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SVM for Linearly Separable 
Data (1)

 Hyperplane 1 v.s. Hyperplane 2



SVM for Linearly Separable 
Data (2)

 Hyperplane 1 v.s. Hyperplane 2

 Hyperplane 1 is better



SVM for Linearly Separable 
Data (3)

 Hyperplane 1 v.s. Hyperplane 2
 Margin

 Support
vectors



SVM for Linearly Separable 
Data (4)

 The Observation
 Larger margin provides better 

generalization power
 The Goal of SVM
 Find the maximum margin hyperplane

 Notations
 Training set ଵ ଵ   , 

where 
ௗ and 

 The separating hyperplane

Where 



Training (1)

 Basic Constraints

 There may be infinite 
solutions



Training (1)

 Basic Constraints

 There may be infinite 
solutions

 Margin Constraints
 is in the 

center
 Two hyperplanes



Training (2)

 Basic Constraints

 There may be infinite 
solutions

 Margin Constraints



Training (3)

 Distance between Two Hyperplanes

 The Problem

2
ഥܹ ଶ

https://en.wikipedia.org/wiki/Distance_fro
m_a_point_to_a_plane

max
ௐഥ∈Թ,∈Թ

2
ഥܹ ଶ

s. t. ݕ ഥܹ ⋅ ܺഥ  ܾ  1, ∀݅



Training (4)

 Distance between Two Hyperplanes

 Reformulation

2
ഥܹ ଶ

https://en.wikipedia.org/wiki/Distance_fro
m_a_point_to_a_plane

min
ௐഥ∈Թ,∈Թ

ഥܹ ଶ
ଶ

2
s. t. ݕ ഥܹ ⋅ ܺഥ  ܾ  1, ∀݅



Optimization (1)

 Lagrangian Relaxation

 Introduce a  for  

 Lagrange dual function

 The minimization problem is 
unconstrained



Optimization (2)

 Lagrange dual function

 Closed form solution for 

 For , we obtain 



Optimization (3)

 The Dual Problem

 We only need the inner product
 Recovering the Primal Solution
 The strong duality holds
 can be recovered directly

max
ఒభ,…,ఒ∈Թ	

s. t.

ߣ ് 0 ܺഥIf ߣ ് 0, then ܺഥ is a support vector



Optimization (4)

 The Dual Problem

 We only need the inner product
 Recovering the Primal Solution
 The strong duality holds
 can be recovered directly
 We need the KKT conditions to recover 

max
ఒభ,…,ఒ∈Թ	

s. t.



Optimization (4)

 The Dual Problem

 We only need the inner product
 Recovering the Primal Solution
 The strong duality holds
 can be recovered directly
 We need the KKT conditions to recover 

max
ఒభ,…,ఒ∈Թ	

s. t.



Testing

 For a Test Instance 
 The First Approach

 The Second Approach

 We only need the inner product
 We only need to save ߣ and ܾ



Solving the Dual Problem

 A Quadratic Optimization Problem

 Gradient Ascent

 The constraints may be violated
 Projection before/after updating

max
ఒభ,…,ఒ∈Թ	

s. t.



SVM with Soft Margin
for Nonseparable Data (1)

 A Nonseparable Case



SVM with Soft Margin
for Nonseparable Data (2)

 Hard Margin Constraints

 Soft Margin Constraints

 The Objective



SVM with Soft Margin
for Nonseparable Data (3)

 The Problem

 Lagrangian Relaxation

min
ௐഥ∈Թ,కభ,…,క,∈Թ

s. t.



SVM with Soft Margin
for Nonseparable Data (4)

 A More Popular Formulation

 Unconstrained but non-smooth
   is called hinge loss

min
ௐഥ∈Թ,∈Թ



SVM with Soft Margin
for Nonseparable Data (4)

 A More Popular Formulation

 Unconstrained but non-smooth
   is called hinge loss

 Logistic Regression

 Unconstrained and smooth
 

ି௬௭ is called logit loss

min
ௐഥ∈Թ,∈Թ

min
ௐഥ∈Թ,∈Թ ܱ ൌ

ഥܹ ଶ

2  logܥ 1  ݁ି௬ ௐഥ ⋅ା


ୀଵ



Nonlinear SVM

 An Example



The Kernel Trick (1)

 Replace inner product with kernel 
functions
 A Mapping: 
 Kernel function

 Training

 Testing



The Kernel Trick (2)

 Kernel Functions



The Kernel Trick (2)

 Kernel Functions

 Mercer’s
Theorem

Scholkopf and . Smola
Learning with Kernels
The MIT Press, 2011.
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(Artificial) Neural Networks (1)
 Neural networks are a model of simulation of 

the human nervous system

 The human nervous system is composed of 
cells, referred to as neurons. 

 Biological neurons are connected to one 
another at contact points, which are referred to 
as synapses. 

 Learning is performed in living organisms by 
changing the strength of synaptic connections 
between neurons.
 Typically, the strength of these connections change in 

response to external stimuli.



(Artificial) Neural Networks (2)

 The individual nodes in artificial neural 
networks are referred to as neurons. 

 The computation function at a neuron is 
defined by the weights on the input 
connections to that neuron.
 This weight can be viewed as analogous to 

the strength of a synaptic connection.
 The “external stimulus” in artificial 

neural networks for learning these 
weights is provided by the training data.



Single-Layer Neural Network: 
The Perceptron

 Architecture
 Input nodes
 One for each feature
 No computation

 A output node
 Activation function



Training of Perceptron

 Prediction Error  




Training of Perceptron

 Prediction Error  


 Algorithm
 Start with a random vector
 Feed  into the neural network one by one

 ߟ is a step size or learning rate
 ݕ െ ݖ ∈ െ2,0,2
 An approximation of gradient descent for 

square loss ݕ െ ݖ ଶ ൌ ݕ െ sign ഥܹ ⋅ ܺഥ െ ܾ ଶ



Multilayer Neural Networks

 Architecture
 Input Layer
 One node for each 

feature
 No computation

 Hidden Layer
 Maybe multiple layers

 Output layer

 Functions at hidden 
and output layers



Training

 The Challenge
 The ground-truth of hidden layer nodes 

are unknown
 Backpropagation



Discussions

 A multilayer neural network is more 
powerful than a kernel SVM
 Capture decision boundaries of arbitrary 

shapes
 Capture noncontiguous class 

distributions with different decision 
boundaries in different regions of the 
data

 Challenges
 Design of the topology of the network
 Overfitting, Deep learning

 Convergence rate is slow or unclear
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Instance based learning

 Eager learner
 The classification model is constructed 

up front and then used to classify a 
specific test instance

 SVM, Neural Networks
 Lazy learner
 The training is delayed until the last step 

of classification
 Instance based learning
 Similar instances have similar class labels



Nearest-neighbor Classifiers

 Given a Test Instance
 Determine the closest training 

examples
 Use the dominant label among these 

training examples
 Weighted voting

 Challenges 
 Decide the value of 
 Measure the distance



Design Variations of Nearest 
Neighbor Classifiers

 The Standard Approach
 The Euclidean function
 Cannot reflect the distribution of data

 A More General Formulation

 is a positive semidefinite (PSD) matrix



Unsupervised Mahalanobis
Metric

 The Mahalanobis Distance

 is the covariance matrix



Nearest Neighbors with Linear 
Discriminant Analysis (1)

 An Example
 The circle include 

more points from 
class B than class A



Nearest Neighbors with Linear 
Discriminant Analysis (2)

 An Example
 The circle include 

more points from 
class B than class A

 “Elongate” the 
neighborhoods 
along the less 
discriminative 
directions 

 “Shrink” the 
neighborhoods 
along the more 
discriminative 
directions



Nearest Neighbors with Linear 
Discriminant Analysis (3)

 The Procedure (LDA)
 ࣞ is the full data set
 ߤ̅ is the mean of ࣞ
 ࣞ is the set of data belonging to class ݅
  ൌ ࣞ / ࣞ is the fraction of data in class ݅
 ߤ is the mean of ࣞ
 Σ is the covariance matrix of ࣞ
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Classifier Evaluation

 Methodological issues
 Dividing the labeled data appropriately 

into training and test segments for 
evaluation

 Quantification issues
 Providing a numerical measure for the 

quality of the method after a specific 
methodology for evaluation has been 
selected



Methodological issues

 Training
 Model-Building
 Validation
 For parameter tuning or mode selection

 Testing
 Measure the performance



Holdout

 Randomly divided into two disjoint 
sets
 A majority is used as the training data
 Remaining is used as the test data

 Repeating the process over different 
holdout samples

 When the classes are imbalanced
 Implement the holdout method by 

independently sampling the two classes 
at the same level (Stratified sampling)



Cross-Validation

 Data is divided into disjoint subsets 
of equal size 

 One of the segments is used for 
testing, and the other 
segments are used for training

 Leave-one-out cross-validation 

 Repeating the process over different 
random -way partitions of the data



Bootstrap

 The labeled data is sampled uniformly 
with replacement, to create a training 
data set
 possibly contain duplicates

 The probability that the data point is 
not included in samples

 The fraction of the labeled data points 
included at least once

1 െ
1
݊



ൎ
1
݁

1 െ
1
݁ ൎ 0.632



Quantification Issues (1)

 Output as Class Labels
 Accuracy: fraction of test instances in 

which the predicted value is right
 Cost-sensitive accuracy
 ܿଵ … ܿ be cost of misclassification of each 

class
 ݊ଵ …݊ be the number of test instances 

belong to each class
 ܽଵ …ܽ be the accuracy for each class

 Significant Test



Quantification Issues (2)

 Output as Numerical Score
 The output of the classification algorithm 

is a numerical score associated with each 
test instance and label value.

 Provide more flexibility in evaluating the 
overall trade-off

 Similar to outlier validity



Two Classes

 For any threshold on the predicted 
positive-class score
 is the declared positive class set
 is the true set of positive instances
 The Precision

 The Recall

 ଵ-measure



Precision-Recall Curve



ROC curve (1)

 True-positive rate (recall)

 False-positive rate



ROC curve (2)
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Summary

 Support Vector Machines
 Linearly Separable, Nonseparable
 Dual, Kernel Trick

 Neural Networks
 Single-Layer, Multilayer

 Instance-Based Learning
 Nearest-neighbor classifiers

 Classifier Evaluation
 Holdout, Cross-Validation, Bootstrap
 Accuracy, precision–recall, ROC curve


