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Introduction

Let X = [X,,..,X,]' be a data point, a linear
regression model assumes
ECY|X)

Is a linear function of X, ..., X,

Advantages

B They are simple and often provide an adequate
and interpretable description

B They can sometimes outperform nonlinear
models

v Small numbers of training cases, low signal-to-
noise ratio or sparse data

B Linear methods can be applied to
transformations of the inputs
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Linear Regression Models

The Linear Regression Model

p
fX) =By +sz.3j
=

B;’s are unknown coefficients

The variable X; could be

B Quantitative inputs

B Transformations of quantitative inputs
v' Log, square-root or sguare

B Basis expansions (X, = XZ,X; = X3)
B Numeric coding of qualitative inputs




Least Squares

Given a set of training data (x;,y;) -
4
(xn, yn) Where x; =[x, Xi2, ., Xip |

Minimize the Residual Sum of Squares

RSS(B) = Z(yi - f(m?i))Q
i—1
N

— Z(yi — o — i fL‘z‘jﬁj)Q
j=1

i=1

B Valid if the y;’s are conditionally
Independent given the inputs x;
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A Geometric Interpretation

We seek the linear

FIGURE 3.1. Linear least squares fitting with X € IR2.

function of X that minimizes the sum of squared residuals from Y .



Optimization (1)

Let X be a matrix with each row an
Input vector

(1 X117 X120 o X1p)
1 X X coe

x = *m *2 xgp e RNX@+1)
1 xy1 XNz ot Xnp)

:8 — [ﬁO’ﬁl’ '"ugp]T and y= [_Vl; "".VN]T

Then, we have
RSS(8) = (y — XB) T (y — X5)




Optimization (2)

Differentiate with respect to

ORSS

= —2XT(y — Xp3)

Set the derivative to zero

X' (y—XB)=0

Assume X 'X is invertible

4=X"xX)"'xTy



Predictions

The Prediction of x,
f@o) = (1:20)"'p
The Predictions of Training Data
y=X3=XX"X)"'x"y
Let X = [X¢,Xq, ..., Xp]

B = argmin|ly — XB||3

B y is the orthogonal projection of y onto

the subspace spanned by x;,xy, ..., X,



Predictions

The Prediction of x,
flxzo) = (1:m0)"p

The Predictions of Training Data
y=X3=XX"X)"'xX"y

y
I

X2




Understanding (1)

Assume the linear model is right, but
the observation contains noise

Y = E(Y|Xy,..... Xp)+¢
= fo+ Y XBi+e

B Where e~N(0,0%)

Then g=X"X)"XTy
= (XTX)"IXT(XB + €) €= [eg, ..., en]T
= XTX)"'XTXB+(XTX) X Te

= B+(XTX)"1XTe



Understanding (2)

Since € = [e4, ..., ey]" is a Gaussian
random vector, thus
B =B+XTX)"1XTe
IS also a Gaussian random vector
E(B) =B+ E(X™X)"1XTe)
=B+ X'X)"'X"E(e) =B
Cov(pB) = Cov((XTX)"1XT€)
= (XTX)"1XTCov(e)X(XTX) 1
= o2(XTX)"IXTX(XTX)™ ! = (XTX) 152

Thus f~N(B,(X"X)"16?)




Expected Prediction Error (EPE%’”%@E

Given a test point x,, assume

Yo = f(xg) + € eO~N(O,02)
The EPE of f(x) =435 is
E(Yo - f(x0))® = o +E(«f 5~ f(x0))3

— o2 + MSE(f(x0)).
The Mean Squared Error (MSE)
MSE (f(xo)) =E (xgﬁ - f(xo))2
~ 5 (x5 - B F)) + (E(xaﬁ)@ - F)

= Variance(x{) + Bias(x]p)



EPE of Least Squares

Under the assumption that
Yo = f(x0) + € fCo) =x0f  €~N(0,0?)
The EPE of f(x,) = xJf is
E(Yo - f(x0)) =02 +E(xJf — ] B)’
= 02 + MSE(xJ )’
The Mean Squared Error (MSE)
MSE(xJ 8) = E(xJ f — 21 B)°
=E (xg,@ — E(xg,é))z
= Var(x4 f)




The Gauss—Markov Theorem

B has the smallest variance among all
linear unbilased estimates.

We aim to estimate f(x,) = x4 B, the

estimation of f(xy) = xd £ is
xg B = xg XTX)"XTy

From precious discussions, we have
E(xgB8) =% E(B) = %3 B

and for all ¢y such that E(¢'y) = x4 8
Var(xg ) < Var(cTy)




Multiple Outputs (1)

Suppose we aim to predict K outputs
Y1,Y,, ..., Yy, and assume

M) re
Given N training data, we have
Y =XB+E

B Where Y € RV*K is the response matrix
B X € RV*®*D js the data matrix

B B e RP+DXK j5 the matrix of parameters
B E € RV*K js the matrix of errors



Multiple Outputs (2)

The Residual Sum of Squares

K N
RSS(B) = > > (wik — fil(a:))?
k=1 i=1

= tr[(Y — XB)' (Y — XB)]

The Solution

B=(XTX)"'XTYy

It Is equivalent to performing K
Independent least squares




Large-scale Setting

The Problem
RSS(3) = _Z(m—f(:m))g

3=X"'xX)"xTy

Sampling
B Faster least squares approximation
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Subset Selection

Limitations of Least Squares

B Prediction Accuracy: the least squares
estimates often have low bias but large

variance

B Interpretation: We often would like to
determine a smaller subset that exhibit
the strongest effects

Shrink or Set Some Coefficients to

Zero

B We sacrifice a little bit of bias to reduce
the variance of the predicted values




Best-Subset Selection

Select the subset of variables (features)
such that the RSS is minimized

N

RSS(5) = Z(yi — f(z:))?

i=1

0

=

I

@0]
Residual Sum-of-Square




Forward- and Backward-
Stepwise Selection

Forward-stepwise Selection
1. Start with the intercept

2. Sequentially add into the model the
predictor that most improves the fit

Backward-stepwise Selection
1. Start with the full model

2. Sequentially delete the predictor that
has the least impact on the fit

Both are greedy algorithms
Both can be solved quite efficiently




Forward-Stagewise Regression &

1. Start with an intercept equal to y and

2.

centered predictors with coefficients
initially all 0

Identify the variable most correlated
with the current residual

. Compute the simple linear regression

coefficient of the residual on this chosen
variable

None of the other variables are adjusted
when a term is added to the model



Comparisons
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Shrinkage Methods

Limitation of Subset Selection

B A discrete process—variables are either
retained or discarded

B It often exhibits high variance, and so
doesn’t reduce the prediction error

Shrinkage Methods
B More continuous, low variance

B Ridge Regression
B The Lasso
B [east Angle Regression



Ridge Regression

Shrink the regression coefficients

B By imposing a penalty on their size

The Objective

N
S.-_%ridgﬂ — a.rglﬂiﬂ{z (y?- — J.D — Zp: leﬁ —I— )\Z JZ}

B i—1 =1

B 1 >0iIs acomplexity parameter

An Equwalent Form

2
J311::1”'? — ﬂrgrﬂ]nz (yl JD — Z Tij Jj) ,
subject to Z ;3;3 < t,

7=1

Coefficients cannot be
too large even when
variables are correlated




Optimization (1)

Let X be a matrix with each row an
Input vector

X11  X12 X1p
X21 X220 0 Xpp

X=1 . : : . | € RVXP
XN1 XN2 0 XNp

:B — [ﬁl! "'):Bp]T and y= [ylr "'JyN]T

The Objective Becomes

| S ) 2
o oin L lly = XB = 1yBollz + A1IBII3

B Where 1y =11,..,1]" e RY




Optimization (2)

Differentiate with respect to 5, and
set It to zero

—2-1y(y—XB —1y6,) =0

1
Bo = Nlﬁ(y — Xp)

Differentiate with respect to f and set
It to zero

2-XTXB—y+1yB0)+2-28=0

N
1 1
<XT (1 —N1N1,TV>X+/H>3 =XT (1 —N1N1,I,>y

XT Xﬁ—y—lllev(w—y))Hﬁ =0



Optimization (3)

The Final Solution

B letH=1I —%1,\,1}, be the centering matrix
B* = (XTHX + A)"XTHy

v" Always invertible

* 1 T *
Bo :NIN(Y_X.B )



Understanding (1)

Assume X Is centered, then
gridee — (XTX + A1) XTy
Let the SVD of X be
X =UDV?
B U =[uy..,u,] contains the left singular

vectors

B D is a diagonal matrix with diagonal entries
d12d222dp20

Then, we examine the prediction of
training data X




Understanding (2)

Least Squares

X3 = X(XTX)"'XTy
= UUTy,
p
= Z“j“jTY
j=1
Ridge Regression
Xptdee — X(XTX 4+ A1) 1XTy

— UDMD*+A)'DU"y

P d?

_ % 7

_ Z W W Y
i=1 ]

2

. . d?
B Shrink the coordinates by dz-JI—/l <1
j




Understanding (3)

Connection with PCA
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The Lasso

The Objective

N P

. 2
ﬁlassc- — argmillz (yi — ..-':"f[} — z L ﬁj)
B =1 j=1
p
subject to Z 185 [|< t.
= £,-norm
It Is equivalent to /
X 1 N p ) p
.I.:._;}labbc' — ;_ngmlll{§ — (Ul — "j[]. — ; ;I'?'_jﬁj) + A ; |~}j |}




Optimization

The First Formulation

N D

2
[lasso argminz (yi— — By — z T ,.iii”j)

f = i=1

p
subject to Z 185 < t.
j=1

B Gradient descent followed by Projection [1]
The Second Formulation

N P

_— (1 .. .
[lasso — arg;nm{g z; (yi — Bo — zjl T _.i:fj)g + A Z:l 13 |}
/ = j= j=

B Convex Composite Optimization [2]



An Example
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Subset Selection, Ridge, Lasso®

Columns of X are orthonormal

Estimator Formula

Best subset (size M) f3; - I(|5;] > 1Bean)

Ridge Bi/(L+ A)
Lasso sign(5;)(18;] — )+

Best Subset Ridge Lasso

yd )

1. 1B(ar) s L

i [{X1)] P (L) 7 (0.0

| L FJ

Hard-thresholding Scaling

Soft-thresholding



Ridge v.s. Lasso (1)

Ridge Regression

N p
2
.A "d"’ - i i
e _ angmin" (v~ Bo— 3 21,
et .
! i=1

j=1

p
subject to Z SJE < t,

j=1

B /,-norm appears In the constraint

Lasso N ,

. 2
[plasso argminz (yi — By — z Tij _.'jii‘j-)

B =1 j=1

p
subject to Z 18] < t.
J=1

B /,-norm appears in the constraint



Ridge v.s. Lasso (2)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2] < t and Bf + 33 < t2, respectively,
while the red ellipses are the contours of the least squares error function.




Generalization (1)

A General Formulation

N p p
3= argmin{Z(yi — Bo — Z T4 ;15’3-)2 + A Z 3, q}
j=1

i—1 j=1

Contours of Constant Value of Zj‘ﬁj‘q




Generalization (2)

A Mixed Formulation
B The elastic-net penalty

A (aB] + (1= a)|B)
j=1
~ I\
N

FIGURE 3.13. Contours of constant value of Zj 1B5|7 for q = 1.2 (left plot),

and the elastic-net penalty Zj(a;ﬁ’?—l—(l—&)wj‘) fora = 0.2 (right plot). Although

visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the g = 1.2 penalty does not.



Least Angle Regression (LAR)

The Procedure

1. Identify the variable most correlated with
the response

2. Move the coefficient of this variable
continuously toward its least squares value

3. As soon as another variable “catches up” In
terms of correlation with the residual, the
process Is paused

4. The second variable then joins the active
set, and their coefficients are moved
together in a way that keeps their
correlations tied and decreasing




An Example
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Coefficients

LAS v.s. Lasso

Least Angle Regression
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Comparisons

Forward Stepwise
LAR

Lasso
Forward Stagewise
| .

Incremental Forward Stagewise
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Methods Using Derived Input
Directions

We have a large number of inputs
B Often very correlated

1. Generate a small number of linear
combinations
Znoom=1,., M

of the original inputs X;
2. Use Z,, In place of X; as inputs In the
regression

Linear Dimensionality Reduction +
Regression




Principal Components
Regression (PCR)

The linear combinations Z,,, are
generated by PCA

Zm = XU,

B X Is centered, and v,, Is the m-th right
singular vector

Since z,,’s are orthogonal

M M
Vo =1+ > Omzm  BP(M) =Y o,
m=1 m=1

] Where ém — (Zer>/<Zm?z’m>



PCR v.s. Ridge
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FIGURE 3.17. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d?/ (d? + A) as in (3.47). Principal
component regression truncates them. Shown are the shrinkage and truncation
patterns corresponding to Figure 3.7, as a function of the principal component
mndex.



Partial Least Squares (PLS)

The Procedure
1. Compute ¢;; = (x;,y) for each feature x;

2. Construct the 15t derived input z; =
2.j P1jX;
3. y is regressed on z, giving coefficient 8,

4. Orthogonalize x4, ...,x, with respect to z,
5. Repeat the above process
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All Subsets Ridge Regression

Discussions (1
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Discussions (2)

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2477 2.452  2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238 0.169 0.289 0.344
age —0.141 —0.046 —0.152 —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lep —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pge4b 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0.492 0.479 0.449 0.528

Std Error 0.179 0.143 0.165 0.164 0.105 0.152




Discussions (3)
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Summary

Linear Regression Models
Least Squares

Shrinkage Methods

B Ridge Regression

B [Lasso

B [east Angle Regression (LAR)
Methods Using Derived Input
Directions

B Principal Components Regression (PCR)
B Partial Least Squares (PLS)




Reference

[1] Duchi et al. Efficient projections onto
the #,-ball for learning in high
dimensions. In Proceedings of the 25th
International conference on Machine
learning, pp. 272-279, 2008.

[2] Nesterov. Gradient methods for
minimizing composite functions.
Mathematical Programming, 140(1):
125-161, 2013.



