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SVM for Linearly Separable
Data (1)

Hyperplane 1 v.s. Hyperplane 2
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SVM for Linearly Separable
Data (2)

Hyperplane 1 v.s. Hyperplane 2
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B Hyperplane 1 is better | pereianes



SVM for Linearly Separable

Data (3)

B Margin
B Support
vectors

TEST INSTANCE

Hyperplane 1 v.s. Hyperplane 2
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SVM for Linearly Separable
Data (4)

The Observation

B Larger margin provides better
generalization power

The Goal of SVM
B Find the maximum margin hyperplane

Notations

B Training set D = {(X,y1), ..., (X, v,,)},
where X; € R* and y; € {—1,1}

B The separating hyperplane

W-X+b=0.
Where W = (w; ... wy)




Training (1)

Basic Constraints

W-X;i+b>0 Vi:y; =+1
W-X,4+b<0 Vi:y, =—1

B There may be infinite
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Training (1)

Basic Constraints

W-X;i+b>0 Vi:y; =+1
W-X,4+b<0 Vi:y, =—1

B There may be infinite

solutions HYPE;PLANEz
Margin Constraints AR -
B W-X+b=0isin the T IB: v

center adsn |

B Two hyperplanes

W-X4+b=+c = W-X+b=+1 ...[:Tj
W-X+b=—c V-X+

k,
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Training (2)

Basic Constraints

W-X;i+b>0 Vi:y; =+1
W-X,4+b<0 Vi:y, =—1

B There may be infinite
solutions HYPERPLANE 2
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W-X;+b< -1 Vi:y, =—1.

(W - X; +b) > +1 Vi o Gfl
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Training (3)

2
W1l

https://en.wikipedia.org/wiki/Distance_fro
m_a_point_to_a plane

The Problem

2
max —
WeR4 beR W4IP
s. t. yi{W - X; + b) > 1,Vi

Distance between Two Hyperplanes
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Training (4)

Distance between Two Hyperplanes

HYPERPLANE 2
2 - ; _
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https://en.wikipedia.org/wiki/Distance_fro . CLASS A : [B CL;;SB .

m_a_point_to_a plane

Reformulation L. Gﬁ
. ” W ” % HYPERPLANE 1
min
weR4d beR 2

s.t.  yW-X; +b) = 1,vi



Optimization (1)

Lagrangian Relaxation

¥ T
Iﬂ | Y X [y (W-Xi+b) —1]

i=1

Lp =

B Introduce a 4; =0 for y;(W - X; + b) > 1
Lagrange dual function

2 T

|” | Y X [wi(W- X5 +b) — 1]

1i=1

min kaLp

B The minimization problem is
unconstrained



Optimization (2)

Lagrange dual function
w2

i=1

min W,bLF =

B Closed form solution for W

2 L
VLp _vm” ?Z}. (W-X;+b)—1] =0
T—Z:’Hyzxz:ﬂ

1=1

B For b, we obtain

Z?zl J"z'y*.i =0



Optimization (3)

The Dual Problem
/’ll,.r.r.,l/%i(eu& Lo _Z’\ __sz\ Aj1Yil;-

i=1 j=1

v*ﬂ\
>

St Aiz0and > Ny; =0
B We only need the inner product
Recovering the Primal Solution
B The strong duality holds
B ¥ can be recovered directly

L
W = Z ,\fyiﬁ/ If 1; # 0, then X; is a support vector
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Optimization (4)

The Dual Problem

/’ll,.r.r.,l/%l,i(aR Lo _Z’\ - —;;,\ iNviy; Xi - X,

St Aiz0and > Ny; =0
B We only need the inner product
Recovering the Primal Solution
B The strong duality holds
B ¥ can be recovered directly
B We need the KKT conditions to recover b

X +b)—1]=0 = v [W-X,+b=+1 vr:)\ >0



A [y (W

Optimization (4)

The Dual Problem

/’ll,.r.r.,l/%l,i(aR Lo _Z’\ - —;;,\ iNviy; Xi - X,

St Aiz0and > Ny; =0
B \We only need the inner product
Recovering the Primal Solution
B The strong duality holds
B ¥ can be recovered directly
B We need the KKT conditions to recover b

X:+b)—1]=0 = Z)\iyi X,)+bl =41 Y¥r: A, >0



Testing

For a Test Instance Z
B The First Approach

F(Z) = sign{W - Z + b}

B The Second Approach

F(Z) =sign{W - Z + b} = 5ig11{(z Nivy; X; - Z) + b}
i=1

v We only need the inner product
v We only need to save A; and b



Solving the Dual Problem

A Quadratic Optimization Problem

Al:T)?fER Lp = Z Ai — 5 ZZ Ai }‘jyi

11_31

s. t. A > 0and > Ny; =0

B Gradient Ascent

OLp
ON;

{Al}‘n)%{;\l’\n}_ﬂ(

_1—ylzyj}\x - X;

OLp 3LD)

N1 O\,
B The constraints may be violated
v" Projection before/after updating



SVM with Soft Margin
for Nonseparable Data (1)

A Nonseparable Case
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SVM with Soft Margin
for Nonseparable Data (2)

Hard Margin Constraints

+ b
+b

I u‘

S
>'-<| >—<|

| f"x

1 Vi:y, = —1.

Soft Margin Constraints

W-X;+b>41-¢ Vi:y, =+1
W-X;+b<-1+4+¢ Viiy; =-1
& >0 Vi
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MARGIN VIOLATION WITH PENALTY-BASED SLACK VARIABLES

The Objective




SVM with Soft Margin
for Nonseparable Data (3)

The Problem

B min 0 =
WeR4E,,...&,bER
s. t. W-X;+b>41-¢& Vi:y;=+1
W-X;+b<—14+& Vi:iy =-1

& >0 Vi

Lagrangian Relaxation




SVM with Soft Margin
for Nonseparable Data (4)

A More Popular Formulation

T

min W2 —
werdper U= 3 +szﬁ"~{‘31 yi[W - Xi + b]}.

B Unconstrained but non-smooth
B ¢(z,y;) = max(0,1 — y;z) is called hinge loss



SVM with Soft Margin
for Nonseparable Data (4)

A More Popular Formulation

min W2 & e
werdper U= 3 +szﬂ“~{ﬂ 1 —yi[W - Xi +b]}

B Unconstrained but non-smooth
B ¢(z,y;) = max(0,1 — y;z) is called hinge loss
Logistic Regression

. VT/ 2 o
WE%C}%E]R 0 = Wi n Czlog(l 4 e~ VilWX; b])
i=1

B Unconstrained and smooth
B ¢(z,y;) =log(1+ e™i%) is called logit loss



Nonlinear SVM

An Example
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The Kernel Trick (1)

Replace inner product with kernel
functions

B A Mapping: X - ®(X)
B Kernel function

K(X:.X;) =9(X;) - (X;)
Training

LB_ZA — — ZZA Ay K (X5, X))

1=1 3=1

Testing
F(Z) =sign{() _A\u:K(X:,Z)) +b)

1=1




The Kernel Trick (2)

Kernel Functions

Function Form
Gaussian radial basis kernel | K (X;,X;) = e~ [Ke=Xsl17/207
Polynomial kernel K(X;,X;)= {X - X; + )"
Sigmoid kernel K(X;, X;) = tanh(xX, - X; — 9)




The Kernel Trick (2)

Kernel Functions

Function Form
Gaussian radial basis kernel | K (X;,X;) = e~ [Ke=Xsl17/207
Polynomial kernel K(X;, X;)=(X;-X; + c)"
Sigmoid kernel K(X;, X;) = tanh(xX, - X; — 9)

M e rce r’ S Theorem 2.10 (Mercer [359, 307]) Suppose k € Loo(X?) is a symmetric real-valued
function such that the integral operator (cf. (2.16))

Theorem Tie ¢ 1002 (D

TP = [ K x)FG) du(x) 238)
is positive definite; that is, for all f € Ly(X), we have
[ Ko () dp(x)au(x) 2 0. (2.39)
Let v; € La(X) be the normalized orthogonal eigenfunctions of T, associated with the
Scholkopfand . Smola eigenvalues X > 0, sorted in non-increasing order. Then
Learning with Kernels L) p
The MIT Press, 2011. - (A € b,
2. k(x,x")= ZJIE{__’{ Aji(x)(x') holds for almost all (x, x'). Either N3¢ € N, or Ny = oc;

in the latter case, the series converges absolutely and uniformly for almost all (x, x').
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(Artificial) Neural Networks (1)

O

Neural networks are a model of simulation of
the human nervous system

The human nervous system is composed of
cells, referred to as neurons.

Biological neurons are connected to one
another at contact points, which are referred to
as synapses.

Learning is performed in living organisms by
changing the strength of synaptic connections
between neurons.

B Typically, the strength of these connections change in
response to external stimuli.



(Artificial) Neural Networks (2)&

The individual nodes in artificial neural
networks are referred to as neurons.

The computation function at a neuron iIs

defined by the weights on the input

connections to that neuron.

B This weight can be viewed as analogous to
the strength of a synaptic connection.

The “external stimulus” in artificial

neural networks for learning these

weights iIs provided by the training data.




Single-Layer Neural Network:
The Perceptron

INPUT NODES

Architecture

B Input nodes
v" One for each feature

v No computation X ==} D':* Z,

OUTPUT NODE

B A output node X3

v Activation function
(a) Perceptron

d
Z; = Eign{z u.'j;rf + b}
J=1

=sign{W - X; + b}



Training of Perceptron

Prediction Error (z; — y;)
E 202




Training of Perceptron

Prediction Error (z; — y;)
m 2,02
Algorithm

B Start with a random vector
B Feed X; into the neural network one by one

i

W W 4y — %)X

v' 7 is a step size or learning rate

v (i —z) €{-2,02}

v' An approximation of gradient descent for
square loss (y; — z;)? = (y; — sign(W - X; — b))2



Multilayer Neural Networks

Architecture INPUT LAYER

B Input Layer

v" One node for each
feature

v No computation
B Hidden Layer

v' Maybe multiple layers | (b) Multilayer
B Output layer

B Functions at hidden | S u, 1
and output layers ~ T14e



Training

The Challenge

B The ground-truth of hidden layer nodes
are unknown

Backpropagation

1. Forward phase: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared to the class
label of the training instance, to check whether or not the predicted label is an error.

2. Backward phase: The main goal of the backward phase is to learn weights in the
backward direction by providing an error estimate of the output of a node in the
earlier layers from the errors in later layers. The error estimate of a node in the
hidden layer is computed as a function of the error estimates and weights of the
nodes in the layer ahead of it. This is then used to compute an error gradient with
respect to the weights in the node and to update the weights of this node. The actual



Discussions

A multilayer neural network is more
powerful than a kernel SVM

B Capture decision boundaries of arbitrary
shapes

B Capture noncontiguous class
distributions with different decision
boundaries in different regions of the
data

Challenges

B Design of the topology of the network
v' Overfitting, Deep learning

M CAnv/oarnoneco rato ic clmar nr 1ineclaar
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Instance based learning

Eager learner

B The classification model is constructed
up front and then used to classify a
specific test instance

B SVM, Neural Networks

Lazy learner

B The training is delayed until the last step
of classification

B Instance based learning
v Similar instances have similar class labels



Nearest-neighbor Classifiers

Given a Test Instance

B Determine the closest m training
examples

B Use the dominant label among these m
training examples

v" Weighted voting

f(0) =e/"
Challenges
B Decide the value of m
B Measure the distance




Design Variations of Nearest
Neighbor Classifiers

The Standard Approach
B The Euclidean function
B Cannot reflect the distribution of data

A More General Formulation

Dist(X,)Y) = wff (X -Y)AX -Y)T

B A Is a positive semidefinite (PSD) matrix



Unsupervised Mahalanobis
Metric

The Mahalanobis Distance

Dist(X,Y) = /(X =TT (X -T)T.

B Y Is the covariance matrix
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Nearest Neighbors with Linear
Discriminant Analysis (1)

[l An Example

B The circle include T Sl T
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Nearest Neighbors with Linear
Discriminant Analysis (2)

[ An Example

B The circle include
more points from
class B than class A

B “Elongate” the
neighborhoods
along the less
discriminative
directions

B “Shrink” the
neighborhoods
along the more
discriminative
directions

FEATURE ¥




Nearest Neighbors with Linear |y
Discriminant Analysis (3) ;

The Procedure (LDA)

D is the full data set

it 1Is the mean of D

D; is the set of data belonging to class i

p; = |D;|/|D] is the fraction of data in class i
u; is the mean of D;

Z; IS the covariance matrix of D;

k
Su=3"pS  S=Y pmE-m -7
1i=1

A=S5.18,5.".
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Classifier Evaluation

Methodological issues

B Dividing the labeled data appropriately
Into training and test segments for

evaluation

Quantification issues

B Providing a numerical measure for the
quality of the method after a specific
methodology for evaluation has been
selected




Methodological issues

Training
B Model-Building

B Validation
v" For parameter tuning or mode selection

Testing
B Measure the performance
0% 25% 25%
VALIDATION
(TUNING, | TESTING
MODEL-BUILDING MODEL - DATA
SELECTION)

1
USED FOR BUILDING
TUNED MODEL



Holdout

Randomly divided into two disjoint
sets

B A majority Is used as the training data
B Remaining is used as the test data

Repeating the process over b different
holdout samples

When the classes are imbalanced

B Implement the holdout method by
Independently sampling the two classes
at the same level (Stratified sampling)




Cross-Validation

Data Is divided into m disjoint subsets
of equal size n/m

One of the m segments Is used for
testing, and the other (im—1)
segments are used for training

L eave-one-out cross-validation m =n

Repeating the process over b different
random m-way partitions of the data




Bootstrap

The labeled data is sampled uniformly

with replacement, to create a training
data set

B possibly contain duplicates

The probability that the data point is
not included Iin n samples

(1-3) =2
1——) ~-
n e

The fraction of the labeled data points

Included at Ieasit once

1——=0.632
e



Quantification Issues (1)

Output as Class Labels

B Accuracy: fraction of test instances in
which the predicted value is right
B Cost-sensitive accuracy

v ¢ ...c, be cost of misclassification of each
class

v ny..n, be the number of test instances
belong to each class

v a,..a; be the accuracy for each class
ZL CiniQ4
Significant Test

A=




Quantification Issues (2)

Output as Numerical Score

B The output of the classification algorithm
IS a humerical score associated with each
test instance and label value.

B Provide more flexibility in evaluating the
overall trade-off

B Similar to outlier validity



Two Classes

For any threshold ¢t on the predicted
positive-class score

B S(t) Is the declared positive class set

B G Is the true set of positive instances

B The Precision L
Precision(t) = 100 * |q|{z)(;:|ﬂ|

B The Recall L i
Recall(t) = 100 q{jng G|

B F -measure
2 - Precision(t) - Recall(t)

Fi(t) = Precision(t) + Recall(t)




Precision-Recall Curve

Table 10.2: Rank of ground-truth positive instances

Algorithm Rank of positive class instances
Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7,11, 13, 15
Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1.2,3,.4,5
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ROC curve (1)

True-positive rate (recall)

1S() NG|

TPR(t) = Recall(t) =100+ 7

False-positive rate

S(t) — G
D -Gl

FPR(t) = 100 *



ROC curve (2)

Table 10.2: Rank of ground-truth positive instances

Algorithm Rank of positive class instances
Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7,11, 13, 15
Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1.2,3,.4,5
|
: i
3 i
Ef- e !
& i
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Summary

Support Vector Machines

B Linearly Separable, Nonseparable
B Dual, Kernel Trick

Neural Networks

B Single-Layer, Multilayer
Instance-Based Learning
B Nearest-neighbor classifiers

Classifier Evaluation
B Holdout, Cross-Validation, Bootstrap
B Accuracy, precision—recall, ROC curve




