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Introduction

An Informal Definition

Given a set of data points, partition them into
groups containing very similar data points.

Applications

B Data summarization
B Customer segmentation
v Collaborative filtering

B Social network analysis
v Community detection

B Relationship to other mining problems
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Feature Selection for Clusterin

The Goal

B Remove the noisy attributes that do not
cluster well

Unsupervised

B Determine the inherent clustering tendency of
a set of features

Two Primary Classes of Models

B Filter models: a score Is associated with each
feature or a combination

B Wrapper models: a clustering algorithm is
used to evaluate a subset of features




Filter Models—Term Strength (1):%

Suitable for Sparse Domains
B Text data

Similar Document Pairs

B document pairs with similarity greater
than some threshold

The Definition

B The fraction of similar document pairs, Iin
which the term occurs in both the
documents, conditional on the fact that it
appears in the first




Filter Models—Term Strength (2

A Probabilistic Definition

Term Strength = P(t € Y|t € X)

B X and Y are similar documents

The Procedure

Sample document pairs

Record T;, the number of similar document
pairs in which t appears in both of them

Record T,, the number of similar document
pairs in which t appears in the first of them

I
Term Strength = —
I



Predictive Attribute Dependenc&s

B Corre
B Corre

The Ap

Motivation

ated features result in better clusters
ated feature can be predicted

oroach for Quantifying Relevance

B Use a classification algorithm on all
attributes, except attribute i, to predict the

value

of attribute i

B Report the classification accuracy as the
relevance of attribute

Regression can also be Used



Entropy

Motivation

B Highly clustered data reflects some of its
clustering characteristics on the underlying
distance distributions
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Entropy (1)

Motivation

B Highly clustered data reflects some of its
clustering characteristics on the underlying
distance distribution

The Key ldea

B Find subset of features such that the
distance distribution has low entropy

Quantify the Entropy (15t Approach)

B Discretize the data using ¢ grid regions for
each dimension, and obtain ¢* grid

T

F=— Z[p?-log(pf) + (1 = p;)log(1 — p;)]-

i=1



Entropy (2)

Quantify the Entropy (15t Approach)
B If data is sparse, then p; Is inaccurate

B Hard to fix ¢* for different k

Quantify the Entropy (2"9 Approach)

B Compute the entropy of the 1-dimensional
point-to-point distance distribution

RELATIVE FREQUENCY
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Entropy (2)

Quantify the Entropy (15t Approach)
B If data is sparse, then p; Is inaccurate

B Hard to fix ¢* for different k

Quantify the Entropy (2"9 Approach)

B Compute the entropy of the 1-dimensional
point-to-point distance distribution

Find the optimal subset

B Brute Force Algorithms

B Greedy Algorithms

v Start from the full set of features, and drop the
feature that leads to the greatest reduction in
the entropy




Hopkins Statistic (1)

Notations

B D is the data set, whose clustering
tendency needs to be evaluated

B R iIs a set of r data points from D

® «,,..,a, are distances of points in R to
their nearest neighbors in D

B S Is a set of r synthetic data points,
which are generated randomly

m (.., 0. are distances of points InS to
their nearest neighbors in D



Hopkins Statistic (2)

Definition

i B
= Yor_ (o +6i) €(01)

B Uniformly distributed data will have a
Hopkins statistic of 0.5

B Clustered data will result in a value of
the Hopkins statistic that is closer to 1

Random sampling can be repeated

Can be combined with a greedy
algorithm




Wrapper Models (1)

The Key ldea

B Use a clustering algorithm with a subset
of features

B Evaluate the quality of this clustering
with a cluster validity criterion

Find the optimal subset

B Brute Force Algorithms

B Greedy Algorithms

Limitation

B Sensitive to the validity criterion




Wrapper Models (2)

Another Approach based on

Supervised Feature Selection

Use a clustering algorithm on the current
subset of selected features F, in order to
fix cluster labels L for the data points.

Use any supervised criterion to quantify
the quality of the individual features with
respect to labels L

v' Class-based Entropy, Fisher Score

Select the top-k features on the basis of
this quantification
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Partitioning Representatives

What are Representatives?

B A function of the data points Iin the clusters
B Existing data points in the cluster

How to use Representatives?

B Assign data points to their closest
representatives

How to find Representatives?

“min 0 = Z [min Dist(X:,Y: ]
Yy, Y - j ( ' 1)

® X,.. X, are data points



Optimization

mln 0= ZImlest(Xl,Vj)]

If the optimal representatives are
known, then the optimal assignment is
easy to determine, and vice versa.

An lterative Approach

e (Assign step) Assign each data point to its closest representative in S using distance
function Dist(-,-), and denote the corresponding clusters by C; ... Cp.

e (Optimize step) Determine the optimal representative Y, for each cluster C; that
minimizes its local objective function ZEEC:,- |Dist(X;,Y;)].



Generic Representative
Algorithm

Algorithm GenericRepresentative(Database: D, Number of Representatives: k)
begin
Initialize representative set .S
repeat
Create clusters (C; ...Cj) by assigning each
point in D to closest representative in S
using the distance function Dist(-,-);
Recreate set S by determining one representative Y; for
each C; that minimizes EEECJ; Dist(X;,Y;);
until convergence;
return (C;...Cr);
end

[0 Time Complexity per Iteration O(knd)

[l Local Optimal Solution

B Repeat multiple times and chooses the one with
smallest objective value



An Example with Euclidean
distance function (1)

A bad Initial result

10 -

¥ CLUSTERC T " cLusTERC
TE. 8t i P

x REPRESENTATIVE 3 x REPRESENTATIVE 3

% “CLUSTER A | % _“CLUSTER A

o .x REPRESENTATIVE 1
CLUSTER B S . CLUSTERB
x: HEPHESENTATWE 1 : R TR

X HEFHESENTRTIVE 2 ' R -I-.-._~-1x..FE_EPHESIE“NTATIVE 2

1 1 1 1 . 1 1 3 ] 1 1 1 . 1

2 3 4 s 6 7 8 9 1 2 3 4 5 8 7 8 9
(a) Iteration 1 (b) Iteration 2



An Example with Euclidean
distance function (2)

Better and better
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An Example with Euclidean
distance function (3)
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The k-Means Algorithm

Optimization with Euclidean distances

Dist(X, %) = % - F||;

Sum of Square Errors

mln 0 = z[mln”X —Y|| ]

Assign Step: determine clusters C4, ..., Ci




The k-Means Algorithm

Optimization with Euclidean distances

Dist(X, %) = % - F||;

Sum of Square Errors

mln 0 = z[mln”X —Y|| ]

Assign Step: determine clusters C4, ..., Ci
Optimize Step

¥ = argming ) 1%, - 713

X_iECj



The k-Means Algorithm

Optimization with Euclidean distances

Dist(X, %) = % - F||;

Sum of Square Errors

mln 0 = z[mln”X —Y|| ]

Assign Step: determine clusters C4, ..., Ci
Optimize Step

_ | _ 1 _
¥ = argming ) 1% = VI =T Z X,
X_

X_iECj




Mahalanobis k-Means Algorith

Optimization with Local Mahalanobis
Distance

Dist(X, %) = (X, - )74 (%, - 1)

B X Is the d X d covariance matrix of C,

B Y. Is computed based on data points
assigned to C, in the previous iteration.

Assign Step: determine clusters
C4, ..., C, based on the new distance

Optimize Step




Strengths and Weaknesses
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The Kernel k-Means Algorithm &

Kernel Trick
B Replace inner product with kernel functions

B The Original Distance

ZTFCE EEEU X
C| C|

- X 4 Zﬂ,ﬂc—;rs K ’ Xj

X1 2: T—

P = X- X2

B The New Distance
Yxiec KX, X;) N Yx: xee K(Xi X))
C| IC|?
where k(-,-): R4 x RY - R is a kernel function
An Implicit Mapping
X - ¢X)and p(X) - p(Y) = k(X,Y)

k(X,X)—2




The k-Medians Algorithm

Optimization with the Manhattan
Distances

Dist(X;, V) = [|X; = G|, =

d

Assign Step: determine clusters C4, ..., Gk
Optimize Step

Yjp = argminy Z |Xip — Y|
X_iECj




The k-Medians Algorithm

Optimization with the Manhattan
Distances

Dist(X;, V) = [|X; = G|, =

d

Assign Step: determine clusters C4, ..., Gk
Optimize Step

Yjp = argminy z |X,;p - Y| = median{Xipl)?,; € Cj}
X_iECj

® Y =[v .. ¥ may not belong to D



The k-Medoids Algorithm (1)

Representatives are Selected from D

n
- 0:2[ 'D't)?-,?]

Why Y;, ..., Y, € D?
B The representative of a k-means cluster
may be distorted by outliers

B k-means can not be applied to
heterogeneous data

B Good for summarization



The k-Medoids Algorithm (2)

Optimization based on Hill-climbing

B The representative set S is initialized to a
set of points from D

B S is iteratively improved by exchanging a
single point from § with a point from D

How to perform the exchange?
B Try all |§|-|D| possible exchanges

B Try a randomly select set of r pairs
(X;,Y;) and select the best one



Practical and Implementation

Issues

The Initialization cr
B Select points rando

Iiteria
mly from the data

space or from the data set D

B Sample more data
use a hierarchical ¢
create k centroids

The choice of k

points from D, and
ustering approach to

B In practice, It is better to use large k
first, and then post-process

The presence of ou

ther

B Discard centers with small clusters
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Hierarchical Clustering

Taxonomy of Clusters

B Different levels of clustering granularity
provide different application-specific
Insights



Types of Hierarchical Algorithms

Bottom-up (agglomerative) methods

B The individual data points are
successively agglomerated into higher-
level clusters.

Top-down (divisive) methods

B Successively partition the data points into
a tree-like structure

B Flexible Iin In terms of choosing the trade-
off between the balance in the tree
structure and the balance in the number
of data points Iin each node




Bottom-Up Agglomerative
Methods

The Procedure In the t-th 1teration

B A distance matrix M between n; clusters
v It is symmetric




Bottom-Up Agglomerative
Methods

The Procedure In the t-th 1teration

B A distance matrix M between n; clusters

v It is symmetric

® Find the smallest entry M;;

-




Bottom-Up Agglomerative
Methods

The Procedure In the t-th 1teration

B A distance matrix M between n; clusters
v It is symmetric

® Find the smallest entry M;;

B Delete rows and columns i,j




Bottom-Up Agglomerative
Methods

The Procedure In the t-th 1teration

B A distance matrix M between n; clusters
v It is symmetric

® Find the smallest entry M;;

B Delete rows and columns i,j
® Merge clusters C; and (;



Bottom-Up Agglomerative
Methods

The Procedure In the t-th 1teration

A distance matrix M between n; clusters
v It is symmetric

Find the smallest entry M;;

Delete rows and columns i, j
Merge clusters C; and (;

Add a new row and column in M

Set the values Iin the new row and column

v" Sometimes, the value can be obtained from
the deleted rows and columns



Dendrogram

The order of merging naturally creates a
hierarchical tree-like structure

(a) Dendrogram



Generic Agglomerative Merging
Algorithm

Algorithm Agglomerative Merge(Data: D)
begin
Initialize n x n distance matrix M using D;
repeat
Pick closest pair of clusters ¢ and j using M
Merge clusters i and j;
Delete rows/columns i and j from M and create
a new row and column for newly merged cluster;
Update the entries of new row and column of M;
until termination criterion;
return current merged cluster set;
end



Distance between Clusters

Distances between Elements In
Clusters C; and (;

B |G- |c| pairs of

distances

Distances between Clusters C; and (;

B As a function of those |¢;| - |¢;| pairs



Group-Based Statistics (1)

Best (single) Linkage
B Minimum distance between |G| - |G;| pairs
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Group-Based Statistics (1)

Best (single) Linkage
B Minimum distance between |G| - |G;| pairs

Worst (complete) Linkage
B Maximum distance between |G| - |G;| pairs

Group-average linkage
B Average distance between |G| - |¢;| pairs

Closest Centroid
B Distance between centroids




Group-Based Statistics (2)

Variance-based criterion

B Aim to minimize the change minimizes
the change in the objective function

B Distance Is defined as the change of the
average squared error

B Can be updated efficiently if moment
statistics are maintained

Ward’s method
B Use sum of squared error




Practical Considerations

Difficult to control the structure of the
hierarchical tree

Sensitive to mistakes made during
the merging process

B There is no way to undo it

High computational cost
B Space complexity: 0(n?)
B Time complexity: 0(n%d + n®logn)




Top-Down Divisive Methods

The Algorithm

Algorithm GenericTopDownClustering(Data: D, Flat Algorithm: A)
begin
Initialize tree T to root containing D;
repeat
Select a leaf node L in 7 based on pre-defined criterion;
Use algorithm A to split L into L, ... Ly;
Add L, ...L; as children of L in T
until termination eriterion;
end

B A can be any clustering algorithm

B Many possible criteria for node selection
v' Size, depth
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Two Types of Clustering

Hard Clustering

B Each data point is deterministically
assigned to a particular cluster

Soft Clustering

B Each data point may have a nonzero
assignment probability to many (typically
all) clusters




Mixture-based Generative
Model

Data was generated from a mixture
of k distributions with probability
distribution G, ..., Gy

G; represents a cluster/mixture
component

Each point X is generated as follows

B Select a mixture component with
probability a; = P(G;), i =1, ...,k

B Assume the r-th component is selected
B Generate a data point from G,




The Clustering Process

Learning: determine a4, ..., a; and
parameters of distributions G4, ..., Gy
from the observed data

B Denote all the parameters by 0

Testing: decide the probability of X
belong to cluster ¢;

PG, X10) _  P(GiX|0)
P(XI0) Xk, P(G.X|0)

P(G;, X10) = P(G)P(XIG;,0) = a;P(X|G;, ©)

P(gll)?' @) =




The Objective of Learning (1)

Denote the probability density
function of G; by f!

The probability that X; generated by
the mixture model M Is given by

-

Il
=

k k
Freiae) = ) PGu%) = ) PGIPUGIG) = ) @i f'(R)
i=1 i=1

l

The probability of the data set D =
{X,,..,X,} generated by M

fdam{DLfM} — H fpmﬂt{TijM}.

J=1



The Objective of Learning (2)

Log-likelihood

n n k
L(DIM) =log(] [ 77 (X;IM)) =D log(d _ a:f'(X;))
j=1 i=1

=1

The Optimization Problem

m]Va[\XL(DUV[)

B Let © be the parameters of M

max L(D|O)



Expectation-maximization (EM)pn
Algorithm

Observation

B If the soft assignments P(G;|X;, ©) is
known, then it is easy to estimate 0

B Similar to the representative-based
algorithms

The Algorithm

B E-step: use the current 0 to estimate the
posterior probability P(gG;|X;, ©)

B M-step: fix the posterior probability, and
find ® to maximize the log-likelihood



An Example for Gaussian
Mixture Model

E-step
o P(G:) - P(X;|G;.©) a; - f49(X;)
P(G;|X;,0)= — = . —
G ) = S b6 P(X,16,.0) T, ar O(X)
.87y _ 1 -1 -mE (X -m)
P TR e '
M-step
o = P(G,) = ==t Pf"'x“"‘el'
1 = P(G;1X;, ©)X;
I P(gl| @)Z G:1%;, 0)
= X; —
5 P(gl|x @)EP@AX )% - m)(%—m)'



Relation of EM to k-Means

A Simple Mixture Models
B FiXxXa,==a,=1/k
B Choose a simple Gaussian distribution

=Y |2

L ()
(V2

9 (X) =

Comparisons

1. (E-step) Each data point ¢ has a probability belonging to cluster j, which is propor-
tional to the scaled and exponentiated Euclidean distance to each representative Y.
In the k-means algorithm, this is done in a hard way, by picking the best Euclidean
distance to any representative lf_j.

1]

. (M-step) The center Y; is the weighted mean over all the data points where the weight
is defined by the probability of assignment to cluster j. The hard version of this is
used in k-means, where each data point is either assigned to a cluster or not assigned
to a cluster (i.e., analogous to (-1 probabilities).



Problems of Mixture Models

Overfitting

B Too many parameters in 0

B A small data set D

B Reduce the complexity of model

Local Optimal Solution

B Repeat many times, and choose the one
with smallest objective value
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Summary

Feature Selection for Clustering

B Filter Models, Wrapper Models
Representative-Based Algorithms
B k-Means, k-Medians, k-Medoids
Hierarchical Clustering Algorithms

B Bottom-Up Agglomerative Methods
v Group-Based Statistics

B Top-Down Divisive Methods
Probabilistic Model-Based Algorithms
B Mixture Model, EM Algorithm




