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Introduction

 Transactions
 Sets of items bought by customers

 The Goal
 Determine associations between groups of 

items bought by customers
 Quantification of the Level of Association
 Frequencies of sets of items

 The Discovered Sets of Items
 Large itemsets, frequent itemsets, or 

frequent patterns



Applications

 Supermarket Data
 Target marketing, shelf placement

 Text Mining
 Identifying co-occurring terms

 Generalization to Dependency-
oriented Data Types
 Web log analysis, software bug detection

 Other Major Data Mining Problems
 Clustering, classification, and outlier 

analysis



Association Rules

 Generated from Frequent Itemsets
 Formulation 
 {Beer} {Diapers}
 {Eggs,Milk} {Yogurt} 

 Applications
 Promotion
 Shelf placement

 Conditional Probability

ܲ ܻ ܺ ൌ
ܲሺܺ ∩ ܻሻ
ܲሺܺሻ
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The Frequent Pattern Mining 
Model

 is a set of iterms
 is a set of transactions ଵ ௡
 ௜

 Binary Representation of ଵ ௡
 ܷ ൌ ,݀ܽ݁ݎܤ ,ݎ݁ݐݐݑܤ ,݁ݏ݄݁݁ܥ ,݈݇݅ܯ,ݏ݃݃ܧ ݐݎݑ݃݋ܻ



The Frequent Pattern Mining 
Model

 is a set of iterms
 is a set of transactions ଵ ௡
 ௜

 Binary Representation of ଵ ௡
 ܷ ൌ ,݀ܽ݁ݎܤ ,ݎ݁ݐݐݑܤ ,݁ݏ݄݁݁ܥ ,݈݇݅ܯ,ݏ݃݃ܧ ݐݎݑ݃݋ܻ

 Itemset, -itemset
 A set of items, A set of ݇ items



Definitions

 Support

 Denoted by ݌ݑݏ	ሺܫሻ
 Frequent Itemset Mining

 ݌ݑݏ݊݅݉ is the minimum support



An Example

 A Market Basket Data Set

 of {Bread, Milk} is ଶ
ହ

 of {Cheese, Yogurt} is ଵ
ହ


 {Bread, Milk} is a frequent itemset



Properties

 The smaller is, the larger the 
number of frequent itemsets is.

 Support Monotonicity Property

 When an itemset ܫ is contained in a 
transaction, all its subsets will also be 
contained in the transaction.

 Downward Closure Property



Maximal Frequent Itemsets

 Maximal frequent patterns at
 {Bread,Milk}, {Cheese,Milk}, {Eggs,Milk, Yogurt}

 Frequent Patterns at 
 The total number is 11
 Subsets of the maximal frequent patterns



Maximal Frequent Itemsets

 The maximal patterns can be considered 
condensed representations of the frequent 
patterns. 

 However, this condensed representation does 
not retain information about the support 
values of the subsets.



The Itemset Lattice
 Contain 2 ௎ nodes and represents search space



The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All itemsets above
this border are
frequent.



The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All itemsets below
this border are
infrequent.



The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

All maximal frequent
itemsets are adjacent
to this border



The Itemset Lattice
 Contain 2 ௎ nodes and represents search space

Any valid border always
respects the downward
closure property.
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Definitions

 The confidence of a rule 

 ܺ and ܻ are said to be the antecedent and the 
consequent

 In the previous table

݂݊݋ܿ ݈݇݅ܯ,ݏ݃݃ܧ ⇒ ݐݎݑ݃݋ܻ ൌ
,݈݇݅ܯ,ݏ݃݃ܧሺሼ݌ݑݏ ሽሻݐݎݑ݃݋ܻ

ሽሻ݈݇݅ܯ,ݏ݃݃ܧሺሼ݌ݑݏ ൌ
0.4
0.6 ൌ

2
3



Definitions

 The confidence of a rule 

 Association Rules

 A sufficient number of transactions are relevant
 A sufficient strength in terms of conditional probabilities



The Overall Framework

1. In the first phase, all the frequent 
itemsets are generated at the 
minimum support of .
 The most difficult step

2. In the second phase, the association 
rules are generated from the frequent 
itemsets at the minimum confidence 
level of .
 Relatively straightforward



Implementation of 2nd Phase

 A Straightforward Implentation
 Given a frequent itemset
 Generate all possible partitions and 

 Examine the confidence of each 
 Reduce the Search Space

݌ݑݏ ܺଶ ൑ ݌ݑݏ ଵܺ ⇒
ሻܫሺ݌ݑݏ
ሺܺଶሻ݌ݑݏ

൒
ሻܫሺ݌ݑݏ
ሺ݌ݑݏ ଵܺሻ



Implementation of 2nd Phase

 A Straightforward Implentation
 Given a frequent itemset
 Generate all possible partitions and 

 Examine the confidence of each 
 Reduce the Search Space

 Techniques for frequent itemsets mining 
can also be applied here
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Frequent Itemset Mining 
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern 
Growth Methods 



Brute Force Algorithms (1)

 The Naïve Approach
 Generate all these candidate itemsets
 For a universe of items ܷ, there are a total 

of 2|௎| െ 1 distinct subsets
 When ܷ ൌ 1000, 2ଵ଴଴଴ ൒ 10ଷ଴଴

 Count their support against the 
transaction database

 Observation
 no ( )-patterns are frequent if no -

patterns are frequent.



Brute Force Algorithms (2)

 A Improved Approach
 Generate all candidate -itemsets with 
 Count their support against the 

transaction database
 If no frequent itemsets are found, then 

stop; Otherwise, and continue;
 A Significant Improvement 
 Let be the final value of 

 and , it is ଶଷ

෍
|ܷ|
݅

௟

௜ୀଵ

≪ 2|௎|



Brute Force Algorithms (3)

 A very minor application of the 
downward closure property made the 
algorithm much faster

 To Further Improve the Efficiency



Frequent Itemset Mining 
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern 
Growth Methods 



The Apriori Algorithm

 The Basic Idea
 Use the downward closure property to 

prune the candidate search space



The Apriori Algorithm

 The Basic Idea
 Use the downward closure property to 

prune the candidate search space
 The Overall Procedure (level-wise)
 Using the frequent -itemsets to 

generate -candidates
 Prune the candidates before counting
 Counts the supports of the remaining 

-candidates
 Stop if there is no frequent -

itemsets



The pseudocode



Candidates Generation (1)

 A Naïve Approach
 Check all the possible combination of 

frequent -itemsets
 Keep all the -itemsets

 An Example of the Naive Approach
 -itemsets: {abc} {bcd} {abd} {cde}
 {abc} + {bcd} = {abcd}
 {bcd} + {abd} = {abcd}
 {abd} + {cde} = {abcde}
 ……



Candidates Generation (1)

 A Naïve Approach
 Check all the possible combination of 

frequent -itemsets
 Keep all the -itemsets

 An Example of the Naive Approach
 -itemsets: {abc} {bcd} {abd} {cde}
 {abc} + {bcd} = {abcd}
 {bcd} + {abd} = {abcd}
 {abd} + {cde} = {abcde}
 ……

Redundancy 
and 

Inefficiency



Candidates Generation (2)

 Introduction of Ordering
 Items in have a lexicographic ordering
 Itemsets can be order as strings

 A Better Approach
 Order the frequent -itemsets
 Merge two itemset if the first items 

of them are the same



Candidates Generation (3)

 Examples of the New Methods
 -itemsets: {abc} {abd} {bcd}
 {abc} + {abd} = {abcd}

 -itemsets: {abc} {acd} {bcd}
 No -candidates
 Early stop is possible
 Donot need to check {abc} +{bcd} after 

checking {abc} + {acd} 
 Do we miss {abcd}?
 No, due to the Downward Closure Property



Level-wise Pruning Trick

 Let ௞ be the set of frequent -
itemsets

 Let ௞ାଵ be the set of -
candidates

 For an ௞ାଵ, it is frequent only if all 
the all the -subsets of are frequent

 Pruning
 Generate all the -subsets of 
 If any one of them does not belong to ௞, 

then remove 



Support Counting (1)

 A Naïve Approach
 For each candidate ௜ ௞ାଵ
 For each transaction ௝ܶ in the transaction 

database ܶ
 Check whether ܫ௜ appears in ௝ܶ

 The Limitation
 Inefficient if both ௞ାଵ and are very 

large



Support Counting (2)

 A Better Approach
 Organize the candidate patterns in ௞ାଵ

with a hash tree
 Hash tree construction

 Use the hash tree to accelerate counting
 Each transaction ௜ܶ is examined with a 

small number of candidates in ܥ௞ାଵ



Hash Tree

 A tree with a fixed degree of the 
internal nodes

 Each internal node is associated with 
a random hash function that maps an 
item to one of its children

 A leaf node contains a list of 
lexicographically sorted itemsets

 Every itemset in ௞ାଵ is contained in 
exactly one leaf node of the hash 
tree.



Hash Tree of 

 The Maximum Depth is 

H

H H

H

Hash on the 1st item

Hash on the 2nd item

Hash on the 3rd item
abc
bcd

dehcde
deg

hij



Counting based on Hash Tree
 For each ௝, identify leaves in the hash 

tree that might contain subset items
 The Procedure
 Root node – hash on all items in ௝ܶ
 Suppose the ݅-th item of ௝ܶ is hashed to one node, 

then pass this position ݅ to that node

 If we are at a leaf – find all itemsets
contained in ௝ܶ

 If we are at an interior node – hash on each 
item after the given position
 Suppose the ݅-th item of ௝ܶ is hashed to one node, 

then pass this position ݅ to that node



Frequent Itemset Mining 
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern 
Growth Methods 



Enumeration-Tree

 Lexicographic Tree
 A node exists in the tree corresponding 

to each frequent itemset.

 The root of the tree corresponds to the 
null itemset.

 Let ଵ ௞ be a frequent itemset, 
where ଵ ௞ are listed in lexicographic 
order. The parent of the node is the 
itemset ଵ ௞ିଵ



An Example

 Frequent Tree Extension
 An item that is used to extend a node



Enumeration Tree Algorithms

 Let be the parent of 
 Let be the frequent extensions of 
 Then, 



Enumeration-Tree-Based 
Interpretation of Apriori

 Apriori constructs the enumeration 
tree in breadth-first manner

 Apriori generates candidate -
itemsets by merging two frequent -
itemsets of which the first −1 items 
of are the same

 Extend with 



TreeProjection (1)

 The Goal
 Reuse the counting work that has 

already been done before
 Projected Databases
 Each projected transaction database is 

specific to an enumeration-tree node.
 Transactions that do not contain the 

itemset are removed.
 Projected database at node P can be 

expressed only in terms of the items in 



TreeProjection (2)

 The Algorithm



Vertical Counting Methods (1)

 Vertical Representation of Market 
Basket Data Set

 Intersection of two item list gives 
a new list
 The length is the support of the -

itemset



Vertical Counting Methods (2)

 The Algorithm



Frequent Itemset Mining 
Algorithms

 Brute Force Algorithms

 The Apriori Algorithm

 Enumeration-Tree Algorithms

 Recursive Suffix-Based Pattern 
Growth Methods 



Generic Recursive Suffix 
Growth Algorithm

 is expressed in terms of only 
frequent -itemset



Relationship Between FP-Growth 
and Enumeration-Tree Methods

 They are Equivalent
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Motivations (1)

 Advantages of Frequent Itemsets
 Very simple and intuitive 
 Raw frequency for the support
 Conditional probabilities for the confidence

 Downward Closure Property
 Enable efficient algorithms



Motivations (2)

 Disadvantages of Frequent Itemsets
 Patterns are not always significant from 

an application-specific perspective

 Milk can be appended to any set of items, 
without changing its frequency

 For any set of items ܺ, the association rule 
ܺ ⇒ ሼ݈݇݅ܯሽ has 100% confidence



Motivations (2)

 Disadvantages of Frequent Itemsets
 Patterns are not always significant from 

an application-specific perspective
 Cannot adjust to the skew in the 

individual item support values
 Support of {Milk, Butter} is very different 

from {൓Milk, ൓Butter}
 But the statistical coefficient of correlation 

is exactly the same in both cases

 Bit Symmetric Property
 Values of in the binary matrix are 

treated in a similar way to values of 



Statistical Coefficient of 
Correlation

 Pearson Coefficient

 Estimated Correlation

 Properties
 Lies in the range 
 Satisfies the bit symmetric property
 Intuitively hard to interpret



Measure

 Given a set of items, there are ௞-
possible states
 items {Bread, Butter}, the ଶ

states are {Bread, Butter}, {Bread, 
Butter}, { Bread, Butter}, and 

{ Bread, Butter}



Measure

 Given a set of items, there are ௞-
possible states

 The ଶ-measure for set of items 

 ௜ and ௜ be the observed and expected 
values of the absolute support of state 



Measure

 Given a set of items, there are ௞-
possible states

 The ଶ-measure for set of items 
 Properties
 Larger values of this quantity indicate 

greater dependence
 Do not reveal whether the dependence 

between items is positive or negative
 Is bit-symmetric 
 Satisfies the upward closure property
 High computational complexity



Interest Ratio

 Definition

 Properties
 When the items are statistically independent, 

the ratio is 1.
 Value greater than 1 indicates that the 

variables are positively correlated.
 When some items are extremely rare, the 

interest ratio can be misleading.
 Donot satisfy the downward closure property.



Symmetric Confidence 
Measures

 Confidence Measure is Asymmetric

 Let and be two 1-itemsets
 Minimum of and 
 Maximum of and 
 Average of and 
 Geometric mean is the cosine measure

 Can be generalized to k-itemsets
 Do not satisfy the downward closure 

property 

݂݊݋ܿ ܺ ⇒ ܻ ് ሺܻ݂݊݋ܿ ⇒ ܺሻ



Cosine Coefficient on Columns

 Definition

 Interpretation
 Cosine similarity between two columns of 

the data matrix

 A Symmetric Confidence Measure



Jaccard Coefficient and the Min-
hash Trick

 Jaccard coefficient ଵ ଶ between 
the two sets

 Jaccard coefficient between multiway 
sets

 Properties
 Satisfy the downward closure property
 Speed up by min-hash trick



Collective Strength (1)

 Violation
 If some of the items of are present in 

the transaction, and others are not.

 Violation Rate 
 The fraction of violations of the itemset

over all transactions.



Collective Strength (2)

 Collective Strength

 The expected value of is calculated 
assuming statistical independence of the 
individual items.

 indicates a perfect negative correlation
 indicates a perfectly positive 

correlation



Collective Strength (3)

 Interpretation of Collective Strength

 Strongly Collective Itemsets

 The closure property is enforced.



Relationship to Negative 
Pattern Mining

 Motivation
 Determine patterns between items or 

their absence
 Satisfy Bit Symmetric Property
 Statistical coefficient of correlation
 ଶ measure

 Jaccard Coefficient, Strongly Collective 
strength
 Also satisfy downward closure property
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Useful Meta-algorithms

 Definition
 An algorithm that uses a particular 

algorithm as a subroutine
 either to make the original algorithm more 

efficient (e.g., by sampling)
 or to gain new insights

 Sampling Methods
 Data Partitioned Ensembles
 Generalization to Other Data Types



Sampling Methods

 The Procedure
 Sample a subset of the transactions
 Apply mining algorithm to sampled data

 Challenges
 False positives: These are patterns that 

meet the support threshold on the sample 
but not on the base data.
 Post-processing

 False negatives: These are patterns that do 
not meet the support threshold on the 
sample, but meet the threshold on the data.
 Reduce the support threshold



Data Partitioned Ensembles

 The Procedure
 The transaction database is partitioned 

into disjoint segments
 The mining algorithm is independently 

applied to each of these segments
 Post-processing to remove false positives

 Property
 No false negatives



Generalization to Other Data 
Types

 Quantitative Data
 Rules contain quantitative attributes

 Discretize and converte to binary form
 Categorical Data
 Rules contain mixed attributes

 Transform to binary values
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Summary
 Frequent Pattern Mining

 Support, Downward Closure Property
 Association Rule

 Support, Confidence
 Frequent Itemset Mining Algorithms

 Brute Force Algorithms, Apriori, Enumeration-Tree 
Algorithms, Recursive Suffix-Based Pattern Growth 
Methods

 Alternative Models: Interesting Patterns
 Pearson coefficient, ߯ଶ Measure, Interest Ratio, 

Symmetric Confidence Measures, …
 Useful Meta-algorithms

 Sampling, Data Partitioned Ensembles, Generalization


