# Mining Web Data

Lijun Zhang <u>zlj@nju.edu.cn</u> http://cs.nju.edu.cn/zlj





### Outline

Introduction

- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- Ranking Algorithms
- **Recommender Systems**
- □ Summary



### Introduction

#### U Web is an unique phenomenon

The scale, the distributed and uncoordinated nature of its creation, the openness of the underlying platform, and the diversity of applications

#### Two Primary Types of Data

- Web content information
  - ✓ Document data, Linkage data (Graph)
- Web usage data
  - Web transactions, ratings, and user feedback, Web logs



### Applications on the Web

- Content-Centric Applications
  - Data mining applications
    - Cluster or classify web documents
  - Web crawling and resource discovery
  - Web search
    - Linkage and content
  - Web linkage mining
- Usage-Centric Applications
  - Recommender systems
  - Web log analysis
    - Anomalous patterns, and Web site design



### Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- Ranking Algorithms
- Recommender Systems
- □ Summary



### Web Crawling

#### Web Crawlers or Spiders or Robots

#### Motivations

- Resources on the Web are dispensed widely across globally distributed sites
- Sometimes, it is necessary to download all the relevant pages at a central location
- Universal Crawlers
  - Crawl all pages on the Web (Google, Bing)
- Preferential Crawlers
  - Crawl pages related to a particular subject or belong to a particular site



### Crawler Algorithms

#### □ A real crawler algorithm is complex

A selection Algorithm, Parsing, Distributed, multi-threads

#### A Basic Crawler Algorithm

```
Algorithm BasicCrawler(Seed URLs: S, Selection Algorithm: \mathcal{A})
begin
FrontierList = S;
repeat
Use algorithm \mathcal{A} to select URL X \in FrontierSet;
FrontierList = FrontierList - \{X\};
Fetch URL X and add to repository;
Add all relevant URLs in fetched document X to
end of FrontierList;
until termination criterion;
end
```



## **Selection Algorithms**

Breadth-first

Depth-first

□ Frequency-Based

- Most universal crawlers are incremental crawlers that are intended to refresh previous crawls
- PageRank-Based

Choose Web pages with high PageRank



# Combatting Spider Traps

The crawling algorithm maintains a list of previously visited URLs for comparison purposes

#### So, it always visits distinct Web pages

- However, many sites create dynamic URLs
  - http://www.examplesite.com/page1
  - http://www.examplesite.com/page1/page2
  - Limit the maximum size of the URL
  - Limit the number of URLs from a site



### Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- Ranking Algorithms
- Recommender Systems
- □ Summary



### The Process of Search

#### □ Offline Stage

- The search engine preprocesses the crawled documents to extract the tokens and constructs an index
- A quality-based ranking score is also computed for each page

#### Online Query Processing

The relevant documents are accessed and then ranked using both their relevance to the query and their quality



### **Offline Stage**

#### □ The Preprocessing Steps

- The relevant tokens are extracted and stemmed
- Stop words are removed
- Construct the Inverted Index
  - Maps each word identifier to a list of document identifiers containing it
    - Document ID, Frequency, Position
- Construct the Vocabulary Index
  - Access the storage location of the inverted word



# Ranking (1)

#### Content-Based Score

- A word is given different weights, depending upon whether it occurs in the title, body, URL token, or the anchor text
- The number of occurrences of a keyword in a document will be used in the score
- The prominence of a term in font size and color may be leveraged for scoring
- When multiple keywords are specified, their relative positions in the documents are used as well



# Ranking (2)

#### □ Limitations of Content-Based Score

- It does not account for the reputation, or the quality, of the page
  - A user may publish incorrect material

#### Web Spam

- Content-spamming: The Web host owner fills up repeated keywords in the hosted Web page
- Cloaking: The Web site serves different content to crawlers than it does to users
- Search Engine Optimization (SEO)
  - The Web set owners attempt to optimize search results by using their knowledge



# Ranking (3)

#### Reputation-Based Score

- Page citation mechanisms: When a page is of high quality, many other Web pages point to it
- User feedback or behavioral analysis mechanisms: When a user chooses a Web page, this is clear evidence of the relevance of that page to the user
- □ The Final Ranking Score

RankScore = f(IRScore, RepScore).

Spams always exist



### Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- **Ranking Algorithms**
- Recommender Systems
- □ Summary



# Google's PageRank (1)

#### Random Walk Model

- A random surfer who visits random pages on the Web by selecting random links on a page
- The long-term relative frequency of visits to any particular page is clearly influenced by the number of in-linking pages to it
- 2. The long-term frequency of visits to any page will be higher if it is linked to by other frequently visited pages



### Google's PageRank (2)

#### Random Walk Model

- Dead ends: pages with no outgoing links
- Dead-end component





## Google's PageRank (3)

#### Random Walk Model

- Dead ends: pages with no outgoing links
  - Add links from the dead-end node (Web page) to all nodes (Web pages), including a self-loop to itself
- Dead-end component
  - ✓ A teleportation (restart) step: The random surfer may either jump to an arbitrary page with probability  $\alpha$ , or it may follow one of the links on the page with probability  $1 \alpha$



# Steady-state Probabilities (1)

#### $\Box$ *G* = (*N*,*A*) be the directed Web graph

- Nodes correspond to pages
- Edges correspond to hyperlinks
  - Include added edges for dead-end nodes
- **\pi(i):** the steady-state probability at *i*
- In(i): set of nodes incident on i
- Out(i): the set of end points of the outgoing links of node i
- Transition matrix P of the Markov chain

 $p_{ij} = \frac{1}{|Out(i)|}$  if there is an edge form *i* to *j* 



Steady-state Probabilities (2)

□ The probability of a teleportation into *i*  $\frac{\alpha}{n}$ □ The probability of a transition into *i* 

$$(1-\alpha)\sum_{j\in In(i)}\pi(j)\cdot p_{ji}$$

□ Then, we have

$$\pi(i) = \alpha/n + (1 - \alpha) \cdot \sum_{j \in In(i)} \pi(j) \cdot p_{ji}$$



### Steady-state Probabilities (3)

 $\Box \text{ Let } \overline{\pi} = [\pi(1), \dots, \pi(n)]^{\mathsf{T}}$  $\overline{\pi} = \alpha \overline{e}/n + (1 - \alpha)P^T \overline{\pi}$ 

■ With the constraint 
$$\sum_{i=1}^{n} \pi(i) = 1$$
  
□ Optimization

$$\bar{\pi}^{(0)} = \frac{\bar{e}}{n}$$

$$\bar{\pi}^{(t+1)} = \frac{\alpha \bar{e}}{n} + (1 - \alpha) P^{\top} \bar{\pi}^{(t)}$$

$$\bar{\pi}^{(t+1)} \leftarrow \frac{\bar{\pi}^{(t+1)}}{|\bar{\pi}^{(t+1)}|_1}$$



### Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- Ranking Algorithms
- **Recommender Systems**
- **Summary**



### Recommender Systems

#### Data About User Buying Behaviors

User profiles, interests, browsing behavior, buying behavior, and ratings about various items

#### □ The Goal

Leverage such data to make recommendations to customers about possible buying interests



### Utility Matrix (1)

□ For *n* users and *d* items, there is an  $n \times d$  matrix *D* of utility values

- The utility value for a user-item pair could correspond to either the buying behavior or the ratings of the user for the item
- Typically, a small subset of the utility values are specified



# Utility Matrix (2)

□ For *n* users and *d* items, there is an  $n \times d$  matrix *D* of utility values

- Positive preferences only
  - A specification of a "like" option on a social networking site, the browsing of an item at an online site, the buying of a specified quantity of an item, or the raw quantities of the item bought by each user
- Positive and negative preferences (ratings)
  - The user specifies the ratings that represent their like or dislike for the item



## Utility Matrix (3)

# □ For *n* users and *d* items, there is an $n \times d$ matrix *D* of utility values



(a) Ratings-based utility



### Types of Recommendation

#### Content-Based Recommendations

- The users and items are both associated with feature-based descriptions
  - The text of the item description
  - ✓ The interests of user in a profile
- Collaborative Filtering
  - Leverage the user preferences in the form of ratings or buying behavior in a "collaborative" way
  - The utility matrix is used to determine either relevant users for specific items, or relevant items for specific users





- User is associated with some documents that describe his/her interests
  - Specified demographic profile
  - Specified interests at registration time
  - Descriptions of the items bought
- The items are also associated with textual descriptions
- 1. If no utility matrix is available
  - k-nearest neighbor approach: find the top-k items that are closest to the user
    - ✓ The cosine similarity with tf-idf can be used



✓ The cosine similarity with tf-idf can be used

# Content-Based Recommendations (2)



#### 2. If a utility matrix is available

- Classification-Based Approach
  - Training documents representing the descriptions of the items for which that user has specified utilities
  - The labels represent the utility values.
  - The descriptions of the remaining items for that user can be viewed as the test documents
- Regression-Based Approach
- Limitations
  - Depends on the quality of features



# **Collaborative Filtering**

Missing-value Estimation or Matrix Completion



The Matrix is extremely large

The Matrix is extremely sparse

### Algorithms for Collaborative Filtering



- Neighborhood-Based Methods for Collaborative Filtering
  - User-Based Similarity with Ratings
  - Item-Based Similarity with Ratings
- Graph-Based Methods
- Clustering Methods
  - Adapting k-Means Clustering
  - Adapting Co-Clustering
- Latent Factor Models
  - Singular Value Decomposition
  - Matrix Factorization
  - Matrix Completion

# User-Based Similarity with Ratings



□ A Similarity Function between Users

•  $\overline{X} = (x_1, ..., x_s)$  and  $\overline{Y} = (y_1, ..., y_s)$  be the common ratings between a pair of users

The Pearson correlation coefficient

$$\operatorname{Pearson}(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{s} (x_i - \hat{x}) \cdot (y_i - \hat{y})}{\sqrt{\sum_{i=1}^{s} (x_i - \hat{x})^2} \cdot \sqrt{\sum_{i=1}^{s} (y_i - \hat{y})^2}}$$

 $\checkmark \quad \hat{x} = \sum_{i=1}^{s} x_i / s \text{ and } \hat{y} = \sum_{i=1}^{s} y_i / s$ 

- 1. Identify the peer group of the target user
  - Top-k users with the highest Pearson coefficient
- 2. Return the weighted average ratings of each of the items of this peer group
  - Normalization is needed



# Clustering Methods (1)

#### Motivations

- Reduce the computational cost
- Address the issue of data sparsity to some extent
- □ The Result of Clustering
  - Clusters of users
    - User-user similarity recommendations
  - Clusters of items
    - Item-item similarity recommendations



# Clustering Methods (2)

#### User-User Recommendation Approach

- 1. Cluster all the users into  $n_g$  groups of users using any clustering algorithm
- For any user *i*, compute the average (normalized) rating of the specified items in its cluster
- **3**. Report these ratings for user *i*
- Item–Item Recommendation Approach
  - **1**. Cluster all the items into  $n_g$  groups of items
  - 2. The rest is the same as "Item-Based Similarity with Ratings"



### Adapting k-Means Clustering

- In an iteration of k-means, centroids are computed by averaging each dimension over the number of specified values in the cluster members
  - Furthermore, the centroid itself may not be fully specified
- 2. The distance between a data point and a centroid is computed only over the specified dimensions in both
  - Furthermore, the distance is divided by the number of such dimensions in order to fairly compare different data points



### Latent Factor Models

#### □ The Key Idea

- Summarize the correlations across rows and columns in the form of lower dimensional vectors, or latent factors
- These latent factors become hidden variables that encode the correlations in the data matrix and can be used to make predictions
- Estimation of the k-dimensional dominant latent factors is often possible even from incompletely specified data



### Modeling

□ The *n* users are represented by *n* factors:  $\overline{U_1}, \dots, \overline{U_n} \in \mathbb{R}^k$  $\Box$  The d items are represented by d factors:  $\overline{I_1}, \dots, \overline{I_d} \in \mathbb{R}^k$  $\Box$  The rating  $r_{ii}$  for user *i* and item *j*  $r_{ii} \approx \langle \overline{U_i}, \overline{I_i} \rangle = \overline{U_i}^{\mathsf{T}} \overline{I_i} = \overline{I_i}^{\mathsf{T}} \overline{U_i}$  $\Box$  The rating matrix  $D = [r_{ij}]_{n \times d}$  $D \approx F_{user} F_{item}^T$ •  $F_{user} \in \mathbb{R}^{n \times k}$  and  $F_{item} \in \mathbb{R}^{d \times k}$ 



### Matrix Factorization (MF)

The Goal

 $D \approx UV^{\top}$ 

□ The objective when *D* is fully observed

 $J = \|D - UV^{\mathsf{T}}\|_{F}^{2}$   $\Box \text{ The objective when } D \text{ is partially}$  observed  $J = \sum_{(i,j)\in\Omega} \left(D_{ij} - \overline{U_{i}}^{\mathsf{T}}\overline{V_{j}}\right)^{2}$ 

Ω is the set of observed indices
 Constrains can be added: U ≥ 0 and V ≥ 0



### Matrix Completion

Assuming the Utility matrix is lowrank  $M = \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M} \end{bmatrix}$ 

#### □ The Optimization Problem





### Outline

- Introduction
- Web Crawling and Resource Discovery
- Search Engine Indexing and Query Processing
- Ranking Algorithms
- **Recommender Systems**
- □ Summary



### Summary

- Web Crawling and Resource Discovery
  - Universal, Preferential, Spider Traps
- Search Engine Indexing and Query Processing
  - Content-based score, reputation-based scores
- Ranking Algorithms
  - PageRank and its variants, HITS
- **Recommender Systems** 
  - Content-Based, Collaborative Filtering