Cluster Analysis (b)

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- □ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- Summary

Density-Based Algorithms

- One Motivation
 - Find clusters with arbitrary shape
- □ The Key Idea
 - Identify fine-grained dense regions
 - Merge regions into clusters
- □ Representative Algorithms
 - Grid-Based Methods
 - DBSCAN
 - DENCLUE

Grid-Based Methods

☐ The Algorithm

Algorithm $GenericGrid(Data: \mathcal{D}, Ranges: p, Density: \tau)$ begin

Discretize each dimension of data \mathcal{D} into p ranges;

Determine dense grid cells at density level τ ;

Create graph in which dense grids are connected if they are adjacent;

Determine connected components of graph;

return points in each connected component as a cluster;

end

Limitations-2 Parameters (1)

☐ The number of Grids

Limitations-2 Parameters (2)

☐ The Level of Density

DBSCAN (1)

1. Classify data points into

- Core point: A data point is defined as a core point, if it contains at least τ data points within a radius Eps.
- Border point: A data point is defined as a border point, if it contains less than τ points, but it also contains at least one core point within a radius Eps.
- Noise point: A data point that is neither a core point nor a border point is defined as a noise point.

DBSCAN (2)

1. Classify data points into Core point, Border point, and Noise points.

DBSCAN (3)

- 1. Classify data points into Core point, Border point, and Noise points.
- 2. A connectivity graph is constructed with respect to the core points
 - Core points are connected if they are within *Eps* of one another
- 3. Determine connected components
- 4. Assign each border point to connected component
 - with which it is best connected

Limitations of DBSCAN

- Two Parameters
 - Radius Eps and Level of Density τ

- They are related to each other
- □ High Computational Cost
 - Identifying neighbors $O(n^2)$

DENCLUE—Preliminary

□ Kernel-density Estimation

■ Given n data points $\overline{X_1}, ..., \overline{X_n}$

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K(\overline{X} - \overline{X_i}).$$

 \blacksquare $K(\cdot)$ is a kernel function

$$K(\overline{X} - \overline{X_i}) = \left(\frac{1}{h\sqrt{2\pi}}\right)^d e^{-\frac{||\overline{X} - \overline{X_i}||^2}{2 \cdot h^2}}.$$

DENCLUE—The Key Idea

\Box Determine clusters by using a density threshold τ

2 clusters

3 clusters

DENCLUE—Procedure

- Density Attractors
 - Local Maximum/Peak

NANTA THE TAXABLE AND ALLES AND ALLE

DENCLUE—Procedure

- Density Attractors
 - Local Maximum/Peak
- ☐ Identify a Peak for Each Data Point
 - An iterative gradient ascent

$$\overline{X^{(t+1)}} = \overline{X^{(t)}} + \alpha \nabla f(\overline{X^{(t)}})$$

DENCLUE—Procedure

- □ Density Attractors
 - Local Maximum/Peak
- ☐ Identify a Peak for Each Data Point
 - An iterative gradient ascent

$$\overline{X^{(t+1)}} = \overline{X^{(t)}} + \alpha \nabla f(\overline{X^{(t)}})$$

- □ Post-Processing
 - Attractors whose density is smaller than τ are excluded
 - Density attractors are connected to each other by a path of density at least τ will be merged

DENCLUE—Implementation

- □ Gradient Ascent
 - Gradient

$$\nabla f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\overline{X} - \overline{X_i}).$$

Gaussian Kernel

$$\nabla K(\overline{X} - \overline{X_i}) \propto (\overline{X_i} - \overline{X})K(\overline{X} - \overline{X_i})$$

Mean-shift Method

$$\overline{X^{(t+1)}} = \frac{\sum_{i=1}^{n} \overline{X_i} K(\overline{X^{(t)}} - \overline{X_i})}{\sum_{i=1}^{n} K(\overline{X^{(t)}} - \overline{X_i})}$$

Converges much faster

Outline

- ☐ Grid-Based and Density-Based Algorithms
- □ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- Summary

Graph Construction for a Set of n Points $\mathcal{O} = \{O_1, ..., O_n\}$

- \square A node is defined for each $O_i \in \mathcal{O}$
- \square An edge exists between O_i and O_j
 - If the distance $d(O_i, O_j) \leq \epsilon$
 - If either one is a m-nearest neighbor of the other (A better approach)
- ☐ If there is an edge, then its weight is
 - 1
 - Heat Kernel: $e^{-d(o_i,o_j)^2/t^2}$

Spectral Clustering

Dimensionality Reduction

Find a low-dimensional representation for each node in the graph

Laplacian Eigenmap [Belkin and Niyogi, 2002]

\square k-means

Apply k-means to new representations of the data

Laplacian Eigenmap (1)

- \square The Objective Function (k = 1)
 - $y_i \in \mathbb{R}$ is a 1-dimensional representation of O_i
 - w_{ij} is the similarity between O_i and O_j

$$O = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - y_j)^2$$

- Similar points will be mapped closer
 - ✓ Similar points have larger weights

Laplacian Eigenmap (2)

- \square The Objective Function (k = 1)
 - Vector Form

$$O = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - y_j)^2 = 2\mathbf{y}^{\mathsf{T}} L \mathbf{y}$$

- $\mathbf{y} = [y_1, \dots, y_n]^{\mathsf{T}} \in \mathbb{R}^n$
- $L = D W \in \mathbb{R}^{n \times n}$ is the graph Laplacian ✓ Positive Semidefinite (PSD)
- $W = [w_{ij}] \in \mathbb{R}^{n \times n}$ is the similarity matrix
- $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with $D_{ii} = \sum_{j=1}^{n} w_{ij}$

Laplacian Eigenmap (3)

 \square The Optimization Problem (k = 1)

$$\min_{\mathbf{y} \in \mathbb{R}^n} \quad \mathbf{y}^{\mathsf{T}} L \mathbf{y}$$

s. t.
$$\mathbf{y}^{\mathsf{T}} D \mathbf{y} = 1$$

- Add a Constraint to Remove Scaling Factor
 - ✓ D is introduced for normalization [Luxburg, 2007]
- □ The Solution

$$L\mathbf{y} = \lambda D\mathbf{y}$$

- Generalized Eigenproblem [Luxburg 2007]
- The smallest eigenvector is $y^1 = 1$
 - ✓ Useless since $y_1^1 = y_2^1 = \dots = y_n^1$

Laplacian Eigenmap (3)

 \square The Optimization Problem (k = 1)

$$\min_{\mathbf{y} \in \mathbb{R}^n} \quad \mathbf{y}^{\mathsf{T}} L \mathbf{y}$$
s.t. $\mathbf{y}^{\mathsf{T}} D \mathbf{y} = 1$

- Add a Constraint to Remove Scaling Factor
 - ✓ D is introduced for normalization [Luxburg, 2007]
- The Solution

$$L\mathbf{y} = \lambda D\mathbf{y}$$

- Generalized Eigenproblem [Luxburg 2007]
- The smallest eigenvector is $y^1 = 1$
- Use the second smallest eigenvector y²
 - \checkmark The new representation for O_i is y_i^2

Laplacian Eigenmap (4)

- \square The Objective Function (k > 1)
 - Vector Form

$$O = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \|\mathbf{y}_{i} - \mathbf{y}_{j}\|_{2}^{2} = 2 \operatorname{trace}(Y^{T} L Y)$$

- $Y = [\mathbf{y}_1, \dots, \mathbf{y}_n]^{\mathsf{T}} \in \mathbb{R}^{n \times k}$
- $L = D W \in \mathbb{R}^{n \times n}$ is the graph Laplacian
- $W = [w_{ij}] \in \mathbb{R}^{n \times n}$ is the similarity matrix
- $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix with $D_{ii} = \sum_{j=1}^{n} w_{ij}$

Laplacian Eigenmap (4)

 \square The Optimization Problem (k > 1)

$$\min_{Y \in \mathbb{R}^{n \times k}} \operatorname{trace}(Y^{\mathsf{T}}LY)$$
s. t. $Y^{\mathsf{T}}DY = I$

□ The Solution

$$L\mathbf{y} = \lambda D\mathbf{y}$$

- Generalized Eigenproblem [Luxburg 2007]
- Use $Y = [\mathbf{y}^2, ..., \mathbf{y}^{k+1}] \in \mathbb{R}^{n \times k}$ as the optimal solution
 - \checkmark yⁱ is the *i*-th generalized eigenvector
 - ✓ The new representation $\mathbf{y}_i \in \mathbb{R}^k$ for O_i is the i-th row of Y
- Don't forget the normalization $Y^TDY = I$

Properties of Spectral Clustering

□ Varying Cluster Shape and Density

- Due to the nearest neighbor graph
- ☐ High Computational Cost

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- Summary

Non-negative Matrix Factorization (NMF)

- Let $X = [\mathbf{x}_1, ..., \mathbf{x}_n] = \mathbb{R}^{d \times n}$ be a non-negative data matrix
- \square NMF aims to factor X as $U \times V^{\top}$
 - $U \in \mathbb{R}^{d \times k}$ and $V \in \mathbb{R}^{n \times k}$ are non-negative
- □ The Optimization Problem

$$\min_{\substack{U \in \mathbb{R}^{d \times k}, V \in \mathbb{R}^{n \times k} \\ \text{s.t.}}} ||X - UV^{\top}||_F^2$$

Non-convex

Interpretation of NMF (1)

Matrix Appromation

$$X \approx UV^{\top}$$

- □ Element-wise
 - $X = [\mathbf{x}_1, ..., \mathbf{x}_n] \in \mathbb{R}^{d \times n}$, where $\mathbf{x}_i \in \mathbb{R}^d$
 - $\mathbf{U} = [\mathbf{u}_1, ..., \mathbf{u}_k] \in \mathbb{R}^{d \times k}$, where $\mathbf{u}_i \in \mathbb{R}^d$
 - $V^{\mathsf{T}} = [\mathbf{v}_1, ..., \mathbf{v}_n] \in \mathbb{R}^{k \times n}$, where $\mathbf{v}_i \in \mathbb{R}^k$
 - \checkmark \mathbf{v}_i is the *i*-th column of V^{T}
 - $\mathbf{v}_i^{\mathsf{T}}$ is the *i*-th row of *V*
 - Then, $\mathbf{x}_i \approx U\mathbf{v}_i = \sum_{j=1}^k \mathbf{u}_j v_{ij}$
 - $\checkmark v_{ij}$ is the j-th element of vector \mathbf{v}_i

Interpretation of NMF (2)

Vector Approximation

$$\mathbf{x}_i \approx U\mathbf{v}_i = \sum_{j=1}^k \mathbf{u}_j v_{ij}$$

- $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^d$ can be treated as basis vectors
 - ✓ They may be not orthonormal
 - ✓ They are non-negative
- $\mathbf{v}_i = [v_{i1}, ..., v_{ik}]^{\mathsf{T}} \in \mathbb{R}^k$ can be treated as a new k-dimensional representation of \mathbf{x}_i

Parts-Based Representations

 \square When each \mathbf{x}_i is a face image

■ [Lee and Seung, 1999]

Clustering by NMF

Vector Approximation

$$\mathbf{x}_i \approx U\mathbf{v}_i = \sum_{j=1}^k \mathbf{u}_j v_{ij}$$

- **u**_j can be treated as an representative of the j-th cluster
- \mathbf{v}_{ij} can be treated as the association between \mathbf{x}_i and \mathbf{u}_j
- \square The cluster label l_i for \mathbf{x}_i

$$l_i = \operatorname{argmax}_j v_{ij}$$

[Xu et al., 2003]

An Example

☐ Discover both Row and Column Clusters

2	2	1	2	0	0
2	3	3	3	0	0
1	1	1	1	0	0
2	2	2	3	1	1
0	0	0	1	1	1
0	0	0	2	1	2

\	1	1	1	1	0	0
X	0	0	0	1	1	1

Optimization in NMF

☐ Alternating between *U* and *V*

$$u_{ij} \leftarrow u_{ij} \frac{(\mathbf{X}\mathbf{V})_{ij}}{(\mathbf{U}\mathbf{V}^T\mathbf{V})_{ij}}$$
$$v_{ij} \leftarrow v_{ij} \frac{(\mathbf{X}^T\mathbf{U})_{ij}}{(\mathbf{V}\mathbf{U}^T\mathbf{U})_{ij}}$$

- Local Optimal Solutions
 - ✓ Run multiple times and choose the best one
- Other Optimization Algorithms are also Possible

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- □ Cluster Validation
- Summary

Concepts

- □ Cluster validation
 - Evaluate the quality of a clustering
- Internal Validation Criteria
 - Do not need additional information
 - Biased toward one algorithm or the other
- External Validation Criteria
 - Ground-truth clusters are known
 - Ground-truth may not reflect the natural clusters in the data

Internal Validation Criteria

Sum of square distances to centroids

$$\sum_{j=1}^{k} \sum_{\mathbf{x}_i \in \mathcal{C}_j} \left\| \mathbf{x}_i - \mathbf{c}_j \right\|_2^2$$

☐ Intracluster to intercluster distance ratio $Intra = \sum \frac{dist(\overline{X_i}, \overline{X_j})/|P|}{}$

$$Inter = \sum_{(\overline{X_i}, \overline{X_j}) \in Q} dist(\overline{X_i}, \overline{X_j}) / |Q|.$$

- ☐ Silhouette coefficient
- □ Probabilistic measure

External Validation Criteria

- Class Labels
 - The Ground-truth
- □ Confusion Matrix
 - Each row i corresponds to the class label j
 - Each column j corresponds to the algorithm-determined cluster j

Cluster Indices	1	2	3	4
1	97	0	2	1
2	5	191	1	3
3	4	3	87	6
4	0	0	5	195

Cluster Indices	1	2	3	4
1	33	30	17	20
2	51	101	24	24
3	24	23	31	22
4	46	40	44	70

■ Ideal clustering ⇒ a diagonal matrix after permutation

Notations

- \square m_{ij} : number of data points from class (ground-truth) cluster i that are mapped to (algorithm-determined) cluster j
- \square N_i : number of data points in *true cluster i*

$$N_i = \sum_{i=1}^{k_d} m_{ij} \qquad \forall i = 1 \dots k_t$$

 \square M_j : number of data points in *algorithm-determined* cluster j

$$M_j = \sum_{i=1}^{k_t} m_{ij} \qquad \forall j = 1 \dots k_d$$

Purity

□ For a given algorithm-determined cluster j, define P_j as number of data points in its *dominant* class

$$P_j = \max_i m_{ij}$$
.

□ The overall purity

Purity =
$$\frac{\sum_{j=1}^{k_d} P_j}{\sum_{j=1}^{k_d} M_j}.$$

High values of the purity are desirable

Gini index

- ☐ Limitation of Purity
 - Only accounts for the dominant label in the cluster and ignores the distribution of the remaining points
- \square Gini index G_i for column (algorithmdetermined cluster) j

$$G_j = 1 - \sum_{i=1}^{k_t} \left(\frac{m_{ij}}{M_j}\right)^2$$

- □ The average Gini coefficient

Low values
$$G_{average} = \frac{\sum_{j=1}^{k_d} G_j \cdot M_j}{\sum_{j=1}^{k_d} M_j}.$$

Outline

- ☐ Grid-Based and Density-Based Algorithms
- ☐ Graph-Based Algorithms
- Non-negative Matrix Factorization
- Cluster Validation
- □ Summary

Summary

- ☐ Grid-Based and Density-Based Algorithms
 - Grid-Based Methods
 - DBSCAN, DENCLUE
- ☐ Graph-Based Algorithms
 - Laplacian Eigenmap
- Non-negative Matrix Factorization
- Cluster Validation
 - Purity, Gini index

Reference

- □ [Belkin and Niyogi, 2002] Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS 14, pages 585–591.
- ☐ [Luxburg, 2007] Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.
- ☐ [Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755): 788–791.
- □ [Xu et al., 2003] Xu, W., Liu, X., and Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In SIGIR, pages 267–273.
- ☐ [Hinneburg and Keim, 1998] Hinneburg, A. and Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. In KDD, pages 58–65.