal{T}(P);
for each frequent item extension i \in F(P) do begin
Generate \mathcal{T}(P \cup \{i\}) from \mathcal{T}(P);
Add (P \cup \{i\}, \mathcal{T}(P \cup \{i\})) as child of P in \mathcal{ET};
end
end
return enumeration tree \mathcal{ET};
```


Vertical Counting Methods (1)

Vertical Representation of Market Basket Data Set

Item	Set of tids	Binary representation
Bread	$\{1, 3\}$	10100
Butter	{1}	10000
Cheese	$\{3, 5\}$	00101
Eggs	$\{2, 3, 4\}$	01110
Milk	$\{1, 2, 3, 4, 5\}$	11111
Yogurt	$\{2, 4, 5\}$	01011

- Intersection of two item *tid* list gives a new list
 - The length is the support of the 2itemset

Vertical Counting Methods (2)

□ The Algorithm

Algorithm VerticalApriori(Transactions: \mathcal{T} , Minimum Support: minsup) begin

k = 1;

 $\mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};$

Construct vertical *tid* lists of each frequent item;

while \mathcal{F}_k is not empty do begin

Generate C_{k+1} by joining itemset-pairs in \mathcal{F}_k ;

Prune itemsets from C_{k+1} that violate downward closure;

Generate *tid* list of each candidate itemset in C_{k+1} by intersecting

tid lists of the itemset-pair in \mathcal{F}_k that was used to create it;

Determine supports of itemsets in C_{k+1} using lengths of their *tid* lists;

 \mathcal{F}_{k+1} = Frequent itemsets of \mathcal{C}_{k+1} together with their *tid* lists;

$$k = k + 1;$$

end;

 $\operatorname{return}(\cup_{i=1}^k \mathcal{F}_i);$ end

Frequent Itemset Mining Algorithms

Brute Force Algorithms

The Apriori Algorithm
 The 2nd homework

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern Growth Methods

Generic Recursive Suffix Growth Algorithm

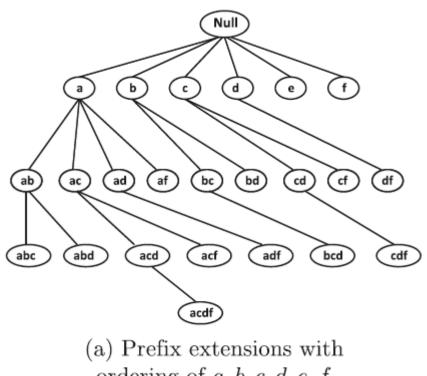
T is expressed in terms of only frequent 1-itemset

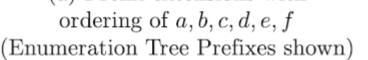
Algorithm RecursiveSuffixGrowth(Transactions in terms of frequent 1-items: \mathcal{T} , Minimum Support: minsup, Current Suffix: P)

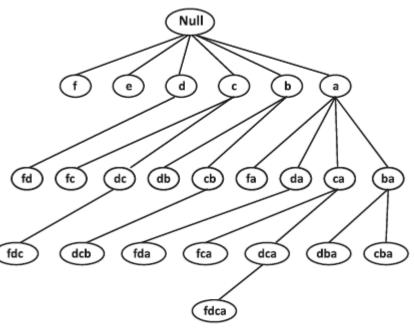
begin

for each item i in \mathcal{T} do begin report itemset $P_i = \{i\} \cup P$ as frequent; Extract all transactions \mathcal{T}_i from \mathcal{T} containing item i; Remove all items from \mathcal{T}_i that are lexicographically $\geq i$; Remove all infrequent items from \mathcal{T}_i ; if $(\mathcal{T}_i \neq \phi)$ then RecursiveSuffixGrowth $(\mathcal{T}_i, minsup, P_i)$; end end Relationship Between FP-Growth and Enumeration-Tree Methods

□ They are Equivalent







(b) FP-growth with ordering of f, e, d, c, b, a(Recursion Tree Suffixes shown)

Outline

□ Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Motivations (1)

□ Advantages of Frequent Itemsets

- Very simple and intuitive
 - Raw frequency for the support
 - Conditional probabilities for the confidence
- Downward Closure Property
 - Enable efficient algorithms

Motivations (2)

□ Disadvantages of Frequent Itemsets

Patterns are not always significant from an application-specific perspective

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

- Milk can be appended to any set of items, without changing its frequency
- ✓ For any set of items *X*, the association rule $X \Rightarrow \{Milk\}$ has 100% confidence

Motivations (2)

Disadvantages of Frequent Itemsets

- Patterns are not always significant from an application-specific perspective
- Cannot adjust to the skew in the individual item support values
 - ✓ Support of {*Milk*, *Butter*} is very different from {¬*Milk*, ¬*Butter*}
 - But the statistical coefficient of correlation is exactly the same in both cases
- □ Bit Symmetric Property
 - Values of 0 in the binary matrix are treated in a similar way to values of 1

Statistical Coefficient of Correlation

□ Pearson Coefficient $\rho = \frac{E[X \cdot Y] - E[X] \cdot E[Y]}{\sigma(X) \cdot \sigma(Y)}$

Estimated Correlation

$$\rho_{ij} = \frac{\sup(\{i, j\}) - \sup(i) \cdot \sup(j)}{\sqrt{\sup(i) \cdot \sup(j) \cdot (1 - \sup(i)) \cdot (1 - \sup(j))}}.$$

Properties

- Lies in the range [-1,1]
- Satisfies the bit symmetric property
- Intuitively hard to interpret

Given a set X of k items, there are 2^k -possible states

k = 2 items {Bread, Butter}, the 2² states are {Bread, Butter}, {Bread, ¬Butter}, {¬Bread, Butter}, and {¬Bread, ¬Butter}

- Given a set X of k items, there are 2^k -possible states
- **The** χ^2 -measure for set of items *X*

$$\chi^2(X) = \sum_{i=1}^{2^{|X|}} \frac{(O_i - E_i)^2}{E_i}.$$

O_i and E_i be the observed and expected values of the absolute support of state i

χ^2 Measure

- Given a set X of k items, there are 2^k -possible states
- **The** χ^2 -measure for set of items *X*
- Properties
 - Larger values of this quantity indicate greater dependence
 - Do not reveal whether the dependence between items is positive or negative
 - Is bit-symmetric
 - Satisfies the upward closure property
 - High computational complexity

Interest Ratio

Definition

$$I(\{i_1 \dots i_k\}) = \frac{\sup(\{i_1 \dots i_k\})}{\prod_{j=1}^k \sup(i_j)}$$

Properties

- When the items are statistically independent, the ratio is 1.
- Value greater than 1 indicates that the variables are positively correlated.
- When some items are extremely rare, the interest ratio can be misleading.
- Not satisfy the downward closure property.

Symmetric Confidence Measures

Confidence Measure is Asymmetric $conf(X \Rightarrow Y) \neq conf(Y \Rightarrow X)$ □ Let *X* and *Y* be two 1-itemsets • Minimum of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$ Maximum of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$ Average of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$ Geometric mean is the cosine measure Can be generalized to k-itemsets Do not satisfy the downward closure property

Cosine Coefficient on Columns

Definition

$$cosine(i,j) = \frac{sup(\{i,j\})}{\sqrt{sup(i)} \cdot \sqrt{sup(j)}}$$

□ Interpretation

Cosine similarity between two columns of the data matrix

□ A Symmetric Confidence Measure

□ Jaccard coefficient $J(S_1, S_2)$ between the two sets

$$J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

□ Jaccard coefficient between multiway sets

$$J(S_1 \dots S_k) = \frac{|| |S_i|}{| \cup S_i|}$$

Properties

Satisfy the downward closure property

Speed up by min-hash trick

Collective Strength (1)

Violation

If some of the items of I are present in the transaction, and others are not.

\Box Violation Rate v(I)

The fraction of violations of the itemset I over all transactions.

Collective Strength (2)

Collective Strength

$$C(I) = \frac{1 - v(I)}{1 - E[v(I)]} \cdot \frac{E[v(I)]}{v(I)}.$$

The expected value of v(I) is calculated assuming statistical independence of the individual items.

$$E[v(I)] = 1 - \prod_{i \in I} p_i - \prod_{i \in I} (1 - p_i).$$

0 indicates a perfect negative correlation
 ∞ indicates a perfectly positive correlation

Collective Strength (3)

□ Interpretation of Collective Strength

$C(I) = \frac{\text{Good Events}}{\text{E[Good Events]}} \cdot \frac{\text{E[Bad Events]}}{\text{Bad Events}}.$

Strongly Collective Itemsets

Definition 4.5.1 An itemset I is denoted to be strongly collective at level s, if it satisfies the following properties:

- 1. The collective strength C(I) of the itemset I is at least s.
- 2. Closure property: The collective strength C(J) of every subset J of I is at least s.

The closure property is enforced.

Relationship to Negative Pattern Mining

Motivation

- Determine patterns between items or their absence
- □ Satisfy Bit Symmetric Property
 - Statistical coefficient of correlation
 - χ^2 measure
 - Jaccard Coefficient, Strongly Collective strength
 - Also satisfy downward closure property

Outline

□ Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Useful Meta-algorithms

Definition

- An algorithm that uses a particular algorithm as a subroutine
 - either to make the original algorithm more efficient (e.g., by sampling)
 - or to gain new insights
- Sampling Methods
 Data Partitioned Ensembles
 Generalization to Other Data Types

Sampling Methods

□ The Procedure

- Sample a subset of the transactions
- Apply mining algorithm to sampled data

□ Challenges

False positives: These are patterns that meet the support threshold on the sample but not on the base data.

Post-processing

- False negatives: These are patterns that do not meet the support threshold on the sample, but meet the threshold on the data.
 - Reduce the support threshold

Data Partitioned Ensembles

□ The Procedure

- The transaction database is partitioned into k disjoint segments
- The mining algorithm is independently applied to each of these k segments
- Post-processing to remove false positives
- □ Property
 - No false negatives

Generalization to Other Data Types

Quantitative Data
 Rules contain quantitative attributes

 $(Age = 90) \Rightarrow Checkers$. $Age[85, 95] \Rightarrow Checkers$.

Discretize and converte to binary form
 Categorical Data
 Rules contain mixed attributes

 $(Gender = Male), Age[20, 30] \Rightarrow Basketball.$

Transform to binary values

Outline

□ Introduction

- □ The Frequent Pattern Mining Model
- Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- Alternative Models: Interesting Patterns
- Useful Meta-algorithms
- □ Summary

Summary

Frequent Pattern Mining

Support, Downward Closure Property

□ Association Rule

Support, Confidence

Frequent Itemset Mining Algorithms

Brute Force Algorithms, Apriori, Enumeration-Tree Algorithms, Recursive Suffix-Based Pattern Growth Methods

□ Alternative Models: Interesting Patterns

- Pearson coefficient, χ^2 Measure, Interest Ratio, Symmetric Confidence Measures, ...
- Useful Meta-algorithms
 - Sampling, Data Partitioned Ensembles, Generalization