# Convex Optimization

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj





### Outline

- Introduction
- □ Convex Sets & Functions
- ☐ Convex Optimization Problems
- Duality
- □ Convex Optimization Methods
- Summary



## Mathematical Optimization

### Optimization Problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq b_i, \quad i = 1, \dots, m$ 

- $x = (x_1, \dots, x_n)$ : optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$ : objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$ : constraint functions

**optimal solution**  $x^*$  has smallest value of  $f_0$  among all vectors that satisfy the constraints



## **Applications**

### □ Dimensionality Reduction (PCA)

$$\max_{\mathbf{w} \in \mathbb{R}^d} \quad \mathbf{w}^\mathsf{T} C \mathbf{w}$$
s. t. 
$$||\mathbf{w}||_2^2 = 1$$

☐ Clustering (NMF)

☐ Classification (SVM)

$$\min_{\overline{W} \in \mathbb{R}^d, b \in \mathbb{R}} O = \frac{||\overline{W}||^2}{2} + C \sum_{i=1}^n \max\{0, 1 - y_i[\overline{W} \cdot \overline{X_i} + b]\}.$$



## Least-squares

#### □ The Problem

minimize 
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

- Given  $\alpha_i \in \mathbb{R}^d$ , predict  $b_i \in \mathbb{R}$  by  $a_i^T x$
- Properties
  - analytical solution:  $x^* = (A^T A)^{-1} A^T b$
  - reliable and efficient algorithms and software
  - computation time proportional to  $n^2k$   $(A \in \mathbf{R}^{k \times n})$ ; less if structured
  - a mature technology



## Linear Programming

#### □ The Problem

minimize 
$$c^T x$$
  
subject to  $a_i^T x \leq b_i, \quad i = 1, \dots, m$ 

Here the vectors  $c, a_1, \ldots, a_m \in \mathbb{R}^n$  and scalars  $b_1, \ldots, b_m \in \mathbb{R}$  are problem parameters that specify the objective and constraint functions.

## ☐ Properties

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to  $n^2m$  if  $m \ge n$ ; less with structure
- a mature technology



# Convex Optimization Problem

#### □ The Problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq b_i, \quad i = 1, \dots, m$ 

#### Conditions

objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if 
$$\alpha + \beta = 1$$
,  $\alpha \ge 0$ ,  $\beta \ge 0$ 

• includes least-squares problems and linear programs as special cases



# Convex Optimization Problem

#### □ The Problem

```
minimize f_0(x)
subject to f_i(x) \leq b_i, \quad i = 1, \dots, m
```

### Properties

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to  $\max\{n^3, n^2m, F\}$ , where F is cost of evaluating  $f_i$ 's and their first and second derivatives
- almost a technology



## Nonlinear Optimization

#### Definition

- The objective or constraint functions are not linear
- Could be convex or nonconvex

#### local optimization methods (nonlinear programming)

- $\bullet$  find a point that minimizes  $f_0$  among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

#### global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size



### Outline

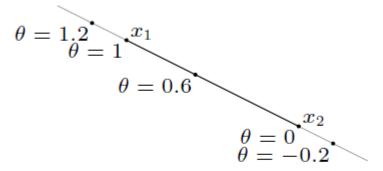
- Introduction
- ☐ Convex Sets & Functions
- ☐ Convex Optimization Problems
- Duality
- □ Convex Optimization Methods
- Summary



## Affine Set

**line** through  $x_1$ ,  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$



affine set: contains the line through any two distinct points in the set

**example**: solution set of linear equations  $\{x \mid Ax = b\}$ 

(conversely, every affine set can be expressed as solution set of system of linear equations)

# NANUTAGO UNITA

#### Convex Set

**line segment** between  $x_1$  and  $x_2$ : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with  $0 \le \theta \le 1$ 

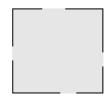
convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)







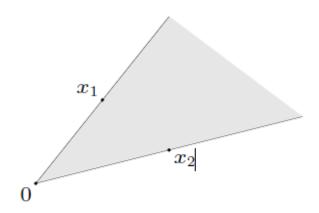


## Convex Cone

conic (nonnegative) combination of  $x_1$  and  $x_2$ : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with  $\theta_1 \ge 0$ ,  $\theta_2 \ge 0$ 

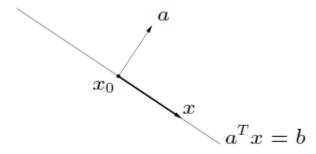


convex cone: set that contains all conic combinations of points in the set

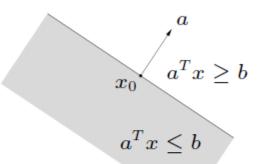


## Some Examples (1)

**hyperplane**: set of the form  $\{x \mid a^T x = b\}$   $(a \neq 0)$ 



**halfspace:** set of the form  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 



- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex



## Some Examples (2)

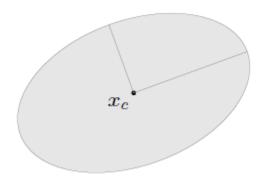
(Euclidean) ball with center  $x_c$  and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

with  $P \in \mathbf{S}_{++}^n$  (i.e., P symmetric positive definite)



other representation:  $\{x_c + Au \mid ||u||_2 \le 1\}$  with A square and nonsingular



## Some Examples (3)

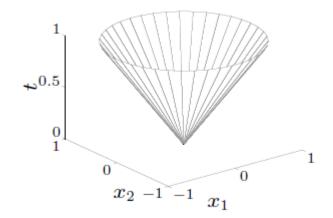
**norm:** a function  $\|\cdot\|$  that satisfies

- $||x|| \ge 0$ ; ||x|| = 0 if and only if x = 0
- $||tx|| = |t| ||x|| \text{ for } t \in \mathbf{R}$
- $\bullet ||x + y|| \le ||x|| + ||y||$

notation:  $\|\cdot\|$  is general (unspecified) norm;  $\|\cdot\|_{\text{symb}}$  is particular norm **norm ball** with center  $x_c$  and radius r:  $\{x\mid \|x-x_c\|\leq r\}$ 

norm cone:  $\{(x,t) | ||x|| \le t\}$ 

Euclidean norm cone is called secondorder cone



norm balls and cones are convex

# Operations that Preserve Convexity



practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . . ) by operations that preserve convexity
  - intersection
  - affine functions
  - perspective function
  - linear-fractional functions



### Convex Functions

 $f: \mathbb{R}^n \to \mathbb{R}$  is convex if  $\operatorname{dom} f$  is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all  $x, y \in \operatorname{dom} f$ ,  $0 \le \theta \le 1$ 



- f is concave if -f is convex
- ullet f is strictly convex if  $\operatorname{dom} f$  is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for  $x, y \in \operatorname{dom} f$ ,  $x \neq y$ ,  $0 < \theta < 1$ 



## Examples on R

#### convex:

- affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$
- exponential:  $e^{ax}$ , for any  $a \in \mathbf{R}$
- powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $\alpha \geq 1$  or  $\alpha \leq 0$
- powers of absolute value:  $|x|^p$  on **R**, for  $p \ge 1$
- negative entropy:  $x \log x$  on  $\mathbf{R}_{++}$

#### concave:

- affine: ax + b on **R**, for any  $a, b \in \mathbf{R}$
- powers:  $x^{\alpha}$  on  $\mathbf{R}_{++}$ , for  $0 \leq \alpha \leq 1$
- logarithm:  $\log x$  on  $\mathbf{R}_{++}$



## Examples on $\mathbb{R}^n$ and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex examples on  ${\bf R}^n$ 

- affine function  $f(x) = a^T x + b$
- norms:  $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$  for  $p \ge 1$ ;  $||x||_\infty = \max_k |x_k|$

examples on  $\mathbb{R}^{m \times n}$  ( $m \times n$  matrices)

affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

# Restriction of a Convex Function to a Line



 $f: \mathbf{R}^n \to \mathbf{R}$  is convex if and only if the function  $g: \mathbf{R} \to \mathbf{R}$ ,

$$g(t) = f(x + tv),$$
  $\operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$ 

is convex (in t) for any  $x \in \operatorname{dom} f$ ,  $v \in \mathbb{R}^n$ 

can check convexity of f by checking convexity of functions of one variable

**example.** 
$$f: \mathbf{S}^n \to \mathbf{R}$$
 with  $f(X) = \log \det X$ ,  $\operatorname{dom} f = \mathbf{S}_{++}^n$ 

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$
$$= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

where  $\lambda_i$  are the eigenvalues of  $X^{-1/2}VX^{-1/2}$ 

g is concave in t (for any choice of  $X \succ 0, V$ ); hence f is concave



#### First-order Conditions

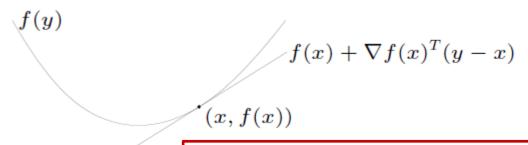
f is **differentiable** if  $\operatorname{dom} f$  is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each  $x \in \operatorname{dom} f$ 

**1st-order condition:** differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all  $x, y \in \operatorname{dom} f$ 



first-order approximation of f is global underestimator



### Second-order Conditions

f is **twice differentiable** if  $\operatorname{dom} f$  is open and the Hessian  $\nabla^2 f(x) \in \mathbf{S}^n$ ,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each  $x \in \operatorname{dom} f$ 

**2nd-order conditions:** for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all  $x \in \operatorname{dom} f$ 

• if  $\nabla^2 f(x) \succ 0$  for all  $x \in \operatorname{dom} f$ , then f is strictly convex



## Examples

quadratic function:  $f(x) = (1/2)x^T P x + q^T x + r$  (with  $P \in \mathbf{S}^n$ )

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if  $P \succeq 0$ 

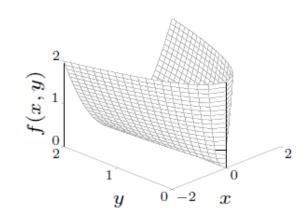
least-squares objective:  $f(x) = ||Ax - b||_2^2$ 

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear:  $f(x,y) = x^2/y$ 

convex for y > 0



# Operations that Preserve Convexity



practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show  $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
  - nonnegative weighted sum
  - composition with affine function
  - pointwise maximum and supremum
  - composition
  - minimization
  - perspective

# Positive Weighted Sum & Composition with Affine Function

**nonnegative multiple:**  $\alpha f$  is convex if f is convex,  $\alpha \geq 0$ 

**sum:**  $f_1 + f_2$  convex if  $f_1, f_2$  convex (extends to infinite sums, integrals)

**composition with affine function**: f(Ax + b) is convex if f is convex

#### examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||



#### Pointwise Maximum

if  $f_1, \ldots, f_m$  are convex, then  $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$  is convex

#### examples

- piecewise-linear function:  $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$  is convex
- sum of r largest components of  $x \in \mathbf{R}^n$ :

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex  $(x_{[i]} \text{ is } i \text{th largest component of } x)$ 

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

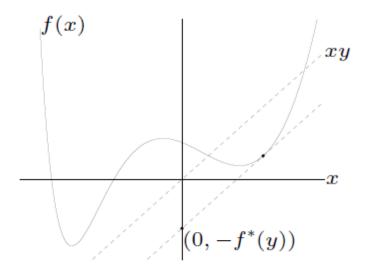
Hinge loss:  $\ell(w) = \max(0.1 - y_i x_i^\mathsf{T} w)$ 



## The Conjugate Function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$



- $f^*$  is convex (even if f is not)
- will be useful in chapter 5



## Examples

• negative logarithm  $f(x) = -\log x$ 

$$f^*(y) = \sup_{x>0} (xy + \log x)$$

$$= \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{cases}$$

• strictly convex quadratic  $f(x) = (1/2)x^TQx$  with  $Q \in \mathbf{S}_{++}^n$ 

$$f^*(y) = \sup_{x} (y^T x - (1/2)x^T Qx)$$
  
=  $\frac{1}{2} y^T Q^{-1} y$ 



### Outline

- Introduction
- □ Convex Sets & Functions
- □ Convex Optimization Problems
- Duality
- □ Convex Optimization Methods
- □ Summary

# Optimization Problem in Standard Form



minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

- $x \in \mathbb{R}^n$  is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$  is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}$ ,  $i=1,\ldots,m$ , are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$  are the equality constraint functions

#### optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$

- $p^* = \infty$  if problem is infeasible (no x satisfies the constraints)
- $p^* = -\infty$  if problem is unbounded below

# Optimal and Locally Optimal Points



x is **feasible** if  $x \in \operatorname{dom} f_0$  and it satisfies the constraints

- a feasible x is **optimal** if  $f_0(x) = p^*$ ;  $X_{\text{opt}}$  is the set of optimal points
- x is **locally optimal** if there is an R>0 such that x is optimal for

```
minimize (over z) f_0(z) subject to f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \|z-x\|_2 \leq R
```

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$ ,  $\operatorname{dom} f_0 = \mathbf{R}_{++}$ :  $p^* = 0$ , no optimal point
- $f_0(x) = -\log x$ ,  $\operatorname{dom} f_0 = \mathbf{R}_{++}$ :  $p^* = -\infty$
- $f_0(x) = x \log x$ ,  $\operatorname{dom} f_0 = \mathbf{R}_{++}$ :  $p^* = -1/e$ , x = 1/e is optimal
- $f_0(x) = x^3 3x$ ,  $p^* = -\infty$ , local optimum at x = 1



## Implicit Constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- ullet we call  ${\mathcal D}$  the **domain** of the problem
- the constraints  $f_i(x) \leq 0$ ,  $h_i(x) = 0$  are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

#### example:

minimize 
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints  $a_i^T x < b_i$ 



## Convex Optimization Problem

#### standard form convex optimization problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $a_i^T x = b_i, \quad i = 1, \dots, p$ 

- $f_0, f_1, \ldots, f_m$  are convex; equality constraints are affine
- problem is quasiconvex if  $f_0$  is quasiconvex (and  $f_1$ , . . . ,  $f_m$  convex)

often written as

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0, \quad i = 1, \dots, m$   
 $Ax = b$ 

important property: feasible set of a convex optimization problem is convex



## Example

minimize 
$$f_0(x) = x_1^2 + x_2^2$$
  
subject to  $f_1(x) = x_1/(1+x_2^2) \le 0$   
 $h_1(x) = (x_1+x_2)^2 = 0$ 

- $f_0$  is convex; feasible set  $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$  is convex
- ullet not a convex problem (according to our definition):  $f_1$  is not convex,  $h_1$  is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \text{minimize} & x_1^2 + x_2^2 \\ \text{subject to} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array}$$



## Local and Global Optima

any locally optimal point of a convex problem is (globally) optimal

**proof**: suppose x is locally optimal, but there exists a feasible y with  $f_0(y) < f_0(x)$ 

x locally optimal means there is an R>0 such that

z feasible, 
$$||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$$

consider 
$$z = \theta y + (1 - \theta)x$$
 with  $\theta = R/(2||y - x||_2)$ 

- $||y x||_2 > R$ , so  $0 < \theta < 1/2$
- ullet z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$  and

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

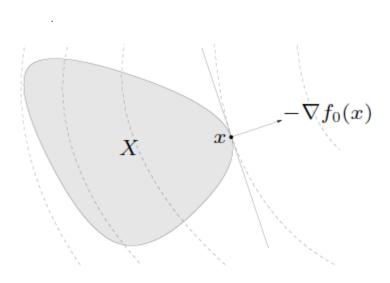
which contradicts our assumption that x is locally optimal

# Optimality Criterion for Differentiable $f_0$



x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible  $y$ 



if nonzero,  $\nabla f_0(x)$  defines a supporting hyperplane to feasible set X at x



## Examples

• unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize 
$$f_0(x)$$
 subject to  $Ax = b$ 

x is optimal if and only if there exists a  $\nu$  such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize 
$$f_0(x)$$
 subject to  $x \succeq 0$ 

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$



## Popular Convex Problems

- ☐ Linear Program (LP)
- □ Linear-fractional Program
- ☐ Quadratic Program (QP)
- Quadratically Constrained Quadratic program (QCQP)
- □ Second-order Cone Programming (SOCP)
- ☐ Geometric Programming (GP)
- ☐ Semidefinite Program (SDP)



#### Outline

- Introduction
- □ Convex Sets & Functions
- ☐ Convex Optimization Problems
- □ Duality
- □ Convex Optimization Methods
- □ Summary



## Lagrangian

standard form problem (not necessarily convex)

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

variable  $x \in \mathbf{R}^n$ , domain  $\mathcal{D}$ , optimal value  $p^*$ 



## Lagrangian

**standard form problem** (not necessarily convex)

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $h_i(x) = 0, \quad i = 1, \dots, p$ 

variable  $x \in \mathbf{R}^n$ , domain  $\mathcal{D}$ , optimal value  $p^*$ 

**Lagrangian:**  $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ , with  $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$ ,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- $\lambda_i$  is Lagrange multiplier associated with  $f_i(x) \leq 0$
- $\nu_i$  is Lagrange multiplier associated with  $h_i(x) = 0$



## Lagrange Dual Function

Lagrange dual function:  $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ ,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be  $-\infty$  for some  $\lambda$ ,  $\nu$ 



## Lagrange Dual Function

Lagrange dual function:  $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ ,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} \left( f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

g is concave, can be  $-\infty$  for some  $\lambda$ ,  $\nu$ 

**lower bound property:** if  $\lambda \succeq 0$ , then  $g(\lambda, \nu) \leq p^*$ 

proof: if  $\tilde{x}$  is feasible and  $\lambda \succeq 0$ , then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible  $\tilde{x}$  gives  $p^{\star} \geq g(\lambda, \nu)$ 

# Least-norm Solution of Linear Equations



minimize 
$$x^T x$$
  
subject to  $Ax = b$ 

#### dual function

- Lagrangian is  $L(x, \nu) = x^T x + \nu^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \implies x = -(1/2)A^T \nu$$

plug in in L to obtain g:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

a concave function of  $\nu$ 

lower bound property:  $p^{\star} \geq -(1/4)\nu^T A A^T \nu - b^T \nu$  for all  $\nu$ 

# Lagrange Dual and Conjugate Function



minimize 
$$f_0(x)$$
  
subject to  $Ax \leq b$ ,  $Cx = d$ 

#### dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} \left( f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
  
=  $-f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$ 

- recall definition of conjugate  $f^*(y) = \sup_{x \in \text{dom } f} (y^T x f(x))$
- ullet simplifies derivation of dual if conjugate of  $f_0$  is known

#### example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$



#### The Dual Problem

#### Lagrange dual problem

maximize 
$$g(\lambda, \nu)$$
 subject to  $\lambda \succeq 0$ 

- finds best lower bound on  $p^*$ , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted d\*
- $\lambda$ ,  $\nu$  are dual feasible if  $\lambda \succeq 0$ ,  $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint  $(\lambda, \nu) \in \operatorname{\mathbf{dom}} g$  explicit

example: standard form LP and its dual (page 5-5)

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{maximize} & -b^T\nu \\ \text{subject to} & Ax = b & \text{subject to} & A^T\nu + c \succeq 0 \\ & x \succeq 0 & \end{array}$$



## Weak and Strong Duality

#### weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu \\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$$

gives a lower bound for the two-way partitioning problem on page 5–7



## Weak and Strong Duality

#### weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize 
$$-\mathbf{1}^T \nu$$
 subject to  $W + \mathbf{diag}(\nu) \succeq 0$ 

gives a lower bound for the two-way partitioning problem on page 5–7

#### strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

## Slater's Constraint Qualification

strong duality holds for a convex problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i = 1, \dots, m$   
 $Ax = b$ 

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if  $p^* > -\infty$ )
- can be sharpened: e.g., can replace  $\operatorname{int} \mathcal{D}$  with  $\operatorname{relint} \mathcal{D}$  (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .
- there exist many other types of constraint qualifications



## Complementary Slackness

assume strong duality holds,  $x^*$  is primal optimal,  $(\lambda^*, \nu^*)$  is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$  for  $i = 1, \dots, m$  (known as complementary slackness):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \qquad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

## Karush-Kuhn-Tucker (KKT) Conditions



the following four conditions are called KKT conditions (for a problem with differentiable  $f_i$ ,  $h_i$ ):

- 1. primal constraints:  $f_i(x) \leq 0$ ,  $i = 1, \ldots, m$ ,  $h_i(x) = 0$ ,  $i = 1, \ldots, p$
- 2. dual constraints:  $\lambda \succeq 0$
- 3. complementary slackness:  $\lambda_i f_i(x) = 0$ ,  $i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x,  $\lambda$ ,  $\nu$  are optimal, then they must satisfy the KKT conditions

# KKT Conditions for Convex Problem



if  $\tilde{x}$ ,  $\tilde{\lambda}$ ,  $\tilde{\nu}$  satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness:  $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity):  $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, 
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$$

#### if Slater's condition is satisfied:

x is optimal if and only if there exist  $\lambda$ ,  $\nu$  that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- ullet generalizes optimality condition  $abla f_0(x)=0$  for unconstrained problem



## An Example—SVM (1)

### □ The Optimization Problem

$$\min_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \quad \sum_{i=1}^n \max \left( 0, 1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b) \right) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

□ Define the hinge loss as

$$\ell(x) = \max(0, 1 - x)$$

■ Its Conjugate Function is

$$\ell^*(y) = \sup_{x} (yx - \ell(x)) = \begin{cases} y, & -1 \le y \le 0 \\ \infty, & \text{otherwise} \end{cases}$$



## An Example—SVM (2)

#### ■ The Optimization Problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \quad \sum_{i=1}^n \ell \left( y_i(\mathbf{w}^\top \mathbf{x}_i + b) \right) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

### ■ It is Equivalent to

$$\min_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^n} \quad \sum_{i=1}^n \ell(u_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$
s. t. 
$$u_i = y_i(\mathbf{w}^\top \mathbf{x}_i + b), \ i = 1 \dots, n$$

## □ The Lagrangian is

$$\mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = \sum_{i=1}^{n} \ell(u_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^{n} v_i \left( u_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b) \right)$$



## An Example—SVM (3)

## ■ The Lagrange Dual Function is

$$\begin{split} g(\mathbf{v}) &= \inf_{\mathbf{w},b,\mathbf{u}} \mathcal{L}(\mathbf{w},b,\mathbf{u},\mathbf{v}) \\ &= \inf_{\mathbf{w},b,\mathbf{u}} \sum_{i=1}^n \ell(u_i) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2 + \sum_{i=1}^n v_i \left( u_i - y_i (\mathbf{w}^\top \mathbf{x}_i + b) \right) \\ &= \inf_{\mathbf{w},b,\mathbf{u}} \sum_{i=1}^n \left( \ell(u_i) + v_i u_i \right) \right) + \left( \frac{\lambda}{2} \|\mathbf{w}\|_2^2 - \mathbf{w}^\top \sum_{i=1}^n v_i y_i \mathbf{x}_i \right) - b \sum_{i=1}^n v_i y_i \end{split}$$

#### ■ Minimize w, b, u one by one

$$\inf_{u_i} (\ell(u_i) + v_i u_i)) = -\sup_{u_i} (-v_i u_i - \ell(u_i)) = -\ell^*(-v_i) = v_i, \text{ if } 0 \le v_i \le 1$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = \lambda \mathbf{w} - \sum_{i=1}^n v_i y_i \mathbf{x}_i = 0 \Rightarrow \mathbf{w} = \frac{1}{\lambda} \sum_{i=1}^n v_i y_i \mathbf{x}_i$$

$$\nabla_b \mathcal{L}(\mathbf{w}, b, \mathbf{u}, \mathbf{v}) = -\sum_{i=1}^n v_i y_i = 0$$



## An Example—SVM (4)

## ☐ Finally, We Obtain

$$g(\mathbf{v}) = \sum_{i=1}^{n} v_i - \frac{1}{2\lambda} \sum_{i=1}^{n} \sum_{j=1}^{n} v_i v_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j$$

#### □ The Dual Problem is

$$\max_{\mathbf{v} \in \mathbb{R}^n} \quad \sum_{i=1}^n v_i - \frac{1}{2\lambda} \sum_{i=1}^n \sum_{j=1}^n v_i v_j y_i y_j \mathbf{x}_i^\top \mathbf{x}_j$$
s. t. 
$$0 \le v_i \le 1, \ i = 1 \dots, n$$
s. t. 
$$\sum_{i=1}^n v_i y_i = 0$$



## An Example—SVM (5)

## □ Karush-Kuhn-Tucker (KKT) Conditions

Let  $(\mathbf{w}_*, b_*, \mathbf{u}_*)$  and  $\mathbf{v}_*$  are primal and dual solutions.

$$u_{*i} = y_i(\mathbf{w}_*^{\top} \mathbf{x}_i + b_*)$$

$$\mathbf{w}_* = \frac{1}{\lambda} \sum_{i=1}^n v_{*i} y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} v_{*i} y_i = 0$$

$$u_{*i} = \underset{u_i}{\operatorname{argmin}} (\ell(u_i) + v_{*i}u_i) = 1 \text{ if } 0 < v_{*i} < 1$$



## An Example—SVM (5)

## □ Karush-Kuhn-Tucker (KKT) Conditions

Let  $(\mathbf{w}_*, b_*, \mathbf{u}_*)$  and  $\mathbf{v}_*$  are primal and dual solutions.

$$u_{*i} = y_i(\mathbf{w}_*^\top \mathbf{x}_i + b_*)$$

$$\mathbf{w}_* = \frac{1}{\lambda} \sum_{i=1}^n v_{*i} y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} v_{*i} y_i = 0$$

Can be used to recover  $\mathbf{w}_*$  from  $\mathbf{v}_*$ 

$$u_{*i} = \underset{u_i}{\operatorname{argmin}} (\ell(u_i) + v_{*i}u_i) = 1 \text{ if } 0 < v_{*i} < 1$$



## An Example—SVM (5)

### □ Karush-Kuhn-Tucker (KKT) Conditions

Let  $(\mathbf{w}_*, b_*, \mathbf{u}_*)$  and  $\mathbf{v}_*$  are primal and dual solutions.

$$u_{*i} = y_i(\mathbf{w}_*^{\top} \mathbf{x}_i + b_*)$$
$$\mathbf{w}_* = \frac{1}{\lambda} \sum_{i=1}^n v_{*i} y_i \mathbf{x}_i$$

$$\mathbf{w}_* = \frac{1}{\lambda} \sum_{i=1}^n v_{*i} y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} v_{*i} y_i = 0$$

Can be used to recover  $b_*$  from  $\mathbf{v}_*$ 

$$u_{*i} = \underset{u_i}{\operatorname{argmin}} (\ell(u_i) + v_{*i}u_i) = 1 \text{ if } 0 < v_{*i} < 1$$



#### **Outline**

- Introduction
- □ Convex Sets & Functions
- ☐ Convex Optimization Problems
- Duality
- □ Convex Optimization Methods
- Summary



## More Assumptions

### ☐ Lipschitz continuous

$$\|\nabla f(x)\| \le G$$

$$|f(x) - f(y)| \le G||x - y||$$

☐ Strong Convexity

$$\nabla^2 f(x) \succeq mI$$

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{m}{2} ||x - y||_{2}^{2}$$
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge m ||x - y||^{2}$$

$$f(ax + (1 - a)y) \le af(x) + (1 - a)f(y) - a(1 - a)\frac{m}{2}||x - y||^2$$

□ Smooth

$$\nabla^2 f(x) \preceq MI$$

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2,$$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \le M \|x - y\|^2$$



#### Performance Measure

□ The Problem

$$\min_{\mathbf{w} \in \mathcal{W}} f(\mathbf{w})$$

- □ Convergence Rate
  - After T iterations, the gap between objectives

$$f(\mathbf{w}_T) - f(\mathbf{w}_*) \le O\left(\frac{1}{\sqrt{T}}\right), \ O\left(\frac{1}{T}\right), \ O\left(\frac{1}{T^2}\right), O\left(\frac{1}{\alpha^T}\right)$$

- Iteration Complexity
  - To ensure  $f(\mathbf{w}_T) f(\mathbf{w}_*) \le \epsilon$ , the order of T

$$T \leq O\left(\frac{1}{\epsilon^2}\right), \ O\left(\frac{1}{\epsilon}\right), \ O\left(\frac{1}{\sqrt{\epsilon}}\right), O\left(\log\frac{1}{\epsilon}\right)$$



### Gradient-based Methods

### □ The Convergence Rate

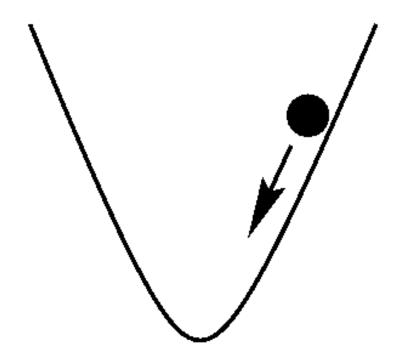
| Lipschitz<br>Continuous                                     | Strongly Convex                              | Smooth                            | Smooth<br>Strongly Convex                                     |
|-------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------------------------------------------------------------|
| $\overline{\mathrm{GD}} \ O\left(\frac{1}{\sqrt{T}}\right)$ | $EGD/SGD_{\alpha} O\left(\frac{1}{T}\right)$ | $AGD O\left(\frac{1}{T^2}\right)$ | $\mathrm{GD}/\mathrm{AGD}$ $O\left(\frac{1}{\alpha^T}\right)$ |

- GD—Gradient Descent
- AGD—Nesterov's Accelerated Gradient
   Descent [Nesterov, 2005, Nesterov, 2007, Tseng, 2008]
- EGD—Epoch Gradient Descent [Hazan and Kale, 2011]
- SGD $_{\alpha}$ —SGD with  $\alpha$ -suffix Averaging [Rakhlin et al., 2012]



## Gradient Descent (1)

■ Move along the opposite direction of gradients





## Gradient Descent (2)

### □ Gradient Descent with Projection

for 
$$t=1,\ldots,T$$
 do 
$$\mathbf{w}_{t+1}'=\mathbf{w}_t-\eta_t\nabla f(\mathbf{w}_t)$$
 
$$\mathbf{w}_{t+1}=\Pi_{\mathcal{W}}(\mathbf{w}_{t+1}')$$
 and for

end for return  $\bar{\mathbf{w}}_T = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_t$ 

Projection Operator

$$\Pi_{\mathcal{W}}(\mathbf{y}) = \underset{\mathbf{x} \in \mathcal{W}}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|_{2}$$



## Analysis (1)

For any 
$$\mathbf{w} \in \mathcal{W}$$
, we have  $f(\mathbf{w}_t) - f(\mathbf{w})$   
 $\leq \langle \nabla f(\mathbf{w}_t), \mathbf{w}_t - \mathbf{w} \rangle$   
 $= \frac{1}{\eta_t} \langle \mathbf{w}_t - \mathbf{w}'_{t+1}, \mathbf{w}_t - \mathbf{w} \rangle$   
 $= \frac{1}{2\eta_t} \left( \|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}'_{t+1} - \mathbf{w}\|_2^2 + \|\mathbf{w}_t - \mathbf{w}'_{t+1}\|_2^2 \right)$   
 $= \frac{1}{2\eta_t} \left( \|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}'_{t+1} - \mathbf{w}\|_2^2 \right) + \frac{\eta_t}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$   
 $\leq \frac{1}{2\eta_t} \left( \|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}_{t+1} - \mathbf{w}\|_2^2 \right) + \frac{\eta_t}{2} \|\nabla f(\mathbf{w}_t)\|_2^2$ 

To simplify the above inequality, we assume

$$\eta_t = \eta, \|\nabla f(\mathbf{w})\|_2 \leq G, \ \forall \mathbf{w} \in \mathcal{W}, \ \text{and} \ \|\mathbf{x} - \mathbf{y}\|_2 \leq D, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{W}$$



## Analysis (2)

Then, we have

$$f(\mathbf{w}_t) - f(\mathbf{w}) \le \frac{1}{2\eta} \left( \|\mathbf{w}_t - \mathbf{w}\|_2^2 - \|\mathbf{w}_{t+1} - \mathbf{w}\|_2^2 \right) + \frac{\eta}{2} G^2$$

By adding the inequalities of all iterations, we have

$$\sum_{t=1}^{T} f(\mathbf{w}_{t}) - Tf(\mathbf{w})$$

$$\leq \frac{1}{2\eta} \left( \|\mathbf{w}_{1} - \mathbf{w}\|_{2}^{2} - \|\mathbf{w}_{T+1} - \mathbf{w}\|_{2}^{2} \right) + \frac{\eta T}{2} G^{2}$$

$$\leq \frac{1}{2\eta} \|\mathbf{w}_{1} - \mathbf{w}\|_{2}^{2} + \frac{\eta T}{2} G^{2}$$

$$\leq \frac{1}{2\eta} D^{2} + \frac{\eta T}{2} G^{2} = GD\sqrt{T}$$

where we set

$$\eta = \frac{D}{G\sqrt{T}}$$



## Analysis (3)

Then, we have

$$f(\bar{\mathbf{w}}_T) - f(\mathbf{w}) = f\left(\frac{1}{T}\sum_{t=1}^T \mathbf{w}_t\right) - f(\mathbf{w})$$

$$\leq \frac{1}{T} \sum_{t=1}^{T} f(\mathbf{w}_t) - f(\mathbf{w}) \leq \frac{1}{T} GD\sqrt{T} = \frac{GD}{\sqrt{T}}$$



# A Key Step (1)

- Evaluate the Gradient or Subgradient
  - Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$

$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$

$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$



# A Key Step (1)

### Evaluate the Gradient or Subgradient

#### Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$

$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$

$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

#### Hinge loss

$$\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^\top \mathbf{w})$$

A vector  $\lambda$  is a *sub-gradient* of a function f at w if for all  $u \in A$  we have that

$$f(\mathbf{u}) - f(\mathbf{w}) \ge \langle \mathbf{u} - \mathbf{w}, \boldsymbol{\lambda} \rangle$$
.

# ALISH DATE

# A Key Step (2)

### ■ Evaluate the Gradient or Subgradient

#### Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$

$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$

$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

#### Hinge loss

$$\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^\top \mathbf{w})$$

$$\partial \max(0, 1 - z) = \begin{cases} -1, & z < 1 \\ 0, & z > 1 \\ [-1, 0], & z = 1 \end{cases}$$



# A Key Step (3)

### Evaluate the Gradient or Subgradient

#### Logit loss

$$\ell_{i}(\mathbf{w}) = \log \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right)$$

$$\nabla \ell_{i}(\mathbf{w}) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \left(1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})\right) = \frac{1}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})$$

$$= \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} \nabla (-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w}) = \frac{\exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})}{1 + \exp(-y_{i}\mathbf{x}_{i}^{\top}\mathbf{w})} - y_{i}\mathbf{x}_{i}$$

#### Hinge loss

$$\ell_i(\mathbf{w}) = \max(0, 1 - y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})$$

$$\partial \ell_i(\mathbf{w}) = \begin{cases} -y_i \mathbf{x}_i, & y_i \mathbf{x}_i^\top \mathbf{w} < 1 \\ 0, & y_i \mathbf{x}_i^\top \mathbf{w} > 1 \\ \{-\alpha y_i \mathbf{x}_i : \alpha \in [0, 1]\}, & y_i \mathbf{x}_i^\top \mathbf{w} = 1 \end{cases}$$



### Outline

- Introduction
- □ Convex Sets & Functions
- ☐ Convex Optimization Problems
- Duality
- □ Convex Optimization Methods
- □ Summary



## Summary

- □ Convex Sets & Functions
  - Definitions, Operations that Preserve Convexity
- □ Convex Optimization Problems
  - Definitions, Optimality Criterion
- Duality
  - Lagrange, Dual Problem, KKT Conditions
- □ Convex Optimization Methods
  - Gradient-based Methods



## Reference (1)

□ Hazan, E. and Kale, S. (2011)

Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on Learning Theory, pages 421–436.

■ Nesterov, Y. (2005)

Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–152.

■ Nesterov, Y. (2007).

Gradient methods for minimizing composite objective function. Core discussion papers.



## Reference (2)

☐ Tseng, P. (2008).

On acclerated proximal gradient methods for convexconcave optimization. Technical report, University of Washington.

- □ Boyd, S. and Vandenberghe, L. (2004).
   Convex Optimization. Cambridge University Press.
- □ Rakhlin, A., Shamir, O., and Sridharan, K. (2012)

Making gradient descent optimal for strongly convex stochastic optimization. In Proceedings of the 29th International Conference on Machine Learning, pages 449–456.