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Introduction

 Feature Extraction and Portability
 Raw logs, documents, semistructured data
 Data may contain heterogeneous types

 Data Cleaning
 Missing, Erroneous, and Inconsistent

 Data Reduction, Selection, and 
Transformation
 Efficiency, Effectiveness

“凡事豫（预）则立，不豫（预）则废”——《礼记·中庸》
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Feature Extraction

Domain Raw Data Features

Sensor Low-level signals Wavelet or Fourier 
transforms

Image Pixels Color histograms
Visual words

Web logs Text strings IP address
Action

Network traffic Characteristics of the
network packets

Number of bytes 
transferred
Network protocol

Document data Text strings Bag-of-words
Entity extraction

Feature extraction is an art form that is highly 
dependent on the skill of the analyst



Data Type Portability (1)

 Data is Often Heterogeneous
 A demographic data set may contain 

both numeric and mixed attributes

 Possible Solutions
 Designing an algorithm with an arbitrary 

combination of data types
 Time-consuming and sometimes impractical

 Converting between various data types
 Utilize off-the-shelf tools for processing



Data Type Portability (2)

 Ways of Transforming Data



Numeric to Categorical Data: 
Discretization (1)

 Divides the ranges of the numeric 
attribute into ranges

 Age Attribute
 [0, 10], [21, 20], [21, 30] , … 

 Salary
× [0, 10000], [10001, 20000], [20001, 

30000], …

min max

⋯
1 2 ߶߶ െ 1



Numeric to Categorical Data: 
Discretization (2)

 Equi-width Ranges
 Each range is chosen such that is 

a constant
 Equi-log Ranges
 Each range is chosen such that   

is a constant
 For example, , ଶ , ଶ ଷ , …

 Equi-depth Ranges
 Each range has an equal number of records
 Sorting and Selecting



Categorical to Numeric Data: 
Binarization

 Two categories
 or 

 categories
 -dimensional indicator vector
 The position of indicates the category

߶ ൌ 3

1st Category

2nd Category

3rd Category



Tokenization for Chinese 
sentence is difficult.

“生产鞋子和服装”
“今天真热”

Text to Numeric Data

 Tokenization, Stop Word Removal, 
Stemming, Weighting (TF-IDF)



Text to Numeric Data

 Tokenization, Stop Word Removal, 
Stemming, Weighting (TF-IDF)

 Document-Term Matrix

 Dimensionality Reduction
 Latent Semantic Analysis

 Normalization

将进酒

念奴娇·赤壁怀古

酒 三国
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Time Series to Discrete 
Sequence Data

 Symbolic Aggregate Approximation 
(SAX)
 Window-based averaging
 Evaluate the average value in each windows

 Value-based discretization
 Discretize the average value by equi-depth 

intervals

 How to Ensure Equi-depth?
 Assume certain distribution, such as 

Gaussian
 Estimate the distribution



Time Series to Numeric Data

 Discrete Wavelet Transform (DWT)

 Discrete Fourier transform (DFT)

 Advantages
 Remove Dependence



Discrete Sequence to Numeric 
Data

 Discrete sequence to a Set of (binary) 
Time Series
 ACACACTGTGACTG (4 Symbols)
 10101000001000 (A)
 01010100000100 (C)
 00000010100010 (T)
 00000001010001 (G)

 Map Each of These Time Series into a 
Multidimensional Vector

 Features from the Different Series are 
Combined



Any Type to Graphs for 
Similarity-Based Applications

 A Neighborhood Graph for a Set of 
Points ଵ 
 A Single Node is defined for each 

 An edge exists between  and , if

 The weight  of edge is defined as

 Many Variants Exist

݀ ܱ, ܱ  ߳


ି
ௗ ை,ைೕ

మ

௧మ



Other Transformations

 Spatial to Numeric Data
 Similar to Time-series Data

 Graphs to Numeric Data
 Multidimensional Scaling (MDS)
 Edge represents distance

 Spectral Transformations
 Edge represents similarity
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The Reason of Cleaning

 Data Collection Technologies are 
Inaccurate
 Sensors
 Optical character recognition
 Speech-to-text data

 Privacy Reasons
 Manual Errors
 Data Collection is Expensive
 Medical Test



Handling Missing Entries

 Delete the Data Record Containing 
missing entries
 What to do if nothing left?

 Estimate or Impute the Missing 
Values
 Additional errors may be introduced
 Good under certain conditions (e.g., 

Matrix Completion)
 Designing an Algorithm that Works 

with Missing Data



Handling Incorrect and 
Inconsistent Entries

 Inconsistency Detection
 E.g., full name and abbreviation

 Domain Knowledge
 Age cannot be 800

 Data-centric Methods

Examine 
before 

discarding



Scaling and Normalization

 Features have Different Scales
 Age versus Salary

 Standardization
 If the -th attribute has mean  and 

standard derivation 

 Min-Max Scaling
 Map to 
 Sensitive to noise

ݖ
 ൌ

ݔ
 െ ߤ
ߪ

ݖ
 ൌ

ݔ
 െ ݉݅ ݊

ݔܽ݉ െ ݉݅ ݊



Outline

 Introduction
 Feature Extraction and Portability
 Data Cleaning
 Data Reduction and Transformation
 Sampling
 Feature Subset Selection
 Dimensionality Reduction with Axis Rotation
 Dimensionality Reduction with Type 

Transformation
 Summary



Why?

 The Advantages
 Reduce space complexity
 Reduce time complexity

 Reduce noise
 Reveal hidden structures
 E.g., manifold learning

 The Disadvantages
 Information loss
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Sampling for Static Data

 Unbiased (Uniform) Sampling
 Sampling without replacement
 Sampling with replacement
 Duplicates are possible

 Biased Sampling
 Some parts of the data are emphasized
 E.g., Temporal-decay bias

 Stratified Sampling
 Partition data into a set of strata
 Sample in each of stratum

ିఒ	ఋ௧



An Example of Sampling

 There are 10000 people which contain 
100 millionaires

 Unbiased Sampling 100 people
 In expectation, one millionaire will be 

sampled
 In practice, maybe no millionaires are 

sampled
 Stratified Sampling
 Unbiased Sampling 1 from 100 millionaires
 Unbiased Sampling 99 from remaining



Reservoir Sampling for Data 
Streams

 The Setting
 Data arrive sequentially
 We want sample of them uniformly
 There is a reservoir that can hold ݇ data 

points 

 The Algorithm
 The first data points are kept
 Insert the -th data point with 

probability 
 If the ݊-th data is inserted, then drop one 

of the existing ݇ data points uniformly



Reservoir Sampling for Data 
Streams

 The Setting
 Data arrive sequentially
 We want sample of them uniformly
 There is a reservoir that can hold ݇ data 

points 

 The Algorithm
 The first data points are kept
 Insert the -th data point with 

probability 
 If the ݊-th data is inserted, then drop one 

of the existing ݇ data points uniformly

After ݊	 stream points have arrived, the
probability of any stream point being
included in the reservoir is the same, and
is equal to ݇/݊.
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Feature Subset Selection

 Unsupervised Feature Selection
 Using the performance of unsupervised 

learning (e.g, clustering) to guide the 
selection

 Supervised Feature Selection
 Using the performance of supervised 

learning (e.g., classification) to guide the 
selection
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Dimensionality Reduction with 
Axis Rotation (1)

 Motivations (Perfect Case)
 Consider the following 3 points in a 2-

dimensional space

ଵܠ ൌ
1
1

ଷܠ ൌ
3
3

ଶܠ ൌ
2
2

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (2)

 Motivations (Perfect Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ 2
0

ଷܠ ൌ 3 2
0

ଶܠ ൌ 2 2
0

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (2)

 Motivations (Perfect Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ 2
0

ଷܠ ൌ 3 2
0

ଶܠ ൌ 2 2
0

1 2 3

1

2

3

x

y
The second 

coordinate can be 
dropped without
information loss.



Dimensionality Reduction with 
Axis Rotation (3)

 Motivations (Noisy Case)
 Consider the following 3 points in a 2-

dimensional space

ଵܠ ൌ
1
0.9

ଷܠ ൌ
2.9
3.1

ଶܠ ൌ
2.1
2

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (4)

 Motivations (Noisy Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ
1.34
0.07

ଷܠ ൌ
4.24
െ0.14

ଶܠ ൌ
2.89
0.07

1 2 3

1

2

3

x

y



Dimensionality Reduction with 
Axis Rotation (4)

 Motivations (Noisy Case)
 What is the new coordinates if we rotate 

the axis

ଵܠ ൌ
1.34
0.07

ଷܠ ൌ
4.24
െ0.14

ଶܠ ൌ
2.89
0.07

1 2 3

1

2

3

x

y
The second 

coordinate can be 
dropped with little 
information loss.



Dimensionality Reduction with 
Axis Rotation (5)

 When does it Work?
 Correlations exist among features

 Axis Rotation
 Remove correlations
 Reduce dimensionality

 How to Determine such Axis System?
 Principal component analysis (PCA)
 Singular value decomposition (SVD)



Axis Rotation—Mathematical 
Formulation (1)

 By default, the Original Coordinates 
are Defined with respect to the 
Standard Basis

ܠ ൌ
ଵݔ
ଶݔ
⋮
ௗݔ

∈ Թௗ ܠ ൌ ଵ܍ଵݔ  ଶ܍ଶݔ  ⋯ ௗ܍ௗݔ



Axis Rotation—Mathematical 
Formulation (2)

 The New Coordinates with respect to a 
Orthonormal Basis ଵ ଶ ௗ
 ଵ ଶ ௗ is a orthonormal matrix

 Thus, the new coordinates are

ܠ ൌ ܠୃܹܹ ൌ ܟܟ
ୃ

ௗ

ୀଵ

ܠ ൌܟ ܟ
ܠୃ  

ௗ

ୀଵ

ൌ ଵܟ
ܠୃ ଵܟ  ଶܟ

ܠୃ ଶܟ ⋯ ௗܟ
ܠୃ ௗܟ

ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ௗܟ
ܠୃ

∈ Թௗ



Axis Rotation—Mathematical 
Formulation (2)

 The New Coordinates with respect to a 
Orthonormal Basis ଵ ଶ ௗ
 ଵ ଶ ௗ is a orthonormal matrix

 Thus, the new coordinates are

ܠ ൌ ܠୃܹܹ ൌ ܟܟ
ୃ

ௗ

ୀଵ

ܠ ൌܟ ܟ
ܠୃ  

ௗ

ୀଵ

ൌ ଵܟ
ܠୃ ଵܟ  ଶܟ

ܠୃ ଶܟ ⋯ ௗܟ
ܠୃ ௗܟ

ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ௗܟ
ܠୃ

∈ Թௗ

Dimensionality 
reduction is achieved 
by dropping some of 
the new coordinates.



Terminology

 ଵ ଶ ௗ
 Basis
 Directions

 
ୃ


 New coordinates
 Projection of along the direction 



Principal Component Analysis (PCA)

 Given a set of Data Points 
ଵ ଶ  where 

ௗ

 Finding a set of directions 
ଵ ଶ  such that the variance

of

are maximized

ଵܡ ൌ

ଵܟ
ଵܠୃ

ଶܟ
ଵܠୃ
⋮

ܟ
ଵܠୃ

, ଶܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ܟ
ܠୃ

,⋯ , ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ܟ
ܠୃ



Principal Component Analysis (PCA)

 Given a set of Data Points 
ଵ ଶ  where 

ௗ

 Finding a set of directions 
ଵ ଶ  such that the variance

of

are maximized

ଵܡ ൌ

ଵܟ
ଵܠୃ

ଶܟ
ଵܠୃ
⋮

ܟ
ଵܠୃ

, ଶܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ܟ
ܠୃ

,⋯ , ܡ ൌ

ଵܟ
ܠୃ

ଶܟ
ܠୃ
⋮

ܟ
ܠୃ

݇

For the purpose of 
dimensionality 

reduction, PCA only 
learns ݇ directions.

PCA uses variances 
to measure the 
quality of new 
coordinates.



PCA—One-dimensional Case (1)

 New Coordinates of ଵ ଶ 

 Variance is

where ଵ
 ଵ

ୃ



ୀଵ is the mean of new 

coordinates

ଵܟ
ଵܟ,ଵܠୃ

…,ଶܠୃ ଵܟ,
ܠୃ

1
݊ ଵܟ

ܠୃ െ ߤ ଶ


ୀଵ



PCA—One-dimensional Case (2)

 Let ଵ
 


ୀଵ be the mean vector

 Then, 

1
݊ ଵܟ

ܠୃ െ ߤ ଶ


ୀଵ

ൌ
1
݊ ଵܟ

ܠୃ െ ଵܟ
തܠୃ ଶ



ୀଵ

ൌ
1
݊ ଵܟ

ୃ ܠ െ തܠ
ଶ



ୀଵ

ൌ
1
݊ܟଵ

ୃ ܠ െ തܠ ܠ െ തܠ ଵܟୃ



ୀଵ

ൌ ଵܟ
ୃ 1

݊ ܠ െ തܠ ܠ െ തܠ ୃ


ୀଵ

ଵܟ



PCA—One-dimensional Case (3)

 The Optimization Problem of PCA

where ଵ
  

ୃ
ୀଵ is the  

covariance matrix
 The Solution (Rayleigh Quotient)
 Lagrangian: ୃ

ଶ
ଶ

 Set the gradient of ܟ be zero

Թ∋ܟ
ୃ

ଶ
ଶ

=



PCA—One-dimensional Case (4)

 is eigenvector and eigenvalue of 
 The objective becomes

 Thus, we select the largest eigenvector 
and eigenvalue of 

 The Algorithm
1. Calculate the mean vector ଵ


ܠ

ୀଵ

2. Calculate the covariance matrix 
ଵ
  

ୃ
ୀଵ

3. Calculate the largest eigenvector of 

ܟܥୃܟ ൌ ܟୃܟߣ ൌ ߣ



Property of the Covariance Matrix

 is symmetric
 is positive semidefinite (PSD)
 All the eigenvalues are non-negative

 The rank of is at most 
 Let ଵ 

ௗൈ

 It has at most positive eigenvalues

ܥ ൌ
1
݊ ܠ െ തܠ ܠ െ തܠ ୃ



ୀଵ

rank ܥ ൌ rank തܺ തܺୃ ൌ rank തܺ  ݊ െ 1



PCA— -dimensional Case (1)
 The Optimization Problem of PCA

where ଵ
  

ୃ
ୀଵ

 The Solution (Rayleigh Quotient)
 ଵ  , where ଵ  are the 

largest eigenvectors of 
 Section 5.2.2.(6) of [Lütkepohl 1996]

 Can also be defined in an incremental 
fashion

ௐ∈Թൈೖ
ୃ

ୃ



PCA— -dimensional Case (2)

 The Algorithm
1. Calculate the mean vector ଵ


ܠ

ୀଵ

2. Calculate the covariance matrix 
ଵ
  

ୃ
ୀଵ

3. Calculate the largest eigenvectors of 
 Eigenvalue
  is the variance of the -th coordinate
 Measure the quality of PCA

∑ ߣ
ୀଵ

∑ ௗߣ
ୀଵ

∑ ௗߣ
ୀାଵ
∑ ௗߣ
ୀଵ

Captured Lost



An Example

 Arrythmia data set from the UCI



Discussions of PCA

 The Key Operation
 Eigendecomposition of 

 PCA can also be derived from the 
perspective of projection error 
minimization
 Section 12.1.2 of [Bishop 2007]

 PCA is Linear Since

where ଵ 
ௗൈ

 PCA is Unsupervised

ௗ ୃ 



Singular Value Decomposition (SVD)

 SVD of ଵ ଶ 
ௗൈ with 

 ଵ ଶ ௗ
ௗൈௗ, ୃ ୃ

 ଵ ଶ ௗ
ൈௗ, ୃ

 ଵ ଶ ௗ
ௗൈௗ, ଵ ଶ

ௗ

ܺ ൌ ܷΣܸୃ ൌߪܝܞୃ
ௗ

ୀଵ



Compact SVD

 SVD of ଵ ଶ 
ௗൈ with 

  ଵ ଶ 
ௗൈ, 

ୃ


  ଵ ଶ 
ൈ, 

ୃ


  ଵ ଶ 
ൈ, ଵ ଶ



ܺ ൌ ܷΣ ܸ
ୃ ൌߪܝܞୃ



ୀଵ



Dimensionality Reduction by SVD

 The Algorithm
1. Calculate the largest left singular 

vectors ଵ ଶ  of ଵ ଶ 

 The New Coordinates of are

  ଵ ଶ 
ௗൈ

 The New Coordinates of is

ܷୃܠ ൌ

ܠଵୃܝ
ܠଶୃܝ
⋮

ܠୃܝ

∈ Թ


ୃX= 

ୃ
  

ୃ=  
ୃ



SVD—A Energy-preserving 
Interpretation

 The Optimization Problem of SVD
 1-dimensional

 -dimensional

Թ∋ܟ
ୃ ୃ

ଶ
ଶ

ௐ∈Թൈೖ
ୃ ୃ

ୃ

ܺ
ܺܺ ܺ ܺ

Left (right) singular vectors of ܺ are the
eigenvectors of ܺܺୃ (ܺୃܺ).



PCA by SVD

 Old Algorithm
1. Calculate the mean vector ଵ


ܠ

ୀଵ

2. Calculate the covariance matrix 
ଵ

∑ ܠ െ ܠ̅ ܠ െ ܠ̅ ୃ
ୀଵ

3. Calculate the -largest eigenvectors of 
 New Algorithm

1. Calculate the mean vector ଵ


ܠ
ୀଵ

2. Calculate the ݇ largest left singular 
vectors of ଵ 



PCA by SVD

 Old Algorithm
1. Calculate the mean vector ଵ


ܠ

ୀଵ

2. Calculate the covariance matrix 
ଵ

∑ ܠ െ ܠ̅ ܠ െ ܠ̅ ୃ
ୀଵ

3. Calculate the -largest eigenvectors of 
 New Algorithm

1. Calculate the mean vector ଵ


ܠ
ୀଵ

2. Calculate the ݇ largest left singular 
vectors of ଵ 

PCA is equivalent to 
SVD if ܺ ൌ തܺ, that is, if 
data are zero-mean.
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Dimensionality Reduction with 
Type Transformation

 Time Series to Multidimensional
 Can also be viewed as a rotation of an 

axis system
 Haar wavelet transform

 Weighted graphs to multidimensional
 Multidimensional Scaling (MDS)
 Edge represents distance

 Spectral Transformations
 Edge represents similarity



Haar Wavelet Transform (1)
 A New Basis for time series data

 Each element basis is a time series (wavelets)
 Coefficients can be calculated efficiently
 Coefficients have nice interpretations



Haar Wavelet Transform (2)

 Given a Time Series with length 

where ଵ ଶ ௗ are wavelets, and they 
are orthogonal to each other

 Normalization


భܟ
భܟ మ

మܟ
మܟ మ

ܟ
ܟ మ

are orthonormal to 
each other

ܜ ൌ ଵܟଵߙ  ଶܟଶߙ ⋯ ௗܟௗߙ

ܜ ൌ ଵߙ ଵܟ ଶ
ଵܟ
ଵܟ ଶ

 ଶߙ ଶܟ ଶ
ଶܟ
ଶܟ ଶ

⋯ ௗߙ ௗܟ ଶ
ௗܟ
ௗܟ ଶ



Haar Wavelet Transform (3)

 The New Coordinates

 Dimensionality Reduction

 Feature Selection, PCA, SVD
 Sparse Representation

ܡ ൌ

ଵߙ ଵܟ ଶ
ଶߙ ଶܟ ଶ

⋮
ௗߙ ௗܟ ଶ

∈ Թௗ

ܻ ൌ

ଵଵߙ ଵܟ ଶ
ଵଶߙ ଶܟ ଶ

⋮
ଵௗߙ ௗܟ ଶ

	

ଶଵߙ ଵܟ ଶ
ଶଶߙ ଶܟ ଶ

⋮
ଶௗߙ ௗܟ ଶ

⋯
⋯
⋮
⋯
	

ଵߙ ଵܟ ଶ
ଶߙ ଶܟ ଶ

⋮
ௗߙ ௗܟ ଶ

∈ Թௗൈ



Multidimensional Scaling (MDS)

 Input
 A graph with nodes
   be the distance between nodes 

and 
 Output
 A set of coordinates that fits the distance

 Metric MDS

	∈Թೖܠ,…,మܠ,భܠ
  ଶ 

ଶ

,:ழ



Assume the specified distance 
matrix is Euclidean
 The Algorithm

1. Calculate the dot-product matrix

2. Eigen decompose 

3. The new coordinates are

ܷ ൌ ሾܝଵ, … , ሿܝ ∈ Թൈ, Λ ൌ diag ,ଵߣ … , ߣ ∈ Թൈ

ܵ ൌ െ
1
2 ܫ െ

ୃ

݊ Δ ܫ െ
ୃ

݊

ܵ ൌ ܷΛܷୃ ൌߣܝܝୃ


ୀଵ

 
ିଵ/ଶ ൈ



Assume the specified distance 
matrix is Euclidean
 The Algorithm

1. Calculate the dot-product matrix

2. Eigen decompose 

3. The new coordinates are

ܷ ൌ ሾܝଵ, … , ሿܝ ∈ Թൈ, Λ ൌ diag ,ଵߣ … , ߣ ∈ Թൈ

ܵ ൌ െ
1
2 ܫ െ

ୃ

݊ Δ ܫ െ
ୃ

݊

ܵ ൌ ܷΛܷୃ ൌߣܝܝୃ


ୀଵ

 
ିଵ/ଶ ൈ

Metric MDS is 
equivalent to PCA, 

if the distance 
matrix is Euclidean.



Spectral Transformations (1)

 Input
 A graph with nodes
   be the similarity between nodes 

and 
 Output
 A set of coordinates that preserves the 

similarity
 The Objective

∈Թೖܠ,…,మܠ,భܠ
   ଶ

ଶ


ୀଵ



ୀଵ



Spectral Transformations (2)

 The Optimization Problem

 ଵ ଶ 
ୃ ൈ, 

 is a diagonal matrix with  

ୀଵ

 Generalized Eigenproblem

 The Solution [Luxburg 2007]
 ଵ 

ൈ, where  is the -th
smallest eigenvector

∈Թൈೖ
ୃ

ୃ
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Summary

 Feature Extraction and Portability
 Data Cleaning
 Data Reduction by Sampling
 Dimensionality Reduction with Axis 

Rotation
 PCA, SVD

 Dimensionality Reduction with Type 
Transformation
 Haar Wavelet Transform, MDS, Spectral 

Transformation
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