Cluster Analysis (a)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Outline

□ Introduction

- □ Feature Selection for Clustering
- Representative-Based Algorithms
- Hierarchical Clustering Algorithms
- Probabilistic Model-Based Algorithms
- □ Summary

Introduction

An Informal Definition

Given a set of data points, partition them into groups containing very similar data points.

□ Applications

- Data summarization
- Customer segmentation
 - Collaborative filtering
- Social network analysis
 - Community detection
- Relationship to other mining problems

- Introduction
- **Feature Selection for Clustering**
- Representative-Based Algorithms
- Hierarchical Clustering Algorithms
- Probabilistic Model-Based Algorithms
- □ Summary

Feature Selection for Clustering

- The Goal
 - Remove the noisy attributes that do not cluster well
- □ Unsupervised
 - Determine the inherent clustering tendency of a set of features
- □ Two Primary Classes of Models
 - Filter models: a score is associated with each feature or a combination
 - Wrapper models: a clustering algorithm is used to evaluate a subset of features

Filter Models—Term Strength (1)

Suitable for Sparse Domains

Text data

Similar Document Pairs

- document pairs with similarity greater than some threshold
- □ The Definition
 - The fraction of similar document pairs, in which the term occurs in both the documents, conditional on the fact that it appears in the first

Filter Models—Term Strength (2)

A Probabilistic Definition

Term Strength = $P(t \in \overline{Y} | t \in \overline{X})$.

\overline{X} and \overline{Y} are similar documents

□ The Procedure

- Sample document pairs
- Record T_1 , the number of similar document pairs in which t appears in both of them
- Record T_2 , the number of similar document pairs in which t appears in the first of them

Term Strength
$$=$$
 $\frac{T_1}{T_2}$

Predictive Attribute Dependence

Motivation

- Correlated features result in better clusters
- Correlated feature can be predicted

□ The Approach for Quantifying Relevance

- Use a classification algorithm on all attributes, except attribute *i*, to predict the value of attribute *i*
- Report the classification accuracy as the relevance of attribute
- Regression can also be Used

Entropy

Motivation

Highly clustered data reflects some of its clustering characteristics on the underlying distance distributions

Entropy

Motivation

Entropy (1)

Motivation

Highly clustered data reflects some of its clustering characteristics on the underlying distance distribution

□ The Key Idea

Find subset of features such that the distance distribution has low entropy

Quantify the Entropy (1st Approach)

Discretize the data using ϕ grid regions for each dimension, and obtain ϕ^k grid

$$E = -\sum_{i=1}^{m} [p_i \log(p_i) + (1 - p_i) \log(1 - p_i)].$$

Entropy (2)

Quantify the Entropy (1st Approach)

- If data is sparse, then p_i is inaccurate
- Hard to fix ϕ^k for different k
- Quantify the Entropy (2nd Approach)
 - Compute the entropy of the 1-dimensional point-to-point distance distribution

Entropy (2)

Quantify the Entropy (1st Approach)

- If data is sparse, then p_i is inaccurate
- Hard to fix ϕ^k for different k
- Quantify the Entropy (2nd Approach)
 - Compute the entropy of the 1-dimensional point-to-point distance distribution
- □ Find the optimal subset
 - Brute Force Algorithms
 - Greedy Algorithms
 - Start from the full set of features, and drop the feature that leads to the greatest reduction in the entropy

Hopkins Statistic (1)

Notations

- D is the data set, whose clustering tendency needs to be evaluated
- $\blacksquare \ \mathcal{R} \text{ is a set of } r \text{ data points from } \mathcal{D}$
- $a_1, \dots, a_r \text{ are distances of points in } \mathcal{R} \text{ to }$ their nearest neighbors in \mathcal{D}
- S is a set of r synthetic data points, which are generated randomly
- $\begin{tabular}{ll} β_1,\ldots,β_r are distances of points in \mathcal{S} to their nearest neighbors in \mathcal{D} \end{tabular}$

Hopkins Statistic (2)

Definition

$$H = \frac{\sum_{i=1}^{r} \beta_i}{\sum_{i=1}^{r} (\alpha_i + \beta_i)} \in (0,1)$$

- Uniformly distributed data will have a Hopkins statistic of 0.5
- Clustered data will result in a value of the Hopkins statistic that is closer to 1
- Random sampling can be repeated
- Can be combined with a greedy algorithm

Wrapper Models (1)

- □ The Key Idea
 - Use a clustering algorithm with a subset of features
 - Evaluate the quality of this clustering with a cluster validity criterion
- □ Find the optimal subset
 - Brute Force Algorithms
 - Greedy Algorithms
- □ Limitation
 - Sensitive to the validity criterion

Wrapper Models (2)

- Another Approach based on Supervised Feature Selection
 - Use a clustering algorithm on the current subset of selected features F, in order to fix cluster labels L for the data points.
 - Use any supervised criterion to quantify the quality of the individual features with respect to labels L
 - Class-based Entropy, Fisher Score
 - Select the top-k features on the basis of this quantification

□ Introduction

□ Feature Selection for Clustering

Representative-Based Algorithms

Hierarchical Clustering Algorithms

Probabilistic Model-Based Algorithms

Summary

Partitioning Representatives

□ What are Representatives?

- A function of the data points in the clusters
- Existing data points in the cluster
- □ How to use Representatives?
 - Assign data points to their closest representatives
- □ How to find Representatives?

$$\min_{\overline{Y_1,\ldots,\overline{Y_k}}} O = \sum_{i=1}^n \left[\min_j Dist(\overline{X_i},\overline{Y_j}) \right]$$

I $\overline{X_1}, \dots, \overline{X_n}$ are data points

Optimization

$$\min_{\overline{Y_1,\dots,\overline{Y}_k}} O = \sum_{i=1}^n \left[\min_j Dist(\overline{X_i},\overline{Y_j}) \right]$$

- If the optimal representatives are known, then the optimal assignment is easy to determine, and vice versa.
- □ An Iterative Approach
- (Assign step) Assign each data point to its closest representative in S using distance function $Dist(\cdot, \cdot)$, and denote the corresponding clusters by $C_1 \ldots C_k$.
- (Optimize step) Determine the optimal representative $\overline{Y_j}$ for each cluster C_j that minimizes its *local* objective function $\sum_{\overline{X_i} \in C_j} [Dist(\overline{X_i}, \overline{Y_j})]$.

Generic Representative Algorithm

Algorithm GenericRepresentative(Database: \mathcal{D} , Number of Representatives: k) begin

```
Initialize representative set S;
```

repeat

```
Create clusters (C_1 \dots C_k) by assigning each
point in \mathcal{D} to closest representative in S
using the distance function Dist(\cdot, \cdot);
Recreate set S by determining one representative \overline{Y_j} for
each C_j that minimizes \sum_{\overline{X_i} \in C_j} Dist(\overline{X_i}, \overline{Y_j});
until convergence;
return (C_1 \dots C_k);
end
```

- □ Time Complexity per Iteration *O*(*knd*)
- Local Optimal Solution
 - Repeat multiple times and chooses the one with smallest objective value

An Example with Euclidean distance function (1)

A bad initial result

An Example with Euclidean distance function (2)

Better and better

An Example with Euclidean distance function (3)

□ A good result after 10 iterations

The *k*-Means Algorithm

Optimization with Euclidean distances $Dist(\overline{X}_i, \overline{Y}_j) = \|\overline{X}_i - \overline{Y}_j\|_2^2$

$\Box \text{ Sum of Square Errors}$ $\min_{\overline{Y_1,...,Y_k}} O = \sum_{i=1}^n \left[\min_j \left\| \overline{X_i} - \overline{Y_j} \right\|_2^2 \right]$

□ Assign Step: determine clusters $C_1, ..., C_k$

The *k*-Means Algorithm

Optimization with Euclidean distances $Dist(\overline{X}_i, \overline{Y}_j) = \|\overline{X}_i - \overline{Y}_j\|_2^2$

$\Box \text{ Sum of Square Errors}$ $\min_{\overline{Y_1,...,\overline{Y_k}}} O = \sum_{i=1}^n \left[\min_j \left\| \overline{X_i} - \overline{Y_j} \right\|_2^2 \right]$

□ Assign Step: determine clusters $C_1, ..., C_k$ □ Optimize Step

$$\overline{Y_j} = \operatorname{argmin}_{\overline{Y}} \sum_{\overline{X_i} \in \mathcal{C}_j} \|\overline{X_i} - \overline{Y}\|_2^2$$

The *k*-Means Algorithm

Optimization with Euclidean distances $Dist(\overline{X}_i, \overline{Y}_j) = \|\overline{X}_i - \overline{Y}_j\|_2^2$

$\Box \text{ Sum of Square Errors}$ $\min_{\overline{Y_1,...,\overline{Y_k}}} O = \sum_{i=1}^n \left[\min_j \left\| \overline{X_i} - \overline{Y_j} \right\|_2^2 \right]$

□ Assign Step: determine clusters $C_1, ..., C_k$ □ Optimize Step

$$\overline{Y_j} = \operatorname{argmin}_{\overline{Y}} \sum_{\overline{X_i} \in \mathcal{C}_j} \|\overline{X_i} - \overline{Y}\|_2^2 = \frac{1}{|\mathcal{C}_j|} \sum_{\overline{X_i} \in \mathcal{C}_j} \overline{X_i}$$

Optimization with Local Mahalanobis Distance

$$Dist(\overline{X}_i, \overline{Y}_j) = (\overline{X}_i - \overline{Y}_j)\Sigma_r^{-1}(\overline{X}_i - \overline{Y}_j)^{\mathsf{T}}$$

- Σ_r is the $d \times d$ covariance matrix of C_r
- Subscript{c}_r is computed based on data points assigned to C_r in the previous iteration.

Assign Step: determine clusters
 C₁,...,C_k based on the new distance
 Optimize Step

Strengths and Weaknesses

The Kernel k-Means Algorithm

□ Kernel Trick

- Replace inner product with kernel functions
- The Original Distance

$$||\overline{X} - \overline{\mu}||^2 = ||\overline{X} - \frac{\sum_{\overline{X_i} \in \mathcal{C}} \overline{X_i}}{|\mathcal{C}|}||^2 = \overline{X} \cdot \overline{X} - 2\frac{\sum_{\overline{X_i} \in \mathcal{C}} \overline{X} \cdot \overline{X_i}}{|\mathcal{C}|} + \frac{\sum_{\overline{X_i}, \overline{X_j} \in \mathcal{C}} \overline{X_i} \cdot \overline{X_j}}{|\mathcal{C}|^2}.$$

The New Distance

$$\kappa(\overline{X},\overline{X}) - 2\frac{\sum_{\overline{X_i} \in \mathcal{C}} \kappa(\overline{X},\overline{X_i})}{|\mathcal{C}|} + \frac{\sum_{\overline{X_i},\overline{X_j} \in \mathcal{C}} \kappa(\overline{X_i},\overline{X_j})}{|\mathcal{C}|^2}$$

where $\kappa(\cdot,\cdot): \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a kernel function

An Implicit Mapping

 $\overline{X} \to \phi(\overline{X})$ and $\phi(\overline{X}) \cdot \phi(\overline{Y}) = \kappa(\overline{X}, \overline{Y})$

The k-Medians Algorithm

- Optimization with the Manhattan Distances $Dist(\overline{X}_i, \overline{Y}_j) = \|\overline{X}_i - \overline{Y}_j\|_1 = \sum_{p=1}^d |X_i^p - Y_j^p|$
- □ Assign Step: determine clusters $C_1, ..., C_k$ □ Optimize Step

$$Y_j^p = \operatorname{argmin}_Y \sum_{\overline{X_i} \in \mathcal{C}_j} |X_i^p - Y|$$

The k-Medians Algorithm

- Optimization with the Manhattan Distances $Dist(\overline{X}_i, \overline{Y}_j) = \|\overline{X}_i - \overline{Y}_j\|_1 = \sum_{p=1}^d |X_i^p - Y_j^p|$
- □ Assign Step: determine clusters $C_1, ..., C_k$ □ Optimize Step

$$Y_j^p = \operatorname{argmin}_Y \sum_{\overline{X_i} \in \mathcal{C}_j} |X_i^p - Y| = \operatorname{median} \{X_i^p | \overline{X_i} \in \mathcal{C}_j\}$$

$$\bar{Y} = [Y_j^1, \dots, Y_j^d] \text{ may not belong to } \mathcal{D}$$

The k-Medoids Algorithm (1)

 $\square Representatives are Selected from D$

$$\min_{\overline{Y_1},\dots,\overline{Y_k} \in \mathcal{D}} O = \sum_{i=1}^n \left[\min_j Dist(\overline{X_i}, \overline{Y_j}) \right]$$

$\square \text{ Why } \overline{Y_1}, \dots, \overline{Y_k} \in \mathcal{D}?$

- The representative of a k-means cluster may be distorted by outliers
- k-means can not be applied to heterogeneous data
- Good for summarization

The k-Medoids Algorithm (2)

Optimization based on Hill-climbing

- The representative set S is initialized to a set of points from D
- S is iteratively improved by exchanging a single point from S with a point from D

□ How to perform the exchange?

- Try all $|S| \cdot |D|$ possible exchanges
- Try a randomly select set of r pairs $(\overline{X}_i, \overline{Y}_j)$ and select the best one

Practical and Implementation Issues

□ The initialization criteria

- Select points randomly from the data space or from the data set D
- Sample more data points from D, and use a hierarchical clustering approach to create k centroids
- \Box The choice of k
 - In practice, it is better to use large k first, and then post-process
- □ The presence of outlier
 - Discard centers with small clusters

Introduction

- □ Feature Selection for Clustering
- Representative-Based Algorithms
- Hierarchical Clustering Algorithms
- Probabilistic Model-Based Algorithms
- □ Summary

Hierarchical Clustering

□ Taxonomy of Clusters

Different levels of clustering granularity provide different application-specific insights

Types of Hierarchical Algorithms

□ Bottom-up (agglomerative) methods

- The individual data points are successively agglomerated into higherlevel clusters.
- Top-down (divisive) methods
 - Successively partition the data points into a tree-like structure
 - Flexible in in terms of choosing the tradeoff between the balance in the tree structure and the balance in the number of data points in each node

□ The Procedure in the *t*-th iteration

A distance matrix M between n_t clusters

✓ It is symmetric

- A distance matrix M between n_t clusters
 - It is symmetric
- Find the smallest entry M_{ij}

- A distance matrix M between n_t clusters
 - It is symmetric
- Find the smallest entry M_{ij}
- Delete rows and columns *i*, *j*

- A distance matrix M between n_t clusters
 - It is symmetric
- Find the smallest entry M_{ij}
- Delete rows and columns *i*, *j*
- Merge clusters C_i and C_j

- A distance matrix M between n_t clusters
 - It is symmetric
- Find the smallest entry M_{ij}
- Delete rows and columns *i*, *j*
- Merge clusters C_i and C_j

- Add a new row and column in M
- Set the values in the new row and column
 - Sometimes, the value can be obtained from the deleted rows and columns

The order of merging naturally creates a hierarchical tree-like structure

Generic Agglomerative Merging Algorithm

Algorithm AgglomerativeMerge(Data: \mathcal{D}) begin Initialize $n \times n$ distance matrix M using \mathcal{D} ; repeat Pick closest pair of clusters i and j using M; Merge clusters i and j; Delete rows/columns i and j from M and create a new row and column for newly merged cluster; Update the entries of new row and column of M; until termination criterion; return current merged cluster set; end

Distance between Clusters

Distances between Elements in Clusters C_i and C_j $|\mathcal{C}_i| \cdot |\mathcal{C}_i|$ pairs of (в)

distances

 \Box Distances between Clusters C_i and C_i As a function of those $|C_i| \cdot |C_i|$ pairs

Group-Based Statistics (1)

■ Best (single) Linkage ■ Minimum distance between $|C_i| \cdot |C_j|$ pairs

Group-Based Statistics (1)

- □ Best (single) Linkage Minimum distance between $|\mathcal{C}_i| \cdot |\mathcal{C}_i|$ pairs □ Worst (complete) Linkage Maximum distance between $|\mathcal{C}_i| \cdot |\mathcal{C}_i|$ pairs Group-average linkage Average distance between $|\mathcal{C}_i| \cdot |\mathcal{C}_i|$ pairs Closest Centroid
 - Distance between centroids

Group-Based Statistics (2)

□ Variance-based criterion

- Aim to minimize the change minimizes the change in the objective function
- Distance is defined as the change of the average squared error

$$M_{ij} = SE_{i\cup j} - SE_i - SE_j \ge 0$$

- Can be updated efficiently if moment statistics are maintained
- □ Ward's method
 - Use sum of squared error

Practical Considerations

- Difficult to control the structure of the hierarchical tree
- Sensitive to mistakes made during the merging process
 There is no way to undo it
- High computational cost
 Space complexity: 0(n²)
 Time complexity: 0(n²d + n² log n)

Top-Down Divisive Methods

□ The Algorithm

```
Algorithm GenericTopDownClustering(Data: \mathcal{D}, Flat Algorithm: \mathcal{A})
begin
Initialize tree \mathcal{T} to root containing \mathcal{D};
repeat
Select a leaf node L in \mathcal{T} based on pre-defined criterion;
Use algorithm \mathcal{A} to split L into L_1 \dots L_k;
Add L_1 \dots L_k as children of L in \mathcal{T};
until termination criterion;
end
```

- A can be any clustering algorithm
- Many possible criteria for node selection
 ✓ Size, depth

Outline

Introduction

- □ Feature Selection for Clustering
- Representative-Based Algorithms
- Hierarchical Clustering Algorithms
- Probabilistic Model-Based Algorithms
- □ Summary

Two Types of Clustering

- Hard Clustering
 - Each data point is deterministically assigned to a particular cluster

□ Soft Clustering

Each data point may have a nonzero assignment probability to many (typically all) clusters

Mixture-based Generative Model

- □ Data was generated from a mixture of k distributions with probability distribution $G_1, ..., G_k$
- □ *G_i* represents a cluster/mixture component
- \Box Each point \overline{X} is generated as follows
 - Select a mixture component with probability $\alpha_i = P(G_i)$, i = 1, ..., k
 - Assume the r-th component is selected
 - Generate a data point from G_r

The Clustering Process

- □ Learning: determine $\alpha_1, ..., \alpha_k$ and parameters of distributions $\mathcal{G}_1, ..., \mathcal{G}_k$ from the observed data
 - Denote all the parameters by Θ
- □ Testing: decide the probability of \overline{X} belong to cluster G_i

$$P(\mathcal{G}_{i}|\bar{X},\Theta) = \frac{P(\mathcal{G}_{i},\bar{X}|\Theta)}{P(\bar{X}|\Theta)} = \frac{P(\mathcal{G}_{i},\bar{X}|\Theta)}{\sum_{r=1}^{k} P(\mathcal{G}_{r},\bar{X}|\Theta)}$$
$$P(\mathcal{G}_{i},\bar{X}|\Theta) = P(\mathcal{G}_{i})P(\bar{X}|\mathcal{G}_{i},\Theta) = \alpha_{i}P(\bar{X}|\mathcal{G}_{i},\Theta)$$

The Objective of Learning (1)

- Denote the probability density function of G_i by f^i
- □ The probability that \overline{X}_j generated by the mixture model \mathcal{M} is given by

$$f^{point}(\overline{X_j}|\mathcal{M}) = \sum_{i=1}^k P(\mathcal{G}_i, \overline{X_j}) = \sum_{i=1}^k P(\mathcal{G}_i) P(\overline{X_j}|\mathcal{G}_i) = \sum_{i=1}^k \alpha_i \cdot f^i(\overline{X_j})$$

□ The probability of the data set $\mathcal{D} = {\overline{X_1}, ..., \overline{X_n}}$ generated by \mathcal{M}

$$f^{data}(\mathcal{D}|\mathcal{M}) = \prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M})$$

The Objective of Learning (2)

Log-likelihood

$$\mathcal{L}(\mathcal{D}|\mathcal{M}) = \log(\prod_{j=1}^{n} f^{point}(\overline{X_j}|\mathcal{M})) = \sum_{j=1}^{n} \log(\sum_{i=1}^{k} \alpha_i f^i(\overline{X_j}))$$

□ The Optimization Problem

 $\max_{\mathcal{M}} \mathcal{L}(\mathcal{D}|\mathcal{M})$

Let Θ be the parameters of \mathcal{M}

 $\max_{\Theta} \mathcal{L}(\mathcal{D}|\Theta)$

Expectation-maximization (EM)

Observation

- If the soft assignments $P(G_i | \overline{X_j}, \Theta)$ is known, then it is easy to estimate Θ
- Similar to the representative-based algorithms
- □ The Algorithm
 - E-step: use the current Θ to estimate the posterior probability $P(G_i | \overline{X_j}, \Theta)$
 - M-step: fix the posterior probability, and find 0 to maximize the log-likelihood

An Example for Gaussian Mixture Model

$\square \text{ E-step}$ $P(\mathcal{G}_i|\overline{X_j},\Theta) = \frac{P(\mathcal{G}_i) \cdot P(\overline{X_j}|\mathcal{G}_i,\Theta)}{\sum_{r=1}^k P(\mathcal{G}_r) \cdot P(\overline{X_j}|\mathcal{G}_r,\Theta)} = \frac{\alpha_i \cdot f^{i,\Theta}(\overline{X_j})}{\sum_{r=1}^k \alpha_r \cdot f^{r,\Theta}(\overline{X_j})}$ $f^{i,\Theta}(\overline{X_j}) = \frac{1}{\sqrt{|\Sigma_i|}(2\cdot\pi)^{(d/2)}} e^{-\frac{1}{2}(\overline{X_j}-\overline{\mu_i})\Sigma_i^{-1}(\overline{X_j}-\overline{\mu_i})}.$

 $\square \text{ M-step}$ $\alpha_{i} = P(\mathcal{G}_{i}) = \frac{\sum_{j=1}^{n} P(\mathcal{G}_{i} | \overline{X_{j}}, \Theta)}{n}$ $\overline{\mu_{i}} = \frac{1}{\sum_{j=1}^{n} P(\mathcal{G}_{i} | \overline{X_{j}}, \Theta)} \sum_{j=1}^{n} P(\mathcal{G}_{i} | \overline{X_{j}}, \Theta) \overline{X_{j}}$ $\Sigma_{i} = \frac{1}{\sum_{j=1}^{n} P(\mathcal{G}_{i} | \overline{X_{j}}, \Theta)} \sum_{j=1}^{n} P(\mathcal{G}_{i} | \overline{X_{j}}, \Theta) (\overline{X_{j}} - \overline{\mu_{i}}) (\overline{X_{j}} - \overline{\mu_{i}})^{\mathsf{T}}$

Relation of EM to k-Means

□ A Simple Mixture Models

Fix
$$\alpha_1 = \cdots = \alpha_k = 1/k$$

Choose a simple Gaussian distribution

$$f^{j,\Theta}(\overline{X_i}) = \frac{1}{(\sigma\sqrt{2\cdot\pi})^d} e^{-\left(\frac{||\overline{X_i} - \overline{Y_j}||^2}{2\sigma^2}\right)}$$

Comparisons

- 1. (E-step) Each data point *i* has a probability belonging to cluster *j*, which is proportional to the scaled and exponentiated Euclidean distance to each representative $\overline{Y_j}$. In the *k*-means algorithm, this is done in a hard way, by picking the *best* Euclidean distance to any representative $\overline{Y_j}$.
- 2. (M-step) The center $\overline{Y_j}$ is the weighted mean over all the data points where the weight is defined by the probability of assignment to cluster j. The hard version of this is used in k-means, where each data point is either assigned to a cluster or not assigned to a cluster (i.e., analogous to 0-1 probabilities).

Problems of Mixture Models

Overfitting

- Too many parameters in Θ
- A small data set D
- Reduce the complexity of model

Local Optimal Solution

Repeat many times, and choose the one with smallest objective value

Outline

Introduction

- □ Feature Selection for Clustering
- Representative-Based Algorithms
- Hierarchical Clustering Algorithms
- Probabilistic Model-Based Algorithms

□ Summary

Summary

Feature Selection for Clustering Filter Models, Wrapper Models Representative-Based Algorithms k-Means, k-Medians, k-Medoids Hierarchical Clustering Algorithms **Bottom-Up Agglomerative Methods** Group-Based Statistics **Top-Down Divisive Methods** Probabilistic Model-Based Algorithms Mixture Model, EM Algorithm