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Introduction

 Feature Extraction and Portability
 Raw logs, documents, semistructured data
 Data may contain heterogeneous types

 Data Cleaning
 Missing, Erroneous, and Inconsistent

 Data Reduction, Selection, and 
Transformation
 Efficiency, Effectiveness

“凡事豫（预）则立，不豫（预）则废”——《礼记·中庸》
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Feature Extraction

Domain Raw Data Features

Sensor Low-level signals Wavelet or Fourier 
transforms

Image Pixels Color histograms
Visual words

Web logs Text strings IP address
Action

Network traffic Characteristics of the
network packets

Number of bytes 
transferred
Network protocol

Document data Text strings Bag-of-words
Entity extraction

Feature extraction is an art form that is highly 
dependent on the skill of the analyst



Data Type Portability (1)

 Data is Often Heterogeneous
 A demographic data set may contain 

both numeric and mixed attributes

 Possible Solutions
 Designing an algorithm with an arbitrary 

combination of data types
 Time-consuming and sometimes impractical

 Converting between various data types
 Utilize off-the-shelf tools for processing



Data Type Portability (2)

 Ways of Transforming Data



Numeric to Categorical Data: 
Discretization (1)

 Divides the ranges of the numeric 
attribute into ranges

 Age Attribute
 [0, 10], [21, 20], [21, 30] , … 

 Salary
× [0, 10000], [10001, 20000], [20001, 

30000], …

min max

⋯
1 2 ߶߶ െ 1



Numeric to Categorical Data: 
Discretization (2)

 Equi-width Ranges
 Each range is chosen such that is 

a constant
 Equi-log Ranges
 Each range is chosen such that   

is a constant
 For example, , ଶ , ଶ ଷ , …

 Equi-depth Ranges
 Each range has an equal number of records
 Sorting and Selecting



Categorical to Numeric Data: 
Binarization

 Two categories
 or 

 categories
 -dimensional indicator vector
 The position of indicates the category

߶ ൌ 3

1st Category

2nd Category

3rd Category



Tokenization for Chinese 
sentence is difficult.

“生产鞋子和服装”
“今天真热”

Text to Numeric Data

 Tokenization, Stop Word Removal, 
Stemming, Weighting (TF-IDF)



Text to Numeric Data

 Tokenization, Stop Word Removal, 
Stemming, Weighting (TF-IDF)

 Document-Term Matrix

 Dimensionality Reduction
 Latent Semantic Analysis

 Normalization

将进酒
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Time Series to Discrete 
Sequence Data

 Symbolic Aggregate Approximation 
(SAX)
 Window-based averaging
 Evaluate the average value in each windows

 Value-based discretization
 Discretize the average value by equi-depth 

intervals

 How to Ensure Equi-depth?
 Assume certain distribution, such as 

Gaussian
 Estimate the distribution



Time Series to Numeric Data

 Discrete Wavelet Transform (DWT)

 Discrete Fourier transform (DFT)

 Advantages
 Remove Dependence



Discrete Sequence to Numeric 
Data

 Discrete sequence to a Set of (binary) 
Time Series
 ACACACTGTGACTG (4 Symbols)
 10101000001000 (A)
 01010100000100 (C)
 00000010100010 (T)
 00000001010001 (G)

 Map Each of These Time Series into a 
Multidimensional Vector

 Features from the Different Series are 
Combined



Any Type to Graphs for 
Similarity-Based Applications

 A Neighborhood Graph for a Set of 
Points ଵ ௡
 A Single Node is defined for each ௜

 An edge exists between ௜ and ௝, if

 The weight ௜௝ of edge is defined as

 Many Variants Exist

݀ ௜ܱ, ௝ܱ ൑ ߳

௜௝
ି
ௗ ை೔,ைೕ

మ

௧మ



Other Transformations

 Spatial to Numeric Data
 Similar to Time-series Data

 Graphs to Numeric Data
 Multidimensional Scaling (MDS)
 Edge represents distance

 Spectral Transformations
 Edge represents similarity
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The Reason of Cleaning

 Data Collection Technologies are 
Inaccurate
 Sensors
 Optical character recognition
 Speech-to-text data

 Privacy Reasons
 Manual Errors
 Data Collection is Expensive
 Medical Test



Handling Missing Entries

 Delete the Data Record Containing 
missing entries
 What to do if nothing left?

 Estimate or Impute the Missing 
Values
 Additional errors may be introduced
 Good under certain conditions (e.g., 

Matrix Completion)
 Designing an Algorithm that Works 

with Missing Data



Handling Incorrect and 
Inconsistent Entries

 Inconsistency Detection
 E.g., full name and abbreviation

 Domain Knowledge
 Age cannot be 800

 Data-centric Methods

Examine 
before 

discarding



Scaling and Normalization

 Features have Different Scales
 Age versus Salary

 Standardization
 If the -th attribute has mean ௝ and 

standard derivation ௝

 Min-Max Scaling
 Map to 
 Sensitive to noise

௜ݖ
௝ ൌ

௜ݔ
௝ െ ௝ߤ
௝ߪ

௜ݖ
௝ ൌ

௜ݔ
௝ െ ݉݅ ௝݊

௝ݔܽ݉ െ ݉݅ ௝݊
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Why?

 The Advantages
 Reduce space complexity
 Reduce time complexity

 Reduce noise
 Reveal hidden structures
 E.g., manifold learning

 The Disadvantages
 Information loss



Outline

 Introduction
 Feature Extraction and Portability
 Data Cleaning
 Data Reduction and Transformation
 Sampling
 Feature Subset Selection
 Dimensionality Reduction with Axis Rotation
 Dimensionality Reduction with Type 

Transformation
 Summary



Sampling for Static Data

 Unbiased (Uniform) Sampling
 Sampling without replacement
 Sampling with replacement
 Duplicates are possible

 Biased Sampling
 Some parts of the data are emphasized
 E.g., Temporal-decay bias

 Stratified Sampling
 Partition data into a set of strata
 Sample in each of stratum

ିఒ	ఋ௧



An Example of Sampling

 There are 10000 people which contain 
100 millionaires

 Unbiased Sampling 100 people
 In expectation, one millionaire will be 

sampled
 In practice, maybe no millionaires are 

sampled
 Stratified Sampling
 Unbiased Sampling 1 from 100 millionaires
 Unbiased Sampling 99 from remaining



Reservoir Sampling for Data 
Streams

 The Setting
 Data arrive sequentially
 We want sample of them uniformly
 There is a reservoir that can hold ݇ data 

points 

 The Algorithm
 The first data points are kept
 Insert the -th data point with 

probability 
 If the ݊-th data is inserted, then drop one 

of the existing ݇ data points uniformly



Reservoir Sampling for Data 
Streams

 The Setting
 Data arrive sequentially
 We want sample of them uniformly
 There is a reservoir that can hold ݇ data 

points 

 The Algorithm
 The first data points are kept
 Insert the -th data point with 

probability 
 If the ݊-th data is inserted, then drop one 

of the existing ݇ data points uniformly

After ݊	 stream points have arrived, the
probability of any stream point being
included in the reservoir is the same, and
is equal to ݇/݊.
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Feature Subset Selection

 Unsupervised Feature Selection
 Using the performance of unsupervised 

learning (e.g, clustering) to guide the 
selection

 Supervised Feature Selection
 Using the performance of supervised 

learning (e.g., classification) to guide the 
selection
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Dimensionality Reduction with 
Axis Rotation (1)

 Motivations (Perfect Case)
 Consider the following 3 points in a 2-

dimensional space

ଵܠ ൌ
1
1

ଷܠ ൌ
3
3

ଶܠ ൌ
2
2

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (2)

 Motivations (Perfect Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ 2
0

ଷܠ ൌ 3 2
0

ଶܠ ൌ 2 2
0

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (2)

 Motivations (Perfect Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ 2
0

ଷܠ ൌ 3 2
0

ଶܠ ൌ 2 2
0

1 2 3

1

2

3

x

y
The second 

coordinate can be 
dropped without
information loss.



Dimensionality Reduction with 
Axis Rotation (3)

 Motivations (Noisy Case)
 Consider the following 3 points in a 2-

dimensional space

ଵܠ ൌ
1
0.9

ଷܠ ൌ
2.9
3.1

ଶܠ ൌ
2.1
2

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (4)

 Motivations (Noisy Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ
1.34
0.07

ଷܠ ൌ
4.24
െ0.14

ଶܠ ൌ
2.89
0.07

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (4)

 Motivations (Noisy Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ
1.34
0.07

ଷܠ ൌ
4.24
െ0.14

ଶܠ ൌ
2.89
0.07

1 2 3

1

2

3

x

y
The second 

coordinate can be 
dropped with little 
information loss.



Dimensionality Reduction with 
Axis Rotation (5)

 When does it Work?
 Correlations exist among features

 Axis Rotation
 Remove correlations
 Reduce dimensionality

 How to Determine such Axis System?
 Principal component analysis (PCA)
 Singular value decomposition (SVD)



Axis Rotation—Mathematical 
Formulation (1)

 By default, the Original Coordinates 
are Defined with respect to the 
Standard Basis

ܠ ൌ
ଵݔ
ଶݔ
⋮
ௗݔ

∈ Թௗ ܠ ൌ ଵ܍ଵݔ ൅ ଶ܍ଶݔ ൅ ⋯൅ ௗ܍ௗݔ



Axis Rotation—Mathematical 
Formulation (2)

 The New Coordinates with respect to a 
Orthonormal Basis ଵ ଶ ௗ
 ଵ ଶ ௗ is a orthonormal matrix

 Thus, the new coordinates are

ܠ ൌ ܠୃܹܹ ൌ ෍ܟ௜ܟ௜
ୃ

ௗ

௜ୀଵ

ܠ ൌ෍ܟ௜ ௜ܟ
ܠୃ  

ௗ

௜ୀଵ

ൌ ଵܟ
ܠୃ ଵܟ ൅ ଶܟ

ܠୃ ଶܟ ൅⋯൅ ௗܟ
ܠୃ ௗܟ

ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ௗܟ
ܠୃ

∈ Թௗ



Axis Rotation—Mathematical 
Formulation (2)

 The New Coordinates with respect to a 
Orthonormal Basis ଵ ଶ ௗ
 ଵ ଶ ௗ is a orthonormal matrix

 Thus, the new coordinates are

ܠ ൌ ܠୃܹܹ ൌ ෍ܟ௜ܟ௜
ୃ

ௗ

௜ୀଵ

ܠ ൌ෍ܟ௜ ௜ܟ
ܠୃ  

ௗ

௜ୀଵ

ൌ ଵܟ
ܠୃ ଵܟ ൅ ଶܟ

ܠୃ ଶܟ ൅⋯൅ ௗܟ
ܠୃ ௗܟ

ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ௗܟ
ܠୃ

∈ Թௗ

Dimensionality 
reduction is achieved 
by dropping some of 
the new coordinates.



Terminology

 ଵ ଶ ௗ
 Basis
 Directions

 ௜
ୃ

௜
 New coordinates
 Projection of along the direction ௜



Principal Component Analysis (PCA)

 Given a set of Data Points 
ଵ ଶ ௡ where ௜

ௗ

 Finding a set of directions 
ଵ ଶ ௞ such that the variance

of

are maximized

ଵܡ ൌ

ଵܟ
ଵܠୃ

ଶܟ
ଵܠୃ
⋮

௞ܟ
ଵܠୃ

, ଶܡ ൌ

ଵܟ
૛ܠୃ

ଶܟ
૛ܠୃ
⋮

௞ܟ
૛ܠୃ

,⋯ , ௡ܡ ൌ

ଵܟ
௡ܠୃ

ଶܟ
௡ܠୃ
⋮

௞ܟ
௡ܠୃ



Principal Component Analysis (PCA)

 Given a set of Data Points 
ଵ ଶ ௡ where ௜

ௗ

 Finding a set of directions 
ଵ ଶ ௞ such that the variance

of

are maximized

ଵܡ ൌ

ଵܟ
ଵܠୃ

ଶܟ
ଵܠୃ
⋮

௞ܟ
ଵܠୃ

, ଶܡ ൌ

ଵܟ
૛ܠୃ

ଶܟ
૛ܠୃ
⋮

௞ܟ
૛ܠୃ

,⋯ , ௡ܡ ൌ

ଵܟ
௡ܠୃ

ଶܟ
௡ܠୃ
⋮

௞ܟ
௡ܠୃ

݇

For the purpose of 
dimensionality 

reduction, PCA only 
learns ݇ directions.

PCA uses variances 
to measure the 
quality of new 
coordinates.



PCA—One-dimensional Case (1)

 New Coordinates of ଵ ଶ ௡

 Variance is

where ଵ
௡ ଵ

ୃ
௜

௡
௜ୀଵ is the mean of new 

coordinates

ଵܟ
ଵܟ,ଵܠୃ

…,ଶܠୃ ଵܟ,
௡ܠୃ

1
݊෍ ଵܟ

௜ܠୃ െ ߤ ଶ
௡

௜ୀଵ



PCA—One-dimensional Case (2)

 Let ଵ
௡ ௜

௡
௜ୀଵ be the mean vector

 Then, 

1
݊෍ ଵܟ

௜ܠୃ െ ߤ ଶ
௡

௜ୀଵ

ൌ
1
݊෍ ଵܟ

௜ܠୃ െ ଵܟ
തܠୃ ଶ

௡

௜ୀଵ

ൌ
1
݊෍ ଵܟ

ୃ ௜ܠ െ തܠ
ଶ

௡

௜ୀଵ

ൌ
1
݊෍ܟଵ

ୃ ௜ܠ െ തܠ ௜ܠ െ തܠ ଵܟୃ

௡

௜ୀଵ

ൌ ଵܟ
ୃ 1

݊෍ ௜ܠ െ തܠ ௜ܠ െ തܠ ୃ
௡

௜ୀଵ

ଵܟ



PCA—One-dimensional Case (3)

 The Optimization Problem of PCA

where ଵ
௡ ௜ ௜

ୃ௡
௜ୀଵ is the  

covariance matrix
 The Solution (Rayleigh Quotient)
 Lagrangian: ୃ

ଶ
ଶ

 Set the gradient of ܟ be zero

Թ೏∋ܟ
ୃ

ଶ
ଶ

=



PCA—One-dimensional Case (4)

 is eigenvector and eigenvalue of 
 The objective becomes

 Thus, we select the largest eigenvector 
and eigenvalue of 

 The Algorithm
1. Calculate the mean vector ଵ

௡
௜௡ܠ

௜ୀଵ

2. Calculate the covariance matrix 
ଵ
௡ ௜ ௜

ୃ௡
௜ୀଵ

3. Calculate the largest eigenvector of 

ܟܥୃܟ ൌ ܟୃܟߣ ൌ ߣ



Property of the Covariance Matrix

 is symmetric
 is positive semidefinite (PSD)
 All the eigenvalues are non-negative

 The rank of is at most 
 Let ଵ ௡

ௗൈ௡

 It has at most positive eigenvalues

ܥ ൌ
1
݊෍ ௜ܠ െ തܠ ௜ܠ െ തܠ ୃ

௡

௜ୀଵ

rank ܥ ൌ rank തܺ തܺୃ ൌ rank തܺ ൑ ݊ െ 1



PCA— -dimensional Case (1)
 The Optimization Problem of PCA

where ଵ
௡ ௜ ௜

ୃ௡
௜ୀଵ

 The Solution (Rayleigh Quotient)
 ଵ ௞ , where ଵ ௞ are the 

largest eigenvectors of 
 Section 5.2.2.(6) of [Lütkepohl 1996]

 Can also be defined in an incremental 
fashion

ௐ∈Թ೏ൈೖ
ୃ

ୃ



PCA— -dimensional Case (2)

 The Algorithm
1. Calculate the mean vector ଵ

௡
௜௡ܠ

௜ୀଵ

2. Calculate the covariance matrix 
ଵ
௡ ௜ ௜

ୃ௡
௜ୀଵ

3. Calculate the largest eigenvectors of 
 Eigenvalue
 ௜ is the variance of the -th coordinate
 Measure the quality of PCA

∑ ௜௞ߣ
௜ୀଵ

∑ ௜ௗߣ
௜ୀଵ

∑ ௜ௗߣ
௜ୀ௞ାଵ
∑ ௜ௗߣ
௜ୀଵ

Captured Lost



An Example

 Arrythmia data set from the UCI



Discussions of PCA

 The Key Operation
 Eigendecomposition of 

 PCA can also be derived from the 
perspective of projection error 
minimization
 Section 12.1.2 of [Bishop 2007]

 PCA is Linear Since

where ଵ ௞
ௗൈ௞

 PCA is Unsupervised

ௗ ୃ ௞



Singular Value Decomposition (SVD)

 SVD of ଵ ଶ ௡
ௗൈ௡ with 

 ଵ ଶ ௗ
ௗൈௗ, ୃ ୃ

 ଵ ଶ ௗ
௡ൈௗ, ୃ

 ଵ ଶ ௗ
ௗൈௗ, ଵ ଶ

ௗ

ܺ ൌ ܷΣܸୃ ൌ෍ߪ௜ܝ௜ܞ௜ୃ
ௗ

௜ୀଵ



Compact SVD

 SVD of ଵ ଶ ௡
ௗൈ௡ with 

 ௥ ଵ ଶ ௥
ௗൈ௥, ௥

ୃ
௥

 ௥ ଵ ଶ ௥
௡ൈ௥, ௥

ୃ
௥

 ௥ ଵ ଶ ௥
௥ൈ௥, ଵ ଶ

௥

ܺ ൌ ௥ܷΣ௥ ௥ܸ
ୃ ൌ෍ߪ௜ܝ௜ܞ௜ୃ

௥

௜ୀଵ



Dimensionality Reduction by SVD

 The Algorithm
1. Calculate the largest left singular 

vectors ଵ ଶ ௞ of ଵ ଶ ௡

 The New Coordinates of are

 ௞ ଵ ଶ ௞
ௗൈ௞

 The New Coordinates of is

ܷ௞ୃܠ ൌ

ܠଵୃܝ
ܠଶୃܝ
⋮

ܠ௞ୃܝ

∈ Թ௞

௞
ୃX= ௞

ୃ
௥ ௥ ௥

ୃ= ௞ ௞
ୃ



SVD—A Energy-preserving 
Interpretation

 The Optimization Problem of SVD
 1-dimensional

 -dimensional

Թ೏∋ܟ
ୃ ୃ

ଶ
ଶ

ௐ∈Թ೏ൈೖ
ୃ ୃ

ୃ

ܺ
ܺܺ ܺ ܺ

Left (right) singular vectors of ܺ are the
eigenvectors of ܺܺୃ (ܺୃܺ).



PCA by SVD

 Old Algorithm
1. Calculate the mean vector ଵ

௡
௜௡ܠ

௜ୀଵ

2. Calculate the covariance matrix 
ଵ
௡
∑ ௜ܠ െ ܠ̅ ௜ܠ െ ܠ̅ ୃ௡
௜ୀଵ

3. Calculate the -largest eigenvectors of 
 New Algorithm

1. Calculate the mean vector ଵ
௡

௜௡ܠ
௜ୀଵ

2. Calculate the ݇ largest left singular 
vectors of ଵ ௡



PCA by SVD

 Old Algorithm
1. Calculate the mean vector ଵ

௡
௜௡ܠ

௜ୀଵ

2. Calculate the covariance matrix 
ଵ
௡
∑ ௜ܠ െ ܠ̅ ௜ܠ െ ܠ̅ ୃ௡
௜ୀଵ

3. Calculate the -largest eigenvectors of 
 New Algorithm

1. Calculate the mean vector ଵ
௡

௜௡ܠ
௜ୀଵ

2. Calculate the ݇ largest left singular 
vectors of ଵ ௡

PCA is equivalent to 
SVD if ܺ ൌ തܺ, that is, if 
data are zero-mean.
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Dimensionality Reduction with 
Type Transformation

 Time Series to Multidimensional
 Can also be viewed as a rotation of an 

axis system
 Haar wavelet transform

 Weighted graphs to multidimensional
 Multidimensional Scaling (MDS)
 Edge represents distance

 Spectral Transformations
 Edge represents similarity



Haar Wavelet Transform (1)
 A New Basis for time series data

 Each element basis is a time series (wavelets)
 Coefficients can be calculated efficiently
 Coefficients have nice interpretations



Haar Wavelet Transform (2)

 Given a Time Series with length 

where ଵ ଶ ௗ are wavelets, and they 
are orthogonal to each other

 Normalization


భܟ
భܟ మ

మܟ
మܟ మ

೏ܟ
೏ܟ మ

are orthonormal to 
each other

ܜ ൌ ଵܟଵߙ ൅ ଶܟଶߙ ൅⋯൅ ௗܟௗߙ

ܜ ൌ ଵߙ ଵܟ ଶ
ଵܟ
ଵܟ ଶ

൅ ଶߙ ଶܟ ଶ
ଶܟ
ଶܟ ଶ

൅⋯൅ ௗߙ ௗܟ ଶ
ௗܟ
ௗܟ ଶ



Haar Wavelet Transform (3)

 The New Coordinates

 Dimensionality Reduction

 Feature Selection, PCA, SVD
 Sparse Representation

ܡ ൌ

ଵߙ ଵܟ ଶ
ଶߙ ଶܟ ଶ

⋮
ௗߙ ௗܟ ଶ

∈ Թௗ

ܻ ൌ

ଵଵߙ ଵܟ ଶ
ଵଶߙ ଶܟ ଶ

⋮
ଵௗߙ ௗܟ ଶ

	

ଶଵߙ ଵܟ ଶ
ଶଶߙ ଶܟ ଶ

⋮
ଶௗߙ ௗܟ ଶ

⋯
⋯
⋮
⋯
	

௡ଵߙ ଵܟ ଶ
௡ଶߙ ଶܟ ଶ

⋮
௡ௗߙ ௗܟ ଶ

∈ Թௗൈ௡



Multidimensional Scaling (MDS)

 Input
 A graph with nodes
 ௜௝ ௝௜ be the distance between nodes 

and 
 Output
 A set of coordinates that fits the distance

 Metric MDS

	೙∈Թೖܠ,…,మܠ,భܠ
௜ ௝ ଶ ௜௝

ଶ

௜,௝:௜ழ௝



Assume the specified distance 
matrix is Euclidean
 The Algorithm

1. Calculate the dot-product matrix

2. Eigen decompose 

3. The new coordinates are

ܷ௞ ൌ ሾܝଵ, … , ௞ሿܝ ∈ Թ௡ൈ௞, Λ௞ ൌ diag ,ଵߣ … , ௞ߣ ∈ Թ௞ൈ௞

ܵ ൌ െ
1
2 ܫ െ

૚૚ୃ

݊ Δ ܫ െ
૚૚ୃ

݊

ܵ ൌ ܷΛܷୃ ൌ෍ߣ௜ܝ௜ܝ௜ୃ
௡

௜ୀଵ

௞ ௞
ିଵ/ଶ ௡ൈ௞



Assume the specified distance 
matrix is Euclidean
 The Algorithm

1. Calculate the dot-product matrix

2. Eigen decompose 

3. The new coordinates are

ܷ௞ ൌ ሾܝଵ, … , ௞ሿܝ ∈ Թ௡ൈ௞, Λ௞ ൌ diag ,ଵߣ … , ௞ߣ ∈ Թ௞ൈ௞

ܵ ൌ െ
1
2 ܫ െ

૚૚ୃ

݊ Δ ܫ െ
૚૚ୃ

݊

ܵ ൌ ܷΛܷୃ ൌ෍ߣ௜ܝ௜ܝ௜ୃ
௡

௜ୀଵ

௞ ௞
ିଵ/ଶ ௡ൈ௞

Metric MDS is 
equivalent to PCA, 

if the distance 
matrix is Euclidean.



Spectral Transformations (1)

 Input
 A graph with nodes
 ௜௝ ௝௜ be the similarity between nodes 

and 
 Output
 A set of coordinates that preserves the 

similarity
 The Objective

೙∈Թೖܠ,…,మܠ,భܠ
௜௝ ௜ ௝ ଶ

ଶ
௡

௝ୀଵ

௡

௜ୀଵ



Spectral Transformations (2)

 The Optimization Problem

 ଵ ଶ ௡
ୃ ௡ൈ௞, 

 is a diagonal matrix with ௜௜ ௜௝
௡
௝ୀଵ

 Generalized Eigenproblem

 The Solution [Luxburg 2007]
 ଵ ௞

௡ൈ௞, where ௜ is the -th
smallest eigenvector

௒∈Թ೙ൈೖ
ୃ

ୃ



Outline

 Introduction
 Feature Extraction and Portability
 Data Cleaning
 Data Reduction and Transformation
 Sampling
 Feature Subset Selection
 Dimensionality Reduction with Axis Rotation
 Dimensionality Reduction with Type 

Transformation
 Summary



Summary

 Feature Extraction and Portability
 Data Cleaning
 Data Reduction by Sampling
 Dimensionality Reduction with Axis 

Rotation
 PCA, SVD

 Dimensionality Reduction with Type 
Transformation
 Haar Wavelet Transform, MDS, Spectral 

Transformation
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