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Introduction

Motivation

“Love 1s the power to see similarity in the dissimilar.”—Theodor Adorno

Definition

Given two objects Oy and Oy, determine a value of the similarity Sim(0O¢,03) (or dis-
tance Dist(O1,032)) between the two objects.

B Distance functions for spatial data
B Similarity functions for text
Representation

B Closed-form, such as Euclidean distance
B Defined algorithmically
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Multidimensional Data (Vectorsy®

Quantitative Data

Categorical Data

Mixed Quantitative and Categorical
Data



Quantitative Data (1)

L,-Norm (p = 1)
B Given X =(z1...zq) and Y = (y1...yq)

Dist(f._ ?) = Z |z; — y;|P

Given a vector space V over a subfield F of the complex numbers, a norm on V is a function p: V — R with the following properties:!"

Forallae Fandallu, v eV,

1. p(av) = |a| piv), (absolute homogeneity or absolute scalability).
2. p(u + v) £ p(u) + p(v) (triangle inequality or subadditivity).
3. If p(v) = 0 then v is the zero vector (separates points).

https://en.wikipedia.org/wiki/Norm_(mathematics)



Quantitative Data (2)

L,-Norm (p = 1)

B Given f:(.’l‘l...:r-d) Hﬁd?:(yl---yd)
1/p

d
Dist(f._ ?) = Z |z; — y;|P
=1

B p=1: Manhattan norm
v' Sum of absolute values
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Quantitative Data (2)

L,-Norm (p = 1) ‘
B Given X = (x1...x4) and Y = (yl ---yd)

1/p
Dist(X.Y) = (Z |z —yllp)

B p=1: Manhattan norm
v' Sum of absolute values

B p =2: Euclidean norm
v' Square root of sum of squares
v" Rotation-invariant

B p=oc: Infinity norm
v' Largest absolute value



Quantitative Data (3)

“L,-Norm” (p <1) ‘
B Given X =(z;...2q) and Y = (y1...v4q)

d 1/p
Dist(f._ ?) = (Z |z; — ’Hi|p)

i=1

B p=0:Zero norm
v" Number of nonzero elements
v" Nonconvex

B 0<p<1: Fractional-norm
v Nonconvex



Impact of Domain-Specific
Relevance

Some Features are more Important

B Credit-scoring
v' Salary is more important than Gender

Generalized L,-Norm

d 1/p
Dist(X.Y) = (Z a; - |T; — vy P) |

i=1

® a,..,a; are nonnegative coefficients
B Generalized Minkowski distance



Impact of High Dimensionality (1)

Curse of Dimensionality

B Distance-based algorithms lose their
effectiveness as the dimensionality increases

An Example

B A unit cube of dimensionality d in the
nonnegative guadrant

B X is a random point in the cube
B Manhattan distance  y;
between 0 and X 1 X

v
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Impact of High Dimensionality (2)

B Manhattan distance between 0 and X

Dist 5 Y (Y; —0). 1
3 (I
where X = [V}, ..., Y] :
B Dist(0,X) is a random variable — —
v" Since X is a random variable

v Meanis u=d/2
v' Standard deviation o = ,/d /12
B With a probability at least 8/9

Dist(0,X) € [u—30,u + 30]

Dmin Dmax



Impact of High Dimensionality (2)

B Manhattan distance between 0 and X

d
D?St(@ I Tk N s fal V4

Chebyshev's inequality

where X ; Let X be a random variable with finite

B Dist(0, X) expected \;alue p and finite non-zero
_ ’ | variance ¢°. Then for any real number | 1 x
v' Since X| k> 0,

v' Mean is Pr(|X — u| = ko)

v’ Standa
B With a plﬂmn\/(least 8/9

Dist(0,X) € [u—30,u + 30]

Dmin Dmax

=%z




Impact of High Dimensionality (3)

B Manhattan distance between 0 and X
o

Dist(0,X) =) (Y;—0).

i=1
B Dist(0,X) is a random variable
v Meanis u=4d/2
v Standard deviation ¢ = ,/d/12
B With a probability at least 8/9

Dist(0,X) € [ — 30,1+ 30]

D min Dmax

B Contrast

Contrast(d) = Drmaz = Dimin = /12/d.
7




Impact of High Dimensionality (4)

Contrast— 0, as d » o«

B As d Increases, variation become
neglectable
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Impact of Locally Irrelevant
Features

Many features are likely to be
iIrrelevant

B Especially in high-dimensional data

An Example

B A cluster containing diabetic patients
v" Blood glucose level are more important

] L,-Norm

B Suffer from the additive noise effects
of the irrelevant features




Impact of Different L,-Norms (1);%@:

Different L,-Norms do not behave In
a similar way

B \When the dimensionality is high

B \When there exist irrelevant features

L.,-Norms

dist(X,Y) = max |x; — y;|
l

B Sensitive to noise

Irrelevant attributes are emphasized

for large values of p



Impact of Different L,-Norms (2)t

Distance contrasts are also poorer for

large values of p
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Impact of Different L,-Norms (3)t

Distance contrasts are also poorer for

large values of p
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Match-Based Similarity Computation R

The Key ldea
B De-emphasize irrelevant features

Proximity Thresholding

B Discretized each feature into kg
equidepth buckets

Similarity Evaluation

X: [xllle.“'xd] > [11'3,...

kq
Y = [y11y2’"°'yd] — [5'31'"'kd:

B S(X,Y, k,) is the set of features map
to the same bucket

ned




Match-Based Similarity Computation & %

The Key ldea
B De-emphasize irrelevant features

Proximity Thresholding

B Discretized each feature into kg
equidepth buckets

Similarity Evaluation

1/p

. — ap|\P — —
PSEEECi(fg Y, kq) = |: Z (1 . |z y1|) :| = [O,S(X, Y, kd)]

—_ m; — 1y
1eS8(X.Y ka)

B S(X,Y, k,) is the set of features mapped
to the same bucket



Match-Based Similarity Computation

The Key ldea
B De-empFr

v Picking k; «xd achieves a
Proxi constant level of contrast In
B Disc high dimensional space for

equi Yo certain data distributions.

Similarity E

1/p

e I\P _
PSEEECi(fg?, kd_\] — |: Z (1 B |5‘5a y1|) :| = [O,S(X, Y, kd)]

_ m; — 1y
1eS8(X.Y ka)

B S(X,Y, k,) is the set of features mapped
to the same bucket



Impact of Data Distribution (1)t

A=(1,2)and B =(1,-2)
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Impact of Data Distribution (2)~

A=(12)and B =

(1 —2)
0O— A iIs alignhed
with a high-
variance direction
®m O0—B is alighed
with a low-
variance direction

B 0— A ought to be
less than O—B
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Impact of Data Distribution (3)<

The Mahalanobis distance
B Let X be the covariance matrix

Maha(X,Y) = /(X —V)S-1(X - V)T

B Projection+Normalization
v LetX=UAUT =32, o;u;u]
v Then, 21 =UAWUT =3¢, o7 'uyu]

Zd: ((X — Y)Ui)z
\ =1 %

d
Maha(X,Y)= | (X —Y) (Z ailuiuiT> (X -7 =
\ i=1



Nonlinear Distributions: ISOMAP (1) &

Which one of B and C iIs closer to A?
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Nonlinear Distributions: ISOMAP (2)

Geodesic Distances

B Compute the k-nearest neighbors of
each point

B Construct a weighted graph ¢ with nodes
representing data points, and edge
weights representing (Euclidean)
distance of these k-nearest neighbors
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B Dist(X,Y) is the shortest path between X
and Y in the graph

.
4



Nonlinear Distributions: ISOMAP (3) -

Nonlinear Dimensionality Reduction
by ISOMAP

B Compute the k-nearest ...
B Construct a weighted graph G ...

B Compute the distances between all pairs
of data points
v A d x d distance matrix

B Find vector representations by
multidimensional scaling (MDS)

B Dist(X,Y) is the Euclidean distance of the
new representations




Nonlinear Distributions: ISOMAP (4)

An Example of ISOMAP
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(a) A and C seem close (b) A and C are actually far away
(original data) (ISOMAP embedding)

B Manifold Learning (ISOMAP, LLE, LE)



Impact of Local Data Distribution (1)

Local Density Variation
B (C— D should be longer than A—B
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(a) local density variation



Impact of Local Data Distribution (2)

Local Density Variation
B (C— D should be longer than A—B
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Impact of Local Data Distribution (3)*

Generic Methods

Partition the data into a set of local
regions (Nontrivial)

For any pair of objects, determine the
most relevant region for the pair
If they belong to the same region

v Compute the pairwise distances using the
local statistics of that region

v Local Mahalanobis distance

If they belong to different regions
v" Global statistics or averaged statistics



Multidimensional Data (Vectorsy®

Quantitative Data

Categorical Data

Mixed Quantitative and Categorical
Data



Categorical Data (1)

Given X = (r1...xq) and Y = (Y1 -+ Yd)

B Sum of similarities on the individual
features

Sim T }_ —

B The simplest S(x;, y;)

‘-]‘*r L Ys ).

d
=1

1’ X; = Y;
s ={y 22

v Ignore the relative frequencies

B Two documents containing “Science” are less
similar than two documents containing “Data
Mining”



Categorical Data (2)

Given X = (xq...xq) and Y = (y1...ya)

B Sum of similarities on the individual
features

Sim(X,Y) :Z‘-]‘ Tiy Y )
i=1

B Inverse occurrence frequency

1 (s 2’ X: = V:
S(xi, yl) = {0/pl( l) x,: + il
) l l

v p;(x;) is the fraction of records in which the i-
th feature takes on the value of x;



Categorical Data (3)

Given X = (xq...xq) and Y = (y1...ya)

B Sum of similarities on the individual
features

Sim(X,Y) :Z‘-]‘ Tiy Y )
i=1

B Goodall measure

1 — 1:(x; 2’ X: = V:
S(xi)yi) :{O pl( l) xl:'t))/}l
) l l

v p;(x;) is the fraction of records in which the i-
th feature takes on the value of x;



Multidimensional Data (Vectorsy®

Quantitative Data

Categorical Data

Mixed Quantitative and
Categorical Data



Mixed Quantitative and
Categorical Data

Given X = (X,,.X,) and Y = (Y,,.Y,)
B Where X,,, Y,, are the subsets of

numerical attributes and X,, Y. are the
subsets of categorical attributes

B \Weighted Average

Sim(X,Y) =X NumSim(X,,Y,) + (1 = \) - CatSim(X,,Y.)

v A is difficult to decide
B Normalized Weighted Average

Sim(X,Y) =X NumSim(Xp,Yn)/on + (1 — ) - CatSim(X.,Ye.)/o..
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Text Similarity Measures (1)

As Quantitative Multidimensional Data
B Bag of words model
B Itis very sparse
® L,-norm does not work well
v" Long documents have long distance

Dimensionality Reduction (A Possible
Solution)

B [Latent Semantic Analysis (SVD)
® L,-norm In the new space




Text Similarity Measures (2)

Cosine Similarity
B The angle between two documents

d
CGS{?,}_’T} _ dz.izl €I y?d ‘
\/Zi:l i - \/Zi:l vi

B Ignore the relative frequencies

v Two documents containing “Science” are
less similar than two documents containing
“Data Mining”




Text Similarity Measures (3)

Cosine Similarity with TF-I1DF
B Inverse document frequency

id; = log(n/n;).

where n; Is number of documents in which the
i-th word occurs

B A damping function may be applied to
term frequencies

flzi) = Vi
f(zi) = log(z;)

v" The excessive presence of single word does
not throw off the similarity measure



Text Similarity Measures (4)

Cosine Similarity with TF-I1DF
B Normalized frequency for the i-th word

h{.}fz] — f(ﬂ:g} . 'E.d-z.
B Then, we define

(.7 zd h(z:) - h(y:)

\/Er b \/Ez 1 h(yi)? |

Jaccard coefficient

JXY) = — iy hla) - hly)
Z‘f 1 ( )E_I_Zz 1 ( ) _Er 1h( )-h(yz)




Binary and Set Data

Given X = (x4, ...,xg) and Y = (y4, ..., ¥4)

with Xi, Vi € (0,1)

B They can be treated as vector
representations of two sets

Sx ={ilx; = 1}
Sy ={ily; = 1}

B Jaccard coefficient

J(IX. V)= Zf:l L - Ui B |S_}( M Sy|
( ) ) o d 2 d 2 d — |S U g ;| .
2-1:1 L + Z-i:]_ Yi — 23—:1 LY X Uy
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Temporal Similarity Measures

Temporal data
B Continuous time series

B Discrete seguences



Time-Series Similarity
Measures (1)

Distortion Factors

B Behavioral attribute scaling and
translation

B Temporal (contextual) attribute
translation

B Temporal (contextual) attribute scaling

B Noncontiguity in matching



Time-Series Similarity
Measures (2)

Impact of scaling, translation, and
noise

40 -
—— STOCK A

a5 || - — - - STOCK B (DROPPED READINGS)
.——.— STOCKC
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0 a0 100 150 200 250 300 350 400 450 500
TIME



Time-Series Similarity
Measures (3)

Impact of Behavioral Attribute
Normalization

B Behavioral attribute translation
v" The behavioral attribute is mean centered

B Behavioral attribute scaling
v" The standard deviation is scaled to 1

Lp—Norm

n L/p
Dist(X,Y) = (Z z; — yf|p)

i=1

B Combined with wavelet transformations



Dynamic Time Warping
Distance (1)

Address contextual attribute scaling
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Dynamic Time Warping
Distance (2)

Given X = (z1...0p) and Y = (y1 ... yn)
B The two series have different lengths
DTW(i,))

B The distance between the first i elements
of X and the first j elements of Y

An Recursive Definition

DTW(i,j—1) repeat x;
DT'W (i, j) = distance(x;,y;) +min ¢ DTW (i — 1, 7) repeat y;
DTW(i—1,7—1) repeat neither



Dynamic Time Warping
Distance (3)

Implementation
B Recursive computer program
DTW (1,7 — 1) repeat x;
DTW (i,7) = distance(x;,y;) +min ¢ DTW (i — 1, j) repeat y;

DTW (i —1,7—1) repeat neither

B Nested Loop

fori=1tom
for j=1ton
compute DT'W (i, j) using Eq. 3.18



Dynamic Time Warping
Distance (3)

Optimal Warping = Optimal Path




Temporal Similarity Measures

Temporal data
B Continuous time series

B Discrete seguences



Edit Distance (1)

Edit Distance of Two Sequences

B The cost of “edits” to transfer the first
one to the second one

Edits

B Insertions

B Deletions

B Replacements

Seguence abababab to babababa
B 8 Replacements
B 1 Deletion+1 Insertion




Edit Distan

ce (2)

Two Sequences X = (¢1...2m) and Y = (y1...yn)

B Edit(X,Y) may not be the same as

Edit(Y, X)
Edit(i, )
B The edit d

Istance between the first i

symbols of X and the first j symbols of Y

Edit(i, 7) = min {

An Recursive Definition

( Edit(i — 1,j) + Deletion Cost
Edit(i, j — 1) 4 Insertion Cost

| Fdit(i — 1,7 — 1) + I;; - (Replacement Cost)



Longest Common Subsequenceigy
(LCSS) :

LCSS of X = (z1...2m) and Y = (y1...yn).

B Length of the longest common
subseqguence

LCSS (i,))
B The LCSS between the first i symbols of
X and the first j symbols of Y

An Recursive Definition

LCSS(i—1,7—1)4+1 onlyifz; =y;
LCSS(i,j) = max{ LCSS(i — 1,7) otherwise (no match on x;)
LCSS(i,j —1) otherwise (no match on y;)
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Similarity between Two Nodes |y
in a Single Graph

Structural Distance-Based Measure
B Shortest-path on the graph

B Dijkstra algorithm

Random Walk-Based Similarity

B Accounts for multiplicity in paths during
similarity computation




Similarity Between Two Graphsau

Extremely Challenging

B Even the graph isomorphism problem is
NP-hard

Possible Solutions

B Maximum common subgraph distance
B Substructure-based similarity

B Graph-edit distance

B Graph kernels
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Supervised Similarity Functions

User Feedback

S ={(0;,0;) : O; is similar to O, }
D ={(0;,0j) : O; is dissimilar to O;}.

Learn a distance function that fits the
feedback

B Find parameter © to minimize

E= ), (f(0,0;,0)-07%+ 3} (f(0;0;,6)-1)

(0;,05)eS (0;,0;)eD
where f(0;,0;,0) Is a distance function with
parameter 0
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Summary

O

Multidimensional Data

L,-Norm, Generalized Minkowski distance

Match-Based Similarity Computation
Mahalanobis distance, Geodesic distances
Inverse Occurrence Frequency

Text Similarity Measures

Cosine, TF-IDF

Temporal Similarity Measures

Dynamic Time Warping
Edit Distance, Longest Common Subsequence

Graph Similarity Measures

Shortest-path, Random Walk

Supervised Similarity Functions



