Linear Methods for Regression

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Introduction

- Let $X = [X_1, ..., X_p]^T$ be a data point, a linear regression model assumes E(Y|X)
 - is a linear function of $X_1, ..., X_p$
- Advantages
 - They are simple and often provide an adequate and interpretable description
 - They can sometimes outperform nonlinear models
 - ✓ Small numbers of training cases, low signal-tonoise ratio or sparse data
 - Linear methods can be applied to transformations of the inputs

Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Linear Regression Models

□ The Linear Regression Model

$$f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j$$

 β_i 's are unknown coefficients

- \square The variable X_j could be
 - Quantitative inputs
 - Transformations of quantitative inputs
 - ✓ Log, square-root or square
 - Basis expansions $(X_2 = X_1^2, X_3 = X_1^3)$
 - Numeric coding of qualitative inputs

Least Squares

- ☐ Given a set of training data (x_1, y_1) ... (x_N, y_N) where $x_i = [x_{i1}, x_{i2}, ..., x_{ip}]^T$
- Minimize the Residual Sum of Squares

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

■ Valid if the y_i 's are conditionally independent given the inputs x_i

NANULA UNITE

A Geometric Interpretation

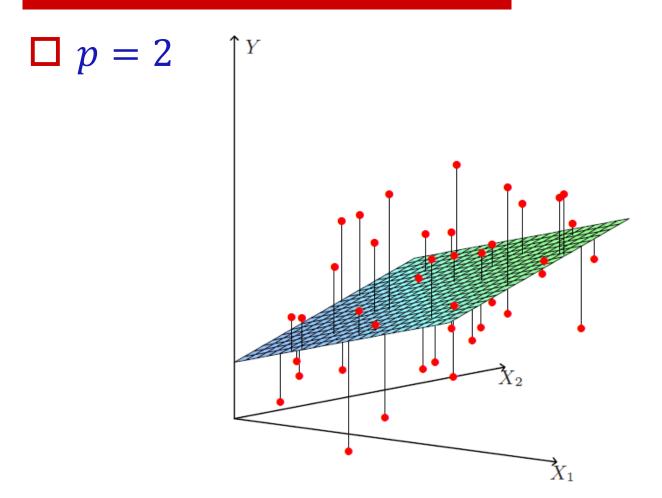


FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Optimization (1)

Let X be a matrix with each row an input vector

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix} \in \mathbb{R}^{N \times (p+1)}$$

$$\beta = [\beta_0, \beta_1, ..., \beta_p]^{\mathsf{T}} \text{ and } \mathbf{y} = [y_1, ..., y_N]^{\mathsf{T}}$$

■ Then, we have

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

Optimization (2)

 \square Differentiate with respect to β

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta)$$

■ Set the derivative to zero

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

 \square Assume X^TX is invertible

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Predictions

 \square The Prediction of x_0

$$\hat{f}(x_0) = (1:x_0)^T \hat{\beta}$$

□ The Predictions of Training Data

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

 \square Let $\mathbf{X} = [\mathbf{x}_0, \mathbf{x}_1, ..., \mathbf{x}_p]$

$$\hat{\beta} = \operatorname{argmin} \|\mathbf{y} - \mathbf{X}\beta\|_2^2$$

 \hat{y} is the orthogonal projection of y onto the subspace spanned by $x_0, x_1, ..., x_p$

NANJAIS STATE

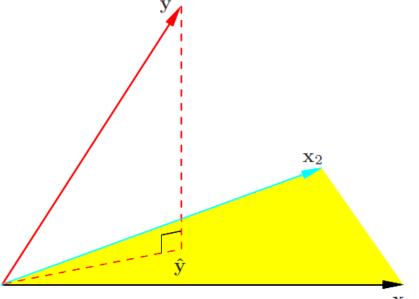
Predictions

 \square The Prediction of x_0

$$\hat{f}(x_0) = (1:x_0)^T \hat{\beta}$$

□ The Predictions of Training Data

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$



Understanding (1)

☐ Assume the linear model is right, but the observation contains noise

$$Y = E(Y|X_1, \dots, X_p) + \varepsilon$$
$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon,$$

■ Where $\epsilon \sim N(0, \sigma^2)$

Then
$$\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\beta + \boldsymbol{\epsilon}) \qquad \boldsymbol{\epsilon} = [\epsilon_1, ..., \epsilon_N]^{\mathsf{T}}$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$$

Understanding (2)

☐ Since $\epsilon = [\epsilon_1, ..., \epsilon_N]^T$ is a Gaussian random vector, thus

$$\hat{\beta} = \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon}$$

is also a Gaussian random vector

$$E(\hat{\beta}) = \beta + E((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon})$$
$$= \beta + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}E(\boldsymbol{\epsilon}) = \beta$$

$$Cov(\hat{\beta}) = Cov((\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{\epsilon})$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}Cov(\boldsymbol{\epsilon})\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$$

$$= \sigma^{2}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^{2}$$

 \square Thus $\hat{\beta} \sim N(\beta, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2)$

Expected Prediction Error (EPE)

 \square Given a test point x_0 , assume

$$Y_0 = f(x_0) + \epsilon_0$$
 $\epsilon_0 \sim N(0, \sigma^2)$

 \square The EPE of $\tilde{f}(x_0) = x_0^T \tilde{\beta}$ is

$$E(Y_0 - \tilde{f}(x_0))^2 = \sigma^2 + E(x_0^T \tilde{\beta} - f(x_0))^2$$
$$= \sigma^2 + MSE(\tilde{f}(x_0)).$$

□ The Mean Squared Error (MSE)

$$\begin{aligned} \operatorname{MSE}\left(\tilde{f}(x_0)\right) &= \operatorname{E}\left(x_0^{\mathsf{T}}\tilde{\beta} - f(x_0)\right)^2 \\ &= \operatorname{E}\left(x_0^{\mathsf{T}}\tilde{\beta} - \operatorname{E}(x_0^{\mathsf{T}}\tilde{\beta})\right)^2 + \left(\operatorname{E}(x_0^{\mathsf{T}}\tilde{\beta}) - f(x_0)\right)^2 \\ &= \operatorname{Variance}\left(x_0^{\mathsf{T}}\tilde{\beta}\right) + \operatorname{Bias}\left(x_0^{\mathsf{T}}\tilde{\beta}\right) \end{aligned}$$

EPE of Least Squares

■ Under the assumption that

$$Y_0 = f(x_0) + \epsilon_0$$
 $f(x_0) = x_0^{\mathsf{T}} \beta$ $\epsilon_0 \sim N(0, \sigma^2)$

 \square The EPE of $\hat{f}(x_0) = x_0^{\mathsf{T}} \hat{\beta}$ is

$$E(Y_0 - \hat{f}(x_0))^2 = \sigma^2 + E(x_0^{\mathsf{T}}\hat{\beta} - x_0^{\mathsf{T}}\beta)^2$$
$$= \sigma^2 + MSE(x_0^{\mathsf{T}}\hat{\beta})^2$$

□ The Mean Squared Error (MSE)

$$MSE(x_0^{\mathsf{T}}\hat{\beta}) = E(x_0^{\mathsf{T}}\hat{\beta} - x_0^{\mathsf{T}}\beta)^2$$
$$= E(x_0^{\mathsf{T}}\hat{\beta} - E(x_0^{\mathsf{T}}\hat{\beta}))^2$$
$$= Var(x_0^{\mathsf{T}}\hat{\beta})$$

The Gauss-Markov Theorem

- \square β has the smallest variance among all linear unbiased estimates.
- □ We aim to estimate $f(x_0) = x_0^T \beta$, the estimation of $\hat{f}(x_0) = x_0^T \hat{\beta}$ is

$$x_0^{\mathsf{T}}\hat{\beta} = x_0^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

☐ From precious discussions, we have

$$E(x_0^{\mathsf{T}}\hat{\beta}) = x_0^{\mathsf{T}}E(\hat{\beta}) = x_0^{\mathsf{T}}\beta$$

and for all $c^{\mathsf{T}}\mathbf{y}$ such that $\mathbf{E}(c^{\mathsf{T}}\mathbf{y}) = x_0^{\mathsf{T}}\beta$

$$\operatorname{Var}(x_0^{\mathsf{T}}\hat{\beta}) \leq \operatorname{Var}(c^{\mathsf{T}}\mathbf{y})$$

Multiple Outputs (1)

□ Suppose we aim to predict K outputs $Y_1, Y_2, ..., Y_K$, and assume

$$Y_k = \beta_{0k} + \sum_{j=1}^p X_j \beta_{jk} + \varepsilon_k$$
$$= f_k(X) + \varepsilon_k.$$

☐ Given *N* training data, we have

$$Y = XB + E$$
.

- Where $\mathbf{Y} \in \mathbb{R}^{N \times K}$ is the response matrix
- **X** $\in \mathbb{R}^{N \times (p+1)}$ is the data matrix
- $\mathbf{B} \in \mathbb{R}^{(p+1) \times K}$ is the matrix of parameters
- **E** $\in \mathbb{R}^{N \times K}$ is the matrix of errors

Multiple Outputs (2)

□ The Residual Sum of Squares

RSS(B) =
$$\sum_{k=1}^{K} \sum_{i=1}^{N} (y_{ik} - f_k(x_i))^2$$
$$= \operatorname{tr}[(\mathbf{Y} - \mathbf{XB})^T (\mathbf{Y} - \mathbf{XB})]$$

□ The Solution

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

☐ It is equivalent to performing *K* independent least squares

Large-scale Setting

□ The Problem

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- □ Sampling
 - Faster least squares approximation

Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Subset Selection

- □ Limitations of Least Squares
 - Prediction Accuracy: the least squares estimates often have low bias but large variance
 - Interpretation: We often would like to determine a smaller subset that exhibit the strongest effects
- ☐ Shrink or Set Some Coefficients to Zero
 - We sacrifice a little bit of bias to reduce the variance of the predicted values

Best-Subset Selection

□ Select the subset of variables (features) such that the RSS is minimized

$$p = 8$$

$$p =$$

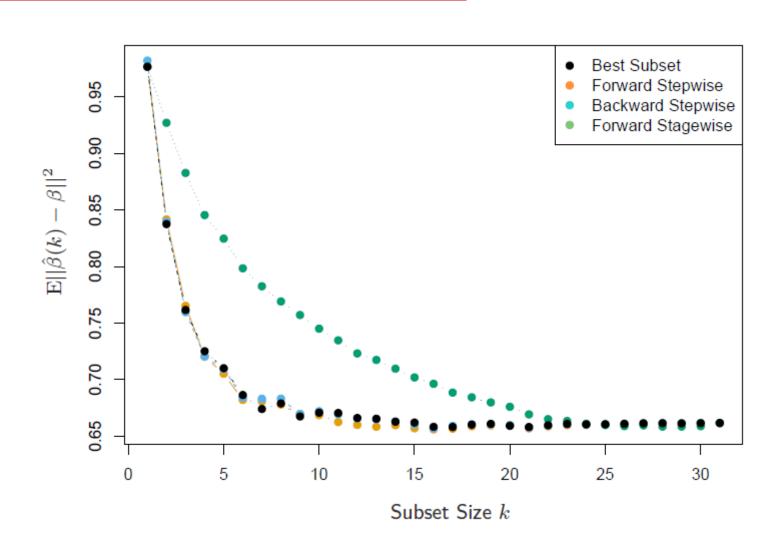
Forward- and Backward-Stepwise Selection

- □ Forward-stepwise Selection
 - 1. Start with the intercept
 - 2. Sequentially add into the model the predictor that most improves the fit
- Backward-stepwise Selection
 - 1. Start with the full model
 - 2. Sequentially delete the predictor that has the least impact on the fit
- ☐ Both are greedy algorithms
- Both can be solved quite efficiently

Forward-Stagewise Regression

- 1. Start with an intercept equal to \bar{y} and centered predictors with coefficients initially all 0
- 2. Identify the variable most correlated with the current residual
- 3. Compute the simple linear regression coefficient of the residual on this chosen variable
- None of the other variables are adjusted when a term is added to the model

Comparisons



Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Shrinkage Methods

- □ Limitation of Subset Selection
 - A discrete process—variables are either retained or discarded
 - It often exhibits high variance, and so doesn't reduce the prediction error
- Shrinkage Methods
 - More continuous, low variance
 - Ridge Regression
 - The Lasso
 - Least Angle Regression

Ridge Regression

- ☐ Shrink the regression coefficients
 - By imposing a penalty on their size
- ☐ The Objective

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

- $\lambda \geq 0$ is a complexity parameter
- □ An Equivalent Form

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

Coefficients cannot be too large even when variables are correlated

Optimization (1)

□ Let X be a matrix with each row an input vector

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Np} \end{bmatrix} \in \mathbb{R}^{N \times p}$$

$$\beta = [\beta_1, ..., \beta_p]^{\mathsf{T}} \text{ and } \mathbf{y} = [y_1, ..., y_N]^{\mathsf{T}}$$

□ The Objective Becomes

$$\min_{\beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^p} ||\mathbf{y} - \mathbf{X}\beta - \mathbf{1}_N \beta_0||_2^2 + \lambda ||\beta||_2^2$$

■ Where $\mathbf{1}_N = [1, ..., 1]^T \in \mathbb{R}^N$

Optimization (2)

 \square Differentiate with respect to β_0 and set it to zero

$$-2 \cdot \mathbf{1}_{N}^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta - \mathbf{1}_{N}\beta_{0}) = 0$$
$$\beta_{0} = \frac{1}{N} \mathbf{1}_{N}^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta)$$

 \square Differentiate with respect to β and set it to zero

$$2 \cdot \mathbf{X}^{\mathsf{T}} (\mathbf{X}\beta - \mathbf{y} + \mathbf{1}_{N}\beta_{0}) + 2 \cdot \lambda\beta = 0$$

$$\mathbf{X}^{\mathsf{T}} \left(\mathbf{X}\beta - \mathbf{y} - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} (\mathbf{X}\beta - \mathbf{y}) \right) + \lambda\beta = 0$$

$$\left(\mathbf{X}^{\mathsf{T}} \left(I - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} \right) \mathbf{X} + \lambda \mathbf{I} \right) \beta = \mathbf{X}^{\mathsf{T}} \left(I - \frac{1}{N} \mathbf{1}_{N} \mathbf{1}_{N}^{\mathsf{T}} \right) \mathbf{y}$$

Optimization (3)

□ The Final Solution

Let $H = \mathbf{I} - \frac{1}{N} \mathbf{1}_N \mathbf{1}_N^{\mathsf{T}}$ be the centering matrix

$$\beta^* = (\mathbf{X}^{\mathsf{T}} H \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} H \mathbf{y}$$

✓ Always invertible

$$\beta_0^* = \frac{1}{N} \mathbf{1}_N^{\mathsf{T}} (\mathbf{y} - \mathbf{X} \beta^*)$$

Understanding (1)

☐ Assume X is centered, then

$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

☐ Let the SVD of **X** be

$$X = UDV^T$$

- $\mathbf{U} = [\mathbf{u}_1, ..., \mathbf{u}_p]$ contains the left singular vectors
- **D** is a diagonal matrix with diagonal entries $d_1 \ge d_2 \ge \cdots \ge d_p \ge 0$
- ☐ Then, we examine the prediction of training data **X**

Understanding (2)

■ Least Squares

$$\mathbf{X}\hat{\beta}^{\text{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= \mathbf{U}\mathbf{U}^T\mathbf{y},$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \mathbf{u}_j^{\mathsf{T}}\mathbf{y}$$

□ Ridge Regression

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

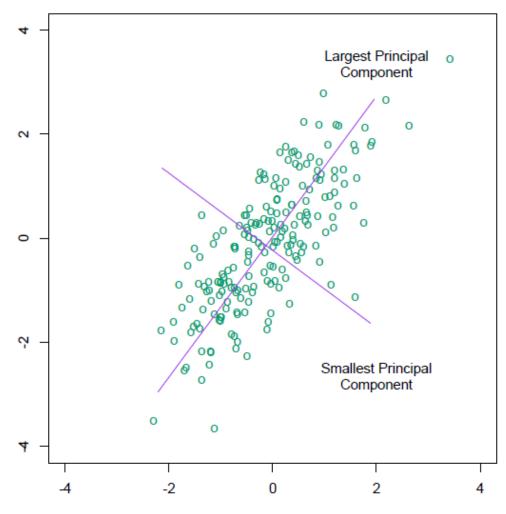
$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda\mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \frac{d_j^2}{d_j^2 + \lambda} \mathbf{u}_j^T\mathbf{y},$$

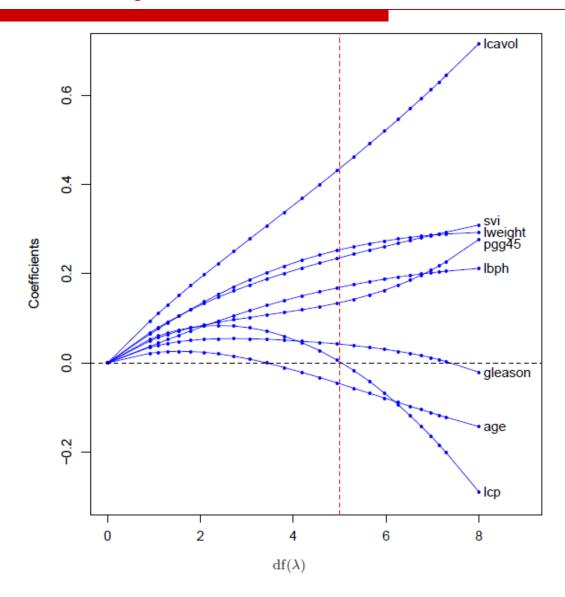
■ Shrink the coordinates by $\frac{d_j^2}{d_i^2 + \lambda} \le 1$

Understanding (3)

Connection with PCA



An Example



NANALITATE UNITED

The Lasso

☐ The Objective

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

$$\text{subject to } \sum_{j=1}^{p} |\beta_j| \le t.$$

$$\ell_1\text{-norm}$$

□ It is equivalent to

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Optimization

■ The First Formulation

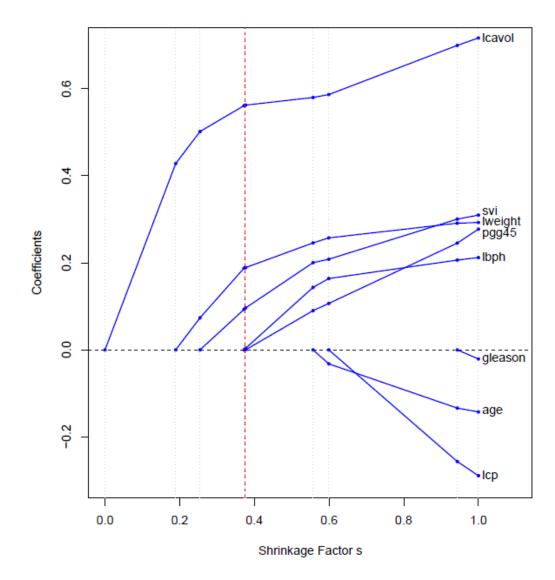
$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

- Gradient descent followed by Projection [1]
- □ The Second Formulation

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Convex Composite Optimization [2]

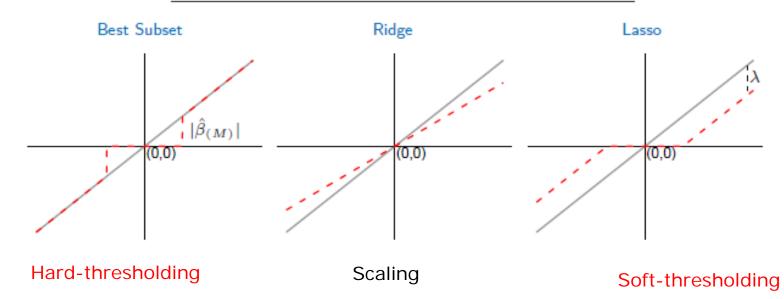
An Example



Subset Selection, Ridge, Lasso

Columns of X are orthonormal

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{eta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$



Ridge v.s. Lasso (1)

□ Ridge Regression

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2,$$
subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

- \blacksquare ℓ_2 -norm appears in the constraint
- □ Lasso

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$
subject to
$$\sum_{j=1}^{p} |\beta_j| \le t.$$

 \blacksquare ℓ_1 -norm appears in the constraint

Ridge v.s. Lasso (2)

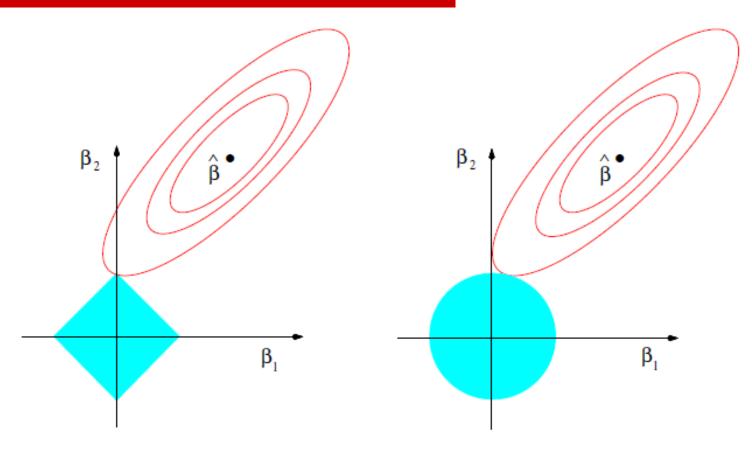


FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Generalization (1)

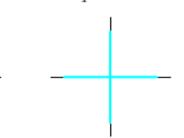
A General Formulation

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

\square Contours of Constant Value of $\sum_{i} |\beta_{i}|^{q}$

$$q = 2$$

$$q = 4$$
 $q = 2$ $q = 1$ $q = 0.5$ $q = 0.1$



Generalization (2)

☐ A Mixed Formulation

The elastic-net penalty

$$\lambda \sum_{j=1}^{p} \left(\alpha \beta_j^2 + (1 - \alpha) |\beta_j| \right)$$

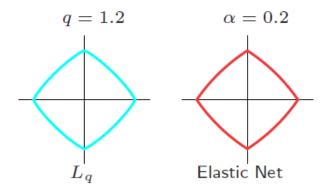


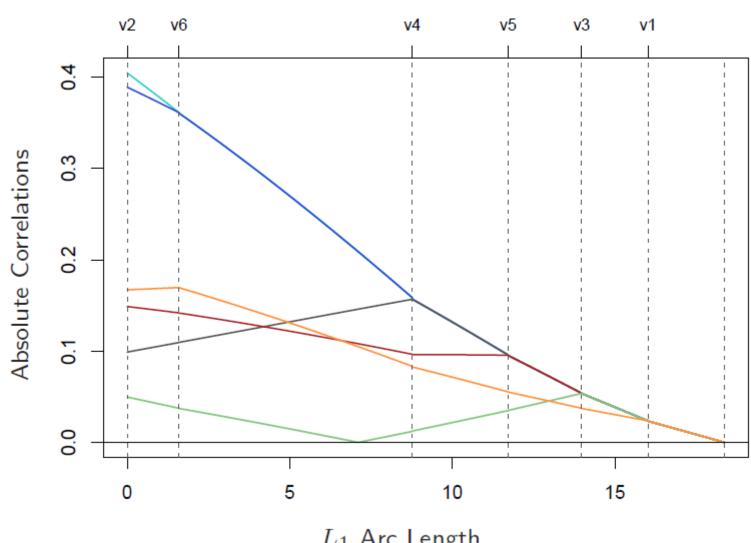
FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1-\alpha)|\beta_{j}|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

Least Angle Regression (LAR)

☐ The Procedure

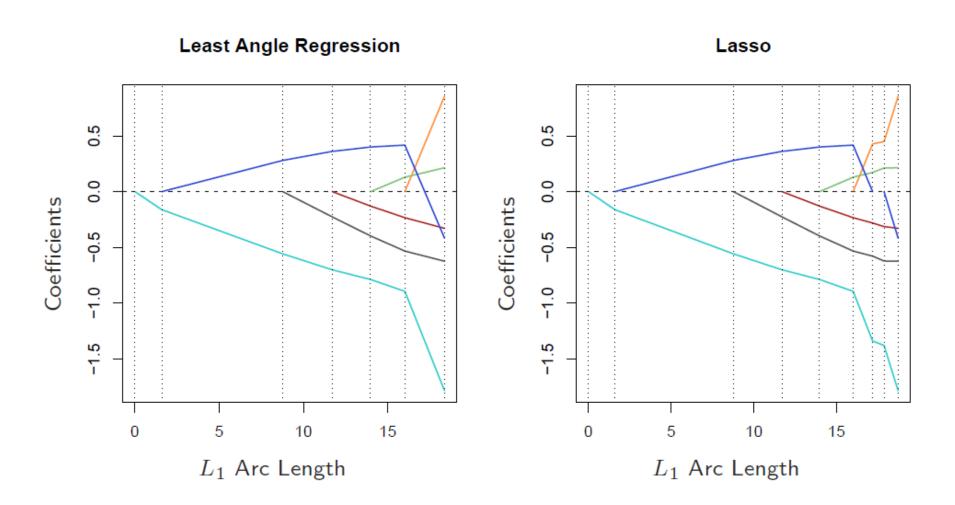
- Identify the variable most correlated with the response
- 2. Move the coefficient of this variable continuously toward its least squares value
- As soon as another variable "catches up" in terms of correlation with the residual, the process is paused
- 4. The second variable then joins the active set, and their coefficients are moved together in a way that keeps their correlations tied and decreasing

An Example

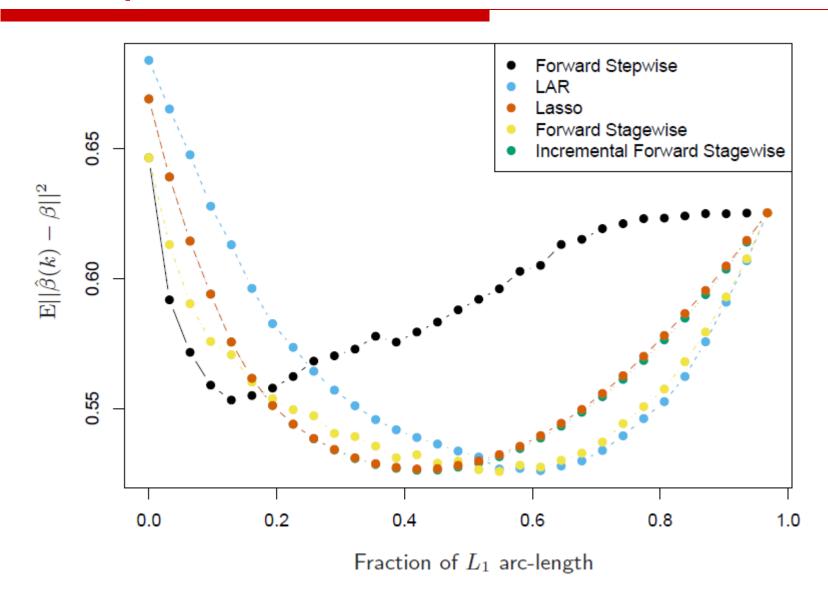


 \mathcal{L}_1 Arc Length

LAS v.s. Lasso



Comparisons



Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Methods Using Derived Input Directions

- We have a large number of inputs
 - Often very correlated
- Generate a small number of linear combinations

$$Z_m$$
, $m = 1, ..., M$

- of the original inputs X_i
- 2. Use Z_m in place of X_j as inputs in the regression
- ☐ Linear Dimensionality Reduction + Regression

Principal Components Regression (PCR)

 \square The linear combinations Z_m are generated by PCA

$$\mathbf{z}_m = \mathbf{X} v_m$$

- **X** is centered, and v_m is the m-th right singular vector
- \square Since \mathbf{z}_m 's are orthogonal

$$\hat{\mathbf{y}}_{(M)}^{\mathrm{pcr}} = \bar{y}\mathbf{1} + \sum_{m=1}^{M} \hat{\theta}_{m} \mathbf{z}_{m} \qquad \hat{\beta}^{\mathrm{pcr}}(M) = \sum_{m=1}^{M} \hat{\theta}_{m} v_{m}.$$

where $\hat{\theta}_m = \langle \mathbf{z}_m, \mathbf{y} \rangle / \langle \mathbf{z}_m, \mathbf{z}_m \rangle$

PCR v.s. Ridge

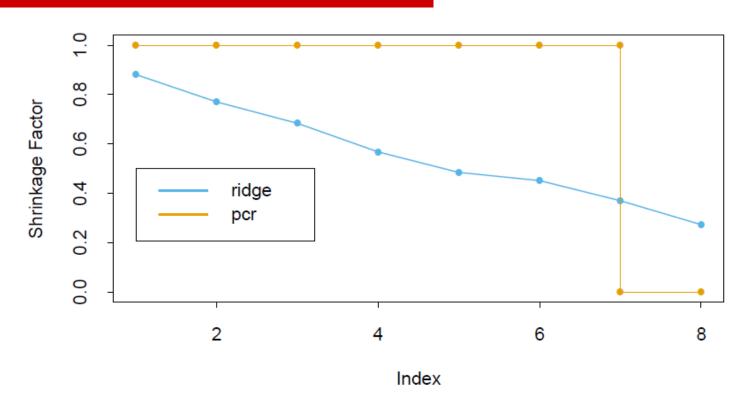


FIGURE 3.17. Ridge regression shrinks the regression coefficients of the principal components, using shrinkage factors $d_j^2/(d_j^2 + \lambda)$ as in (3.47). Principal component regression truncates them. Shown are the shrinkage and truncation patterns corresponding to Figure 3.7, as a function of the principal component index.

Partial Least Squares (PLS)

☐ The Procedure

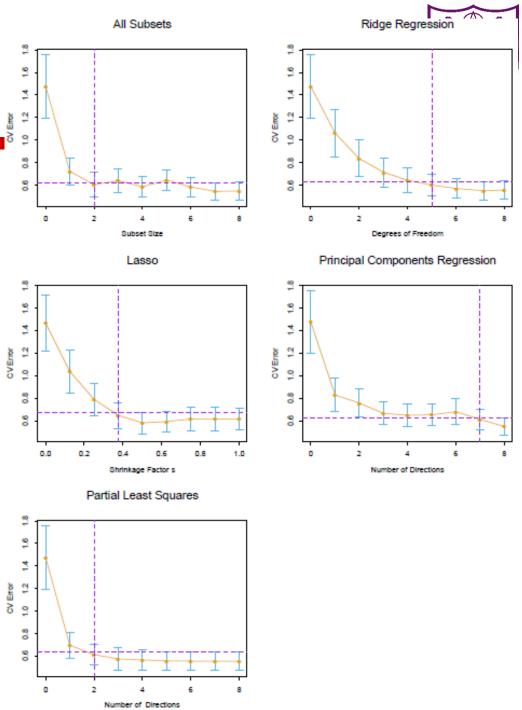
- 1. Compute $\hat{\varphi}_{1j} = \langle \mathbf{x}_j, \mathbf{y} \rangle$ for each feature \mathbf{x}_j
- 2. Construct the 1st derived input $\mathbf{z}_1 = \sum_j \hat{\varphi}_{1j} \mathbf{x}_j$
- 3. \mathbf{y} is regressed on \mathbf{z}_1 giving coefficient $\hat{\theta}_1$
- 4. Orthogonalize $\mathbf{x}_1, \dots, \mathbf{x}_p$ with respect to \mathbf{z}_1
- 5. Repeat the above process

Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Discussions (1

■ Model complexity increases as we move from left to right.



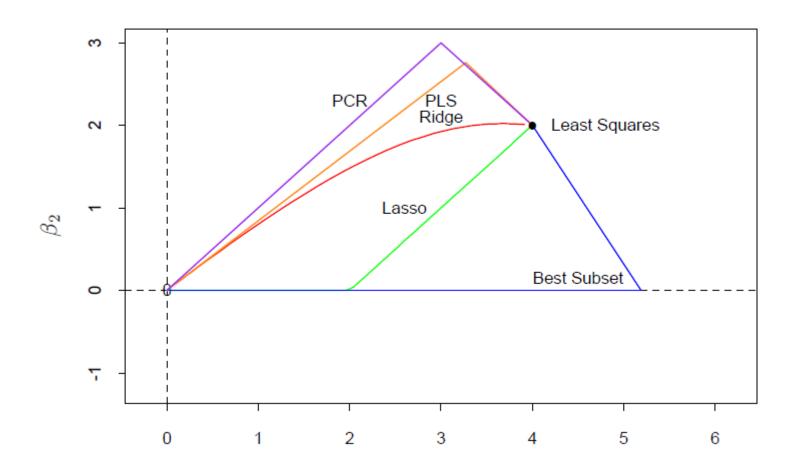
Discussions (2)

TABLE 3.3. Estimated coefficients and test error results, for different subset and shrinkage methods applied to the prostate data. The blank entries correspond to variables omitted.

Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	2.465	2.477	2.452	2.468	2.497	2.452
lcavol	0.680	0.740	0.420	0.533	0.543	0.419
lweight	0.263	0.316	0.238	0.169	0.289	0.344
age	-0.141		-0.046		-0.152	-0.026
lbph	0.210		0.162	0.002	0.214	0.220
svi	0.305		0.227	0.094	0.315	0.243
lcp	-0.288		0.000		-0.051	0.079
gleason	-0.021		0.040		0.232	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152

Discussions (3)

$$\rho = 0.5$$



Outline

- Introduction
- □ Linear Regression Models and Least Squares
- Subset Selection
- □ Shrinkage Methods
- Methods Using Derived Input Directions
- Discussions
- □ Summary

Summary

- ☐ Linear Regression Models
- □ Least Squares
- Shrinkage Methods
 - Ridge Regression
 - Lasso
 - Least Angle Regression (LAR)
- Methods Using Derived Input Directions
 - Principal Components Regression (PCR)
 - Partial Least Squares (PLS)

Reference

- □ [1] Duchi et al. Efficient projections onto the ℓ_1 -ball for learning in high dimensions. In Proceedings of the 25th international conference on Machine learning, pp. 272-279, 2008.
- □ [2] Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1): 125-161, 2013.