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Introduction

 An Informal Definition

 Applications
 Data summarization
 Customer segmentation
 Collaborative filtering

 Social network analysis
 Community detection

 Relationship to other mining problems

Given a set of data points, partition them into
groups containing very similar data points.
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Feature Selection for Clustering

 The Goal
 Remove the noisy attributes that do not 

cluster well
 Unsupervised
 Determine the inherent clustering tendency of 

a set of features
 Two Primary Classes of Models
 Filter models: a score is associated with each 

feature or a combination
 Wrapper models: a clustering algorithm is 

used to evaluate a subset of features



Filter Models—Term Strength (1)

 Suitable for Sparse Domains
 Text data

 Similar Document Pairs
 document pairs with similarity greater 

than some threshold
 The Definition
 The fraction of similar document pairs, in 

which the term occurs in both the 
documents, conditional on the fact that it 
appears in the first



Filter Models—Term Strength (2)

 A Probabilistic Definition

 തܺ and തܻ are similar documents
 The Procedure
 Sample document pairs
 Record ଵܶ, the number of similar document 

pairs in which ݐ appears in both of them
 Record ଶܶ,  the number of similar document 

pairs in which ݐ appears in the first of them

Term Strength ൌ ଵܶ

ଶܶ



Predictive Attribute Dependence

 Motivation
 Correlated features result in better clusters
 Correlated feature can be predicted 

 The Approach for Quantifying Relevance
 Use a classification algorithm on all 

attributes, except attribute , to predict the 
value of attribute 

 Report the classification accuracy as the 
relevance of attribute

 Regression can also be Used



Entropy

 Motivation
 Highly clustered data reflects some of its 

clustering characteristics on the underlying 
distance distributions



Entropy

 Motivation
 Highly clustered data reflects some of its 

clustering characteristics on the underlying 
distance distributions

Low Entropy
High Entropy



Entropy (1)

 Motivation
 Highly clustered data reflects some of its 

clustering characteristics on the underlying 
distance distribution

 The Key Idea
 Find subset of features such that the 

distance distribution has low entropy
 Quantify the Entropy (1st Approach)
 Discretize the data using ߶ grid regions for 

each dimension, and obtain ߶௞ grid



Entropy (2)

 Quantify the Entropy (1st Approach)
 If data is sparse, then ݌௜ is inaccurate
 Hard to fix ߶௞ for different ݇

 Quantify the Entropy (2nd Approach)
 Compute the entropy of the 1-dimensional 

point-to-point distance distribution



Entropy (2)

 Quantify the Entropy (1st Approach)
 If data is sparse, then ݌௜ is inaccurate
 Hard to fix ߶௞ for different ݇

 Quantify the Entropy (2nd Approach)
 Compute the entropy of the 1-dimensional 

point-to-point distance distribution
 Find the optimal subset
 Brute Force Algorithms
 Greedy Algorithms
 Start from the full set of features, and drop the 

feature that leads to the greatest reduction in 
the entropy



Hopkins Statistic (1)

 Notations
 is the data set, whose clustering 

tendency needs to be evaluated
 is a set of data points from 
 ଵ ௥ are distances of points in to 

their nearest neighbors in 

 is a set of synthetic data points, 
which are generated randomly

 ଵ ௥ are distances of points in to 
their nearest neighbors in



Hopkins Statistic (2)

 Definition

 Uniformly distributed data will have a 
Hopkins statistic of 

 Clustered data will result in a value of 
the Hopkins statistic that is closer to 

 Random sampling can be repeated
 Can be combined with a greedy 

algorithm

∈ ሺ0,1ሻ



Wrapper Models (1)

 The Key Idea
 Use a clustering algorithm with a subset 

of features
 Evaluate the quality of this clustering 

with a cluster validity criterion
 Find the optimal subset
 Brute Force Algorithms
 Greedy Algorithms

 Limitation
 Sensitive to the validity criterion



Wrapper Models (2)

 Another Approach based on 
Supervised Feature Selection
 Use a clustering algorithm on the current 

subset of selected features , in order to 
fix cluster labels for the data points.

 Use any supervised criterion to quantify 
the quality of the individual features with 
respect to labels 
 Class-based Entropy, Fisher Score

 Select the top- features on the basis of 
this quantification
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Partitioning Representatives

 What are Representatives?
 A function of the data points in the clusters
 Existing data points in the cluster

 How to use Representatives?
 Assign data points to their closest 

representatives
 How to find Representatives?

 ଵ ௡ are data points

min
௒భ,…,௒ೖ

ܱ ൌ෍ min
௝
ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ

௡

௜ୀଵ



Optimization

 If the optimal representatives are 
known, then the optimal assignment is 
easy to determine, and vice versa.

 An Iterative Approach

min
௒భ,…,௒ೖ

ܱ ൌ෍ min
௝
ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ

௡

௜ୀଵ



Generic Representative 
Algorithm

 Time Complexity per Iteration ܱ ݇݊݀
 Local Optimal Solution

 Repeat multiple times and chooses the one with 
smallest objective value



An Example with Euclidean 
distance function (1)

 A bad initial result



An Example with Euclidean 
distance function (2)

 Better and better



An Example with Euclidean 
distance function (3)

 A good result after 10 iterations



The -Means Algorithm

 Optimization with Euclidean distances

 Sum of Square Errors

 Assign Step: determine clusters ଵ ௞

min
௒భ,…,௒ೖ

ܱ ൌ෍ min
௝ ௜ܺഥ െ ௝ܻഥ ଶ

ଶ
௡

௜ୀଵ

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ ଶ
ଶ



The -Means Algorithm

 Optimization with Euclidean distances

 Sum of Square Errors

 Assign Step: determine clusters ଵ ௞

 Optimize Step

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ ଶ
ଶ

min
௒భ,…,௒ೖ

ܱ ൌ෍ min
௝ ௜ܺഥ െ ௝ܻഥ ଶ

ଶ
௡

௜ୀଵ

௝ܻഥ ൌ argmin௒ത ෍ ௜ܺഥ െ തܻ ଶ
ଶ

௑೔∈ࣝೕ

ൌ
1

௝ࣝ
෍ ௜ܺഥ
௑೔∈ࣝೕ



The -Means Algorithm

 Optimization with Euclidean distances

 Sum of Square Errors

 Assign Step: determine clusters ଵ ௞

 Optimize Step

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ ଶ
ଶ

min
௒భ,…,௒ೖ

ܱ ൌ෍ min
௝ ௜ܺഥ െ ௝ܻഥ ଶ

ଶ
௡

௜ୀଵ

௝ܻഥ ൌ argmin௒ത ෍ ௜ܺഥ െ തܻ ଶ
ଶ

௑೔∈ࣝೕ

ൌ
1

௝ࣝ
෍ ௜ܺഥ
௑೔∈ࣝೕ



Mahalanobis -Means Algorithm

 Optimization with Local Mahalanobis
Distance

 ௥ is the covariance matrix of ௥

 ௥ is computed based on data points 
assigned to ௥ in the previous iteration.

 Assign Step: determine clusters 
ଵ ௞ based on the new distance

 Optimize Step

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ Σ௥ିଵ ௜ܺഥ െ ௝ܻഥ
ୃ



Strengths and Weaknesses



The Kernel -Means Algorithm

 Kernel Trick
 Replace inner product with kernel functions
 The Original Distance

 The New Distance

where ߢ ⋅,⋅ : Թௗ ൈ Թௗ → Թ is a kernel function

 An Implicit Mapping

ߢ തܺ, തܺ െ 2
∑ ߢ തܺ, ௜ܺഥ௑೔∈ࣝ

ࣝ ൅
∑ ߢ ௜ܺഥ , ௝ܺഥ௑೔,௑ೕ∈ࣝ

ࣝ ଶ

തܺ → ߶ തܺ and ߶ തܺ ⋅ ߶ തܻ ൌ ሺߢ തܺ, തܻሻ



The -Medians Algorithm

 Optimization with the Manhattan 
Distances

 Assign Step: determine clusters ଵ ௞

 Optimize Step

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ ଵ
ൌ ෍ ௜ܺ

௣ െ ௝ܻ
௣

ௗ

௣ୀଵ

௝ܻ
௣ ൌ argmin௒ ෍ ௜ܺ

௣ െ ܻ
௑೔∈ࣝೕ

ൌ median ௜ܺ
௣| ௜ܺഥ ∈ ௝ࣝ



The -Medians Algorithm

 Optimization with the Manhattan 
Distances

 Assign Step: determine clusters ଵ ௞

 Optimize Step

 തܻ ൌ ௝ܻ
ଵ, … , ௝ܻௗ may not belong to 

ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ ൌ ௜ܺഥ െ ௝ܻഥ ଵ
ൌ ෍ ௜ܺ

௣ െ ௝ܻ
௣

ௗ

௣ୀଵ

௝ܻ
௣ ൌ argmin௒ ෍ ௜ܺ

௣ െ ܻ
௑೔∈ࣝೕ

ൌ median ௜ܺ
௣| ௜ܺഥ ∈ ௝ࣝ



The -Medoids Algorithm (1)

 Representatives are Selected from 

 Why ଵ ௞ ?
 The representative of a -means cluster 

may be distorted by outliers
 -means can not be applied to 

heterogeneous data
 Good for summarization 

min
௒భ,…,௒ೖ∈ࣞ

ܱ ൌ෍ min
௝
ݐݏ݅ܦ ௜ܺഥ , ௝ܻഥ

௡

௜ୀଵ



The -Medoids Algorithm (2)

 Optimization based on Hill-climbing
 The representative set is initialized to a 

set of points from 
 is iteratively improved by exchanging a 

single point from with a point from

 How to perform the exchange?
 Try all possible exchanges
 Try a randomly select set of pairs 

௜ ௝ and select the best one



Practical and Implementation 
Issues

 The initialization criteria
 Select points randomly from the data 

space or from the data set 
 Sample more data points from , and 

use a hierarchical clustering approach to 
create centroids

 The choice of 
 In practice, it is better to use large 

first, and then post-process
 The presence of outlier
 Discard centers with small clusters
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Hierarchical Clustering

 Taxonomy of Clusters

 Different levels of clustering granularity 
provide different application-specific 
insights



Types of Hierarchical Algorithms

 Bottom-up (agglomerative) methods
 The individual data points are 

successively agglomerated into higher-
level clusters.

 Top-down (divisive) methods
 Successively partition the data points into 

a tree-like structure
 Flexible in in terms of choosing the trade-

off between the balance in the tree 
structure and the balance in the number 
of data points in each node



Bottom-Up Agglomerative 
Methods

 The Procedure in the -th iteration
 A distance matrix between ௧ clusters
 It is symmetric



Bottom-Up Agglomerative 
Methods

 The Procedure in the -th iteration
 A distance matrix between ௧ clusters
 It is symmetric

 Find the smallest entry ௜௝ ଶସܯ



Bottom-Up Agglomerative 
Methods

 The Procedure in the -th iteration
 A distance matrix between ௧ clusters
 It is symmetric

 Find the smallest entry ௜௝

 Delete rows and columns 



Bottom-Up Agglomerative 
Methods

 The Procedure in the -th iteration
 A distance matrix between ௧ clusters
 It is symmetric

 Find the smallest entry ௜௝

 Delete rows and columns 
 Merge clusters ௜ and ௝



Bottom-Up Agglomerative 
Methods

 The Procedure in the -th iteration
 A distance matrix between ௧ clusters
 It is symmetric

 Find the smallest entry ௜௝

 Delete rows and columns 
 Merge clusters ௜ and ௝

 Add a new row and column in 
 Set the values in the new row and column
 Sometimes, the value can be obtained from 

the deleted rows and columns



Dendrogram

 The order of merging naturally creates a 
hierarchical tree-like structure



Generic Agglomerative Merging 
Algorithm



Distance between Clusters

 Distances between Elements in 
Clusters ௜ and ௝

 ௜ ௝ pairs of 
distances

 Distances between Clusters ௜ and ௝

 As a function of those ௜ ௝ pairs 



Group-Based Statistics (1)

 Best (single) Linkage
 Minimum distance between ௜ ௝ pairs 



Group-Based Statistics (1)

 Best (single) Linkage
 Minimum distance between ௜ ௝ pairs 

 Worst (complete) Linkage
 Maximum distance between ௜ ௝ pairs

 Group-average linkage
 Average distance between ௜ ௝ pairs

 Closest Centroid
 Distance between centroids



Group-Based Statistics (2)

 Variance-based criterion
 Aim to minimize the change minimizes 

the change in the objective function
 Distance is defined as the change of the 

average squared error

 Can be updated efficiently if moment 
statistics are maintained

 Ward’s method
 Use sum of squared error

௜௝ܯ ൌ ௜∪௝ܧܵ െ ௜ܧܵ െ ௝ܧܵ ൒ 0



Practical Considerations

 Difficult to control the structure of the 
hierarchical tree

 Sensitive to mistakes made during 
the merging process
 There is no way to undo it

 High computational cost
 Space complexity: ଶ

 Time complexity: ଶ ଶ



Top-Down Divisive Methods

 The Algorithm

 can be any clustering algorithm
 Many possible criteria for node selection
 Size, depth
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Two Types of Clustering

 Hard Clustering
 Each data point is deterministically

assigned to a particular cluster

 Soft Clustering
 Each data point may have a nonzero 

assignment probability to many (typically 
all) clusters



Mixture-based Generative 
Model

 Data was generated from a mixture 
of distributions with probability 
distribution ଵ ௞

 ௜ represents a cluster/mixture 
component

 Each point is generated as follows
 Select a mixture component with 

probability ௜ ௜ , 
 Assume the -th component is selected
 Generate a data point from ௥



The Clustering Process

 Learning: determine ଵ ௞ and 
parameters of distributions ଵ ௞
from the observed data
 Denote all the parameters by 

 Testing: decide the probability of 
belong to cluster ௜

ܲ ࣡௜ തܺ, Θ ൌ
ܲሺ࣡௜, തܺ|Θሻ
ܲሺ തܺ|Θሻ

ൌ
ܲሺ࣡௜, തܺ|Θሻ

∑ ܲሺ࣡୰, തܺ|Θሻ௞
௥ୀଵ

ܲ ࣡௜, തܺ Θ ൌ ܲ ࣡௜ ܲ തܺ ࣡௜, Θ ൌ ௜ܲߙ തܺ ࣡௜, Θ



The Objective of Learning (1)

 Denote the probability density 
function of ௜ by ௜

 The probability that ௝ generated by 
the mixture model is given by

 The probability of the data set 
ଵ ௡ generated by 

݂௣௢௜௡௧ ௝ܺഥ |ࣧ ൌ෍ܲ ࣡௜, ௝ܺഥ
௞

௜ୀଵ

ൌ෍ܲ ࣡௜ ܲሺ ௝ܺഥ |࣡௜ሻ
௞

௜ୀଵ

ൌ෍ߙ௜ ⋅ ݂௜ሺ ௝ܺഥ ሻ
௞

௜ୀଵ



The Objective of Learning (2)

 Log-likelihood

 The Optimization Problem

 Let be the parameters of 

ࣧ

஀



Expectation-maximization (EM) 
Algorithm

 Observation
 If the soft assignments ௜ ௝ is 

known, then it is easy to estimate 
 Similar to the representative-based 

algorithms
 The Algorithm
 E-step: use the current to estimate the 

posterior probability ௜ ௝

 M-step: fix the posterior probability, and 
find to maximize the log-likelihood



An Example for Gaussian 
Mixture Model

 E-step

 M-step

௜ഥߤ ൌ
1

∑ ܲ ࣡௜ ௝ܺഥ , Θሻ௡
௝ୀଵ

෍ܲ ࣡௜ ௝ܺഥ , Θሻ ௝ܺഥ
௡

௝ୀଵ

Σ௜ ൌ
1

∑ ܲ ࣡௜ ௝ܺഥ , Θሻ௡
௝ୀଵ

෍ܲ ࣡௜ ௝ܺഥ , Θሻ ௝ܺഥ െ ௜ഥߤ ௝ܺഥ െ ௜ഥߤ
ୃ

௡

௝ୀଵ



Relation of EM to -Means

 A Simple Mixture Models
 Fix ଵ ௞

 Choose a simple Gaussian distribution

 Comparisons



Problems of Mixture Models

 Overfitting
 Too many parameters in 
 A small data set 
 Reduce the complexity of model

 Local Optimal Solution
 Repeat many times, and choose the one 

with smallest objective value
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Summary

 Feature Selection for Clustering
 Filter Models, Wrapper Models

 Representative-Based Algorithms
 -Means, -Medians, -Medoids

 Hierarchical Clustering Algorithms
 Bottom-Up Agglomerative Methods
 Group-Based Statistics

 Top-Down Divisive Methods
 Probabilistic Model-Based Algorithms
 Mixture Model, EM Algorithm


