
Association Pattern
Mining

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu.cn/zlj

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Introduction

 Transactions
 Sets of items bought by customers

 The Goal
 Determine associations between groups of

items bought by customers
 Quantification of the Level of Association
 Frequencies of sets of items

 The Discovered Sets of Items
 Large itemsets, frequent itemsets, or

frequent patterns

Applications

 Supermarket Data
 Target marketing, shelf placement

 Text Mining
 Identifying co-occurring terms

 Generalization to Dependency-
oriented Data Types
 Web log analysis, software bug detection

 Other Major Data Mining Problems
 Clustering, classification, and outlier

analysis

Association Rules

 Generated from Frequent Itemsets
 Formulation
 {Beer} {Diapers}
 {Eggs,Milk} {Yogurt}

 Applications
 Promotion
 Shelf placement

 Conditional Probability

ܲ ܻ ܺ ൌ
ܲሺܺ ∩ ܻሻ
ܲሺܺሻ

Outline

 Introduction
 The Frequent Pattern Mining

Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

The Frequent Pattern Mining
Model

 is a set of iterms
 is a set of transactions ଵ ௡
 ௜

 Binary Representation of ଵ ௡
 ܷ ൌ ,݀ܽ݁ݎܤ ,ݎ݁ݐݐݑܤ ,݁ݏ݄݁݁ܥ ,݈݇݅ܯ,ݏ݃݃ܧ ݐݎݑ݃݋ܻ

The Frequent Pattern Mining
Model

 is a set of iterms
 is a set of transactions ଵ ௡
 ௜

 Binary Representation of ଵ ௡
 ܷ ൌ ,݀ܽ݁ݎܤ ,ݎ݁ݐݐݑܤ ,݁ݏ݄݁݁ܥ ,݈݇݅ܯ,ݏ݃݃ܧ ݐݎݑ݃݋ܻ

 Itemset, -itemset
 A set of items, A set of ݇ items

Definitions

 Support

 Denoted by ݌ݑݏ	ሺܫሻ
 Frequent Itemset Mining

 ݌ݑݏ݊݅݉ is the minimum support

An Example

 A Market Basket Data Set

 of {Bread, Milk} is ଶ
ହ

 of {Cheese, Yogurt} is ଵ
ହ


 {Bread, Milk} is a frequent itemset

Properties

 The smaller is, the larger the
number of frequent itemsets is.

 Support Monotonicity Property

 When an itemset ܫ is contained in a
transaction, all its subsets will also be
contained in the transaction.

 Downward Closure Property

Maximal Frequent Itemsets

 Maximal frequent patterns at
 {Bread,Milk}, {Cheese,Milk}, {Eggs,Milk, Yogurt}

 Frequent Patterns at
 The total number is 11
 Subsets of the maximal frequent patterns

Maximal Frequent Itemsets

 The maximal patterns can be considered
condensed representations of the frequent
patterns.

 However, this condensed representation does
not retain information about the support
values of the subsets.

The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All itemsets above
this border are
frequent.

The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All itemsets below
this border are
infrequent.

The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All maximal frequent
itemsets are adjacent
to this border

The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

Any valid border always
respects the downward
closure property.

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Definitions

 The confidence of a rule

 ܺ and ܻ are said to be the antecedent and the
consequent

 In the previous table

݂݊݋ܿ ݈݇݅ܯ,ݏ݃݃ܧ ⇒ ݐݎݑ݃݋ܻ ൌ
,݈݇݅ܯ,ݏ݃݃ܧሺሼ݌ݑݏ ሽሻݐݎݑ݃݋ܻ

ሽሻ݈݇݅ܯ,ݏ݃݃ܧሺሼ݌ݑݏ ൌ
0.4
0.6 ൌ

2
3

Definitions

 The confidence of a rule

 Association Rules

 A sufficient number of transactions are relevant
 A sufficient strength in terms of conditional probabilities

The Overall Framework

1. In the first phase, all the frequent
itemsets are generated at the
minimum support of .
 The most difficult step

2. In the second phase, the association
rules are generated from the frequent
itemsets at the minimum confidence
level of .
 Relatively straightforward

Implementation of 2nd Phase

 A Straightforward Implentation
 Given a frequent itemset
 Generate all possible partitions and

 Examine the confidence of each
 Reduce the Search Space

݌ݑݏ ܺଶ ൑ ݌ݑݏ ଵܺ ⇒
ሻܫሺ݌ݑݏ
ሺܺଶሻ݌ݑݏ

൒
ሻܫሺ݌ݑݏ
ሺ݌ݑݏ ଵܺሻ

Implementation of 2nd Phase

 A Straightforward Implentation
 Given a frequent itemset
 Generate all possible partitions and

 Examine the confidence of each
 Reduce the Search Space

 Techniques for frequent itemsets mining
can also be applied here

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining

Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Frequent Itemset Mining
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern
Growth Methods

Brute Force Algorithms (1)

 The Naïve Approach
 Generate all these candidate itemsets
 For a universe of items ܷ, there are a total

of 2|௎| െ 1 distinct subsets
 When ܷ ൌ 1000, 2ଵ଴଴଴ ൒ 10ଷ଴଴

 Count their support against the
transaction database

 Observation
 no ()-patterns are frequent if no -

patterns are frequent.

Brute Force Algorithms (2)

 A Improved Approach
 Generate all candidate -itemsets with
 Count their support against the

transaction database
 If no frequent itemsets are found, then

stop; Otherwise, and continue;
 A Significant Improvement
 Let be the final value of

 and , it is ଶଷ

෍
|ܷ|
݅

௟

௜ୀଵ

≪ 2|௎|

Brute Force Algorithms (3)

 A very minor application of the
downward closure property made the
algorithm much faster

 To Further Improve the Efficiency

Frequent Itemset Mining
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern
Growth Methods

The Apriori Algorithm

 The Basic Idea
 Use the downward closure property to

prune the candidate search space

The Apriori Algorithm

 The Basic Idea
 Use the downward closure property to

prune the candidate search space
 The Overall Procedure (level-wise)
 Using the frequent -itemsets to

generate -candidates
 Prune the candidates before counting
 Counts the supports of the remaining

-candidates
 Stop if there is no frequent -

itemsets

The pseudocode

Candidates Generation (1)

 A Naïve Approach
 Check all the possible combination of

frequent -itemsets
 Keep all the -itemsets

 An Example of the Naive Approach
 -itemsets: {abc} {bcd} {abd} {cde}
 {abc} + {bcd} = {abcd}
 {bcd} + {abd} = {abcd}
 {abd} + {cde} = {abcde}
 ……

Candidates Generation (1)

 A Naïve Approach
 Check all the possible combination of

frequent -itemsets
 Keep all the -itemsets

 An Example of the Naive Approach
 -itemsets: {abc} {bcd} {abd} {cde}
 {abc} + {bcd} = {abcd}
 {bcd} + {abd} = {abcd}
 {abd} + {cde} = {abcde}
 ……

Redundancy
and

Inefficiency

Candidates Generation (2)

 Introduction of Ordering
 Items in have a lexicographic ordering
 Itemsets can be order as strings

 A Better Approach
 Order the frequent -itemsets
 Merge two itemset if the first items

of them are the same

Candidates Generation (3)

 Examples of the New Methods
 -itemsets: {abc} {abd} {bcd}
 {abc} + {abd} = {abcd}

 -itemsets: {abc} {acd} {bcd}
 No -candidates
 Early stop is possible
 Donot need to check {abc} +{bcd} after

checking {abc} + {acd}
 Do we miss {abcd}?
 No, due to the Downward Closure Property

Level-wise Pruning Trick

 Let ௞ be the set of frequent -
itemsets

 Let ௞ାଵ be the set of -
candidates

 For an ௞ାଵ, it is frequent only if all
the all the -subsets of are frequent

 Pruning
 Generate all the -subsets of
 If any one of them does not belong to ௞,

then remove

Support Counting (1)

 A Naïve Approach
 For each candidate ௜ ௞ାଵ
 For each transaction ௝ܶ in the transaction

database ܶ
 Check whether ܫ௜ appears in ௝ܶ

 The Limitation
 Inefficient if both ௞ାଵ and are very

large

Support Counting (2)

 A Better Approach
 Organize the candidate patterns in ௞ାଵ

with a hash tree
 Hash tree construction

 Use the hash tree to accelerate counting
 Each transaction ௜ܶ is examined with a

small number of candidates in ܥ௞ାଵ

Hash Tree

 A tree with a fixed degree of the
internal nodes

 Each internal node is associated with
a random hash function that maps an
item to one of its children

 A leaf node contains a list of
lexicographically sorted itemsets

 Every itemset in ௞ାଵ is contained in
exactly one leaf node of the hash
tree.

Hash Tree of

 The Maximum Depth is

H

H H

H

Hash on the 1st item

Hash on the 2nd item

Hash on the 3rd item
abc
bcd

dehcde
deg

hij

Counting based on Hash Tree
 For each ௝, identify leaves in the hash

tree that might contain subset items
 The Procedure
 Root node – hash on all items in ௝ܶ
 Suppose the ݅-th item of ௝ܶ is hashed to one node,

then pass this position ݅ to that node

 If we are at a leaf – find all itemsets
contained in ௝ܶ

 If we are at an interior node – hash on each
item after the given position
 Suppose the ݅-th item of ௝ܶ is hashed to one node,

then pass this position ݅ to that node

Frequent Itemset Mining
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern
Growth Methods

Enumeration-Tree

 Lexicographic Tree
 A node exists in the tree corresponding

to each frequent itemset.

 The root of the tree corresponds to the
null itemset.

 Let ଵ ௞ be a frequent itemset,
where ଵ ௞ are listed in lexicographic
order. The parent of the node is the
itemset ଵ ௞ିଵ

An Example

 Frequent Tree Extension
 An item that is used to extend a node

Enumeration Tree Algorithms

 Let be the parent of
 Let be the frequent extensions of
 Then,

Enumeration-Tree-Based
Interpretation of Apriori

 Apriori constructs the enumeration
tree in breadth-first manner

 Apriori generates candidate -
itemsets by merging two frequent -
itemsets of which the first −1 items
of are the same

 Extend with

TreeProjection (1)

 The Goal
 Reuse the counting work that has

already been done before
 Projected Databases
 Each projected transaction database is

specific to an enumeration-tree node.
 Transactions that do not contain the

itemset are removed.
 Projected database at node P can be

expressed only in terms of the items in

TreeProjection (2)

 The Algorithm

Vertical Counting Methods (1)

 Vertical Representation of Market
Basket Data Set

 Intersection of two item list gives
a new list
 The length is the support of the -

itemset

Vertical Counting Methods (2)

 The Algorithm

Frequent Itemset Mining
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern
Growth Methods

Generic Recursive Suffix
Growth Algorithm

 is expressed in terms of only
frequent -itemset

Relationship Between FP-Growth
and Enumeration-Tree Methods

 They are Equivalent

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Motivations (1)

 Advantages of Frequent Itemsets
 Very simple and intuitive
 Raw frequency for the support
 Conditional probabilities for the confidence

 Downward Closure Property
 Enable efficient algorithms

Motivations (2)

 Disadvantages of Frequent Itemsets
 Patterns are not always significant from

an application-specific perspective

 Milk can be appended to any set of items,
without changing its frequency

 For any set of items ܺ, the association rule
ܺ ⇒ ሼ݈݇݅ܯሽ has 100% confidence

Motivations (2)

 Disadvantages of Frequent Itemsets
 Patterns are not always significant from

an application-specific perspective
 Cannot adjust to the skew in the

individual item support values
 Support of {Milk, Butter} is very different

from {൓Milk, ൓Butter}
 But the statistical coefficient of correlation

is exactly the same in both cases

 Bit Symmetric Property
 Values of in the binary matrix are

treated in a similar way to values of

Statistical Coefficient of
Correlation

 Pearson Coefficient

 Estimated Correlation

 Properties
 Lies in the range
 Satisfies the bit symmetric property
 Intuitively hard to interpret

Measure

 Given a set of items, there are ௞-
possible states
 items {Bread, Butter}, the ଶ

states are {Bread, Butter}, {Bread,
Butter}, { Bread, Butter}, and

{ Bread, Butter}

Measure

 Given a set of items, there are ௞-
possible states

 The ଶ-measure for set of items

 ௜ and ௜ be the observed and expected
values of the absolute support of state

Measure

 Given a set of items, there are ௞-
possible states

 The ଶ-measure for set of items
 Properties
 Larger values of this quantity indicate

greater dependence
 Do not reveal whether the dependence

between items is positive or negative
 Is bit-symmetric
 Satisfies the upward closure property
 High computational complexity

Interest Ratio

 Definition

 Properties
 When the items are statistically independent,

the ratio is 1.
 Value greater than 1 indicates that the

variables are positively correlated.
 When some items are extremely rare, the

interest ratio can be misleading.
 Donot satisfy the downward closure property.

Symmetric Confidence
Measures

 Confidence Measure is Asymmetric

 Let and be two 1-itemsets
 Minimum of and
 Maximum of and
 Average of and
 Geometric mean is the cosine measure

 Can be generalized to k-itemsets
 Do not satisfy the downward closure

property

݂݊݋ܿ ܺ ⇒ ܻ ് ሺܻ݂݊݋ܿ ⇒ ܺሻ

Cosine Coefficient on Columns

 Definition

 Interpretation
 Cosine similarity between two columns of

the data matrix

 A Symmetric Confidence Measure

Jaccard Coefficient and the Min-
hash Trick

 Jaccard coefficient ଵ ଶ between
the two sets

 Jaccard coefficient between multiway
sets

 Properties
 Satisfy the downward closure property
 Speed up by min-hash trick

Collective Strength (1)

 Violation
 If some of the items of are present in

the transaction, and others are not.

 Violation Rate
 The fraction of violations of the itemset

over all transactions.

Collective Strength (2)

 Collective Strength

 The expected value of is calculated
assuming statistical independence of the
individual items.

 indicates a perfect negative correlation
 indicates a perfectly positive

correlation

Collective Strength (3)

 Interpretation of Collective Strength

 Strongly Collective Itemsets

 The closure property is enforced.

Relationship to Negative
Pattern Mining

 Motivation
 Determine patterns between items or

their absence
 Satisfy Bit Symmetric Property
 Statistical coefficient of correlation
 ଶ measure

 Jaccard Coefficient, Strongly Collective
strength
 Also satisfy downward closure property

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Useful Meta-algorithms

 Definition
 An algorithm that uses a particular

algorithm as a subroutine
 either to make the original algorithm more

efficient (e.g., by sampling)
 or to gain new insights

 Sampling Methods
 Data Partitioned Ensembles
 Generalization to Other Data Types

Sampling Methods

 The Procedure
 Sample a subset of the transactions
 Apply mining algorithm to sampled data

 Challenges
 False positives: These are patterns that

meet the support threshold on the sample
but not on the base data.
 Post-processing

 False negatives: These are patterns that do
not meet the support threshold on the
sample, but meet the threshold on the data.
 Reduce the support threshold

Data Partitioned Ensembles

 The Procedure
 The transaction database is partitioned

into disjoint segments
 The mining algorithm is independently

applied to each of these segments
 Post-processing to remove false positives

 Property
 No false negatives

Generalization to Other Data
Types

 Quantitative Data
 Rules contain quantitative attributes

 Discretize and converte to binary form
 Categorical Data
 Rules contain mixed attributes

 Transform to binary values

Outline

 Introduction
 The Frequent Pattern Mining Model
 Association Rule Generation

Framework
 Frequent Itemset Mining Algorithms
 Alternative Models: Interesting

Patterns
 Useful Meta-algorithms
 Summary

Summary
 Frequent Pattern Mining

 Support, Downward Closure Property
 Association Rule

 Support, Confidence
 Frequent Itemset Mining Algorithms

 Brute Force Algorithms, Apriori, Enumeration-Tree
Algorithms, Recursive Suffix-Based Pattern Growth
Methods

 Alternative Models: Interesting Patterns
 Pearson coefficient, ߯ଶ Measure, Interest Ratio,

Symmetric Confidence Measures, …
 Useful Meta-algorithms

 Sampling, Data Partitioned Ensembles, Generalization

