Association Pattern
Mining

Lijun Zhang
z1 j@n ju. edu. cn
http://cs.nju. edu. cn/zlj

Outline

INntroduction

'he Frequent Pattern Mining Model

Association Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

Introduction

[ransactions
B Sets of items bought by customers

[he Goal

B Determine associations between groups of
items bought by customers

Quantification of the Level of Association
B Frequencies of sets of items

[he Discovered Sets of Items

B Large itemsets, frequent itemsets, or
frequent patterns

Applications

Supermarket Data
B Target marketing, shelf placement

[ext Mining

B Identifying co-occurring terms
Generalization to Dependency-
oriented Data Types

B Web log analysis, software bug detection

Other Major Data Mining Problems

B Clustering, classification, and outlier
analysis

Association Rules

Generated from Frequent Itemsets
Formulation X =Y

B {Beer} = {Diapers}

B {Eggs,Milk} = {Yogurt}
Applications

B Promotion
B Shelf placement

Conditional Probability

P(XNY)

P(Y|X) = PO

Outline

Introduction

[he Frequent Pattern Mining
Model

Association Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

The Frequent Pattern Mining
Model

U is a set of d iterms
T is a set of n transactions Ty, ..., T,
mT,cU

Binary Representation of Ty, ..., T,
B U = {Bread, Butter,Cheese,Eggs, Milk,Yogurt}

tid Set of items Binary representation
1 {Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Fggs, Milk} 101110

The Frequent Pattern Mining
Model

U is a set of d iterms
T is a set of n transactions Ty, ..., T,
mT,cU

Binary Representation of Ty, ..., T,
B U = {Bread, Butter,Cheese,Eggs, Milk,Yogurt}

tid Set of items Binary representation
1 {Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Fggs, Milk} 101110

Itemset, k-itemset
B A set of items, A set of k items

Definitions

Support

Definition 4.2.1 (Support) The support of an itemset I is defined as the fraction of the
transactions in the database T = {11 ...T,} that contain I as a subset.

B Denoted by sup(l)
Frequent Itemset Mining

Definition 4.2.2 (Frequent Itemset Mining) Given a set of transactions T =

{T1...T%}, where each transaction T; is a subset of items from U, determine all item-
sets I that occur as a subset of at least a predefined fraction minsup of the transactions in

T.

B minsup is the minimum support

Definition 4.2.3 (Frequent Itemset Mining: Set-wise Definition) Given a set of
sets T = {T,...T,}, where each element of the set T; is drawn on the universe of ele-
ments U, determine all sets I that occur as a subset of at least a predefined fraction minsup
of the sets in T .

An Example

A Market Basket Data Set

tid Set of items Binary representation
1 { Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Eggs, Milk} 101110
4 {Eggs, Milk,Y ogurt} 000111
5 {Cheese, Milk,Y ogurt } 001011

B support of {Bread, Milk} is % = 0.4

B support of {Cheese, Yogurt} is % = 0.2

1 minsup = 0.3

B {Bread, Milk} is a frequent itemset

Properties

'he smaller minsup is, the larger the
number of frequent itemsets is.

Support Monotonicity Property

Property 4.2.1 (Support Monotonicity Property) The support of every subset J of
I is at least equal to that of the support of itemset 1.

sup(J) = sup(l) VJCI (4.1)

B When an itemset I is contained in a

transaction, all its subsets will also be
contained in the transaction.

Downward Closure Property

Property 4.2.2 (Downward Closure Property) Every subset of a frequent itemset is
also frequent.

Maximal Frequent Itemsets

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is mazimal at a
given minimum support level minsup, if it is frequent, and no superset of it is frequent.

tid Set of items Binary representation
1 { Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Eggs, Milk} 101110
4 {Eggs, Milk,Y ogurt} 000111
5 {Cheese, Milk,Y ogurt } 001011

Maximal frequent patterns at minsup = 0.3
B {Bread,Milk}, {Cheese,Milk}, {Eggs,Milk, Yogurt}
Frequent Patterns at minsup = 0.3

B The total numberis 11
B Subsets of the maximal frequent patterns

Maximal Frequent Itemsets

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is mazimal at a
given minimum support level minsup, if it is frequent, and no superset of it is frequent.

tid Set of items Binary representation
1 { Bread, Butter, Milk} 110010
2 {Eggs, Milk,Y ogurt} 000111
3 | {Bread, Cheese, Eggs, Milk} 101110
4 {Eggs, Milk,Y ogurt} 000111
5 {Cheese, Milk,Y ogurt } 001011
B The maximal patterns can be considered

condensed representations of the frequent
patterns.

B However, this condensed representation does
not retain information about the support
values of the subsets.

The Itemset Lattice

O Contain 2!Vl hodes and represents search space

BORDER BETWEEN

FREQUENT AND : FREQUENT ITEMSETS
INFREQUENT

ITEMSETS

All itemsets above
this border are
frequent.

The Itemset Lattice

O Contain 2!Vl nodes and repr

BORDER BETWEEN
FREQUENT AND
INFREQUENT

ITEMSETS

INFREQUENT ITEMSETS

The Itemset Lattice

O Contain 2!Vl hodes and represents search space

BORDER BETWEEN

FREQUENT AND : FREQUENT ITEMSETS
INFREQUENT

ITEMSETS

All itemsets below
this border are
infrequent.

The Itemset Lattice

O Contain 2!Vl hodes and represents search space

BORDER BETWEEN
FREQUENT AND
INFREQUENT

ITEMSETS ;
All maximal frequent
itemsets are adjacent

to this border

The Itemset Lattice

O Contain 2!Vl hodes and represents search space

BORDER BETWEEN
FREQUENT AND
INFREQUENT
ITEMSETS

Any valid border always
respects the downward
closure property.

e
: (<7 S TS S Y Q’-
LI C s

| SIS Sy
INFREQUENT ITEMSETS ap

Outline

Introduction
'he Frequent Pattern Mining Model

Assocliation Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

Definitions

The confidenceof arule X=Y

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence
conf(X =Y) of the rule X =Y is the conditional probability of X UY occurring in a
transaction, given that the transaction contains X. Therefore, the confidence conf(X = Y)
15 defined as follows:

sup(X UY)

sup(X) (4.2)

conf(X =Y)=

B X and Y are said to be the antecedent and the
consequent

B In the previous table

sup({Eggs, Milk,Yogurt}) 0.4 2

conf({Eggs, Milk} = {Yogurt}) = sup((Eggs, MilkD) =0E=3

Definitions

The confidenceof arule X=Y

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence
conf(X =Y) of the rule X =Y is the conditional probability of X UY occurring in a
transaction, given that the transaction contains X. Therefore, the confidence conf(X = Y)
15 defined as follows:

sup(X UY)
sup(X)

conf(X =Y)= (4.2)

Association Rules

Definition 4.3.2 (Association Rules) Let X andY be two sets of items. Then, the rule
X =Y is said to be an association rule at a minimum support of minsup and minimum
confidence of minconf, if it satisfies both the following criteria:

1. The support of the itemset X UY 1s at least minsup.

2. The confidence of the rule X = Y 1is at least minconf.

B A sufficient number of transactions are relevant
B A sufficient strength in terms of conditional probabilities

The Overall Framework

1. In the first phase, all the frequent
itemsets are generated at the
minimum support of minsup.

B The most difficult step

2. In the second phase, the association
rules are generated from the frequent
itemsets at the minimum confidence
level of minconf.

B Relatively straightforward

Implementation of 2"d Phase

A Straightforward Implentation
B Given a frequent itemset I

B Generate all possible partitions X and Y =
I —X

B Examine the confidence of each X =Y
Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X, X, and I be itemsets such that
X1 C Xo C I. Then the confidence of Xo = I — X9 is at least that of X1 = I — X;.

conf(Xo =1 —Xs) > conf(X;1 = 1—X;1) (4.3)

sup(1) _ sup(l)

sup(Xz) < sup(X;) = sup(Xz) — sup(Xy)

Implementation of 2"d Phase

A Straightforward Implentation
B Given a frequent itemset I

B Generate all possible partitions X and Y =
I —X

B Examine the confidence of each X =Y
Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X, X, and I be itemsets such that
X1 C Xo C I. Then the confidence of Xo = I — X9 is at least that of X1 = I — X;.

conf(Xo =1 —Xs) > conf(X;1 = 1—X;1) (4.3)

B Techniques for frequent itemsets mining
can also be applied here

Outline

Introduction

'he Frequent Pattern Mining Model

Association Rule Generation
Framework

Frequent Itemset Mining
Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms

Summary

Frequent Itemset Mining
Algorithms

Brute Force Algorithms

'he Apriori Algorithm

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern
Growth Methods

Brute Force Algorithms (1)

'he Naive Approach

B Generate all these candidate itemsets

v For a universe of items U, there are a total
of 2IUl — 1 distinct subsets

v When U = 1000, 21000 > 10300

B Count their support against the
transaction database

Observation

B no (k+ 1)-patterns are frequent if no k-
patterns are frequent.

Brute Force Algorithms (2)

A Improved Approach
B Generate all candidate k-itemsets with k

B Count their support against the
transaction database

B If no frequent itemsets are found, then
stop; Otherwise, k + + and continue;

A Significant Improvement
B Let [be the final value of k

i(llijl) « 21Ul

i=1

B |U| =1000 and [= 10, it is 0(10%3)

Brute Force Algorithms (3)

A very minor application of the
downward closure property made the
algorithm much faster

[0 Further Improve the Efficiency

1. Reducing the size of the explored search space (lattice of Fig. 4.1) by pruning candidate
itemsets (lattice nodes) using tricks, such as the downward closure property.

2. Counting the support of each candidate more efficiently by pruning transactions that
are known to be irrelevant for counting a candidate itemset.

3. Using compact data structures to represent either candidates or transaction databases
that support efficient counting.

Frequent Itemset Mining
Algorithms

Brute Force Algorithms

[he Apriori Algorithm

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern
Growth Methods

The Apriori Algorithm

[he Basic Idea

B Use the downward closure property to
prune the candidate search space

BORDER BETWEEN

FREQUENT AND . FREQUENT ITEMSETS
INFREQUENT

ITEMSETS

The Apriori Algorithm

[he Basic Idea

B Use the downward closure property to
prune the candidate search space

'he Overall Procedure (level-wise)

B Using the frequent k-itemsets to
generate (k + 1)-candidates

B Prune the candidates before counting

B Counts the supports of the remaining
(k + 1)-candidates

M Stop if there is no frequent (k + 1)-
itemsets

The pseudocode

Algorithm Apriori(Transactions: 7, Minimum Support: minsup)
begin
k=1;
F1 =1 All Frequent 1-itemsets };
while F}, is not empty do begin
Generate Cr4+1 by joining itemset-pairs in Fx;
Prune itemsets from Cr4+1 that violate downward closure;
Determine Fj.; by support counting on (Cp.1,7) and retaining
itemsets from Cr1 with support at least minsup:
E=Fk+1;
end:
return(U_, F;):
end

Candidates Generation (1)

A Nailve Approach

B Check all the possible combination of
frequent k-itemsets

B Keep all the (k + 1)-itemsets

An Example of the Naive Approach
B k-itemsets: {abc} {bcd} {abd} {cde}
B {abc} + {bcd} = {abcd}

B {bcd} + {abd} = {abcd}

B {abd} + {cde} = {abcde}

Candidates Generation (1)

A Nailve Approach

B Check all the possible combinatino
frequent k-itemsets

B Keep all the (kK + 1)-i+

An Example of the
B k-itemsets: {abc} {\

Redundancy
and
Inefficiency

Candidates Generation (2)

Introduction of Ordering
B Jtems in U have a lexicographic ordering
B Jtemsets can be order as strings

A Better Approach
B Order the frequent k-itemsets

B Merge two itemset if the first k — 1 items
of them are the same

Candidates Generation (3)

Examples of the New Methods
B k-itemsets: {abc} {abd} {bcd}
B {abc} + {abd} = {abcd}

B k-itemsets: {abc} {acd} {bcd}
No (k + 1)-candidates

B Early stop is possible

v Donot need to check {abc} +{bcd} after
checking {abc} + {acd}

B Do we miss {abcd}?
v" No, due to the Downward Closure Property

Level-wise Pruning Trick

Let F;,, be the set of frequent k-
itemsets

Let C,,., be the set of (k + 1)-
candidates

For an I € Cy,, it is frequent only if all
the all the k-subsets of I are frequent

Pruning
B Generate all the k-subsets of I

B If any one of them does not belong to F,
then remove |

Support Counting (1)

A Nailve Approach

B For each candidate I; € Cy 44

v' For each transaction T; in the transaction
database T
B Check whether I; appears in T;

he Limitation

B Inefficient if both |C,,4| and |T| are very
large

Support Counting (2)

A Better Approach

B Organize the candidate patterns in Cj 4
with a hash tree

v Hash tree construction

B Use the hash tree to accelerate counting

v' Each transaction T; is examined with a
small number of candidates in Cj 44

Hash Tree

A tree with a fixed degree of the
internal nodes

Each internal node is associated with
a random hash function that maps an
item to one of its children

A leaf node contains a list of
lexicographically sorted itemsets

Every itemset in C,,; iS contained in
exactly one leaf node of the hash

tree.

Hash Tree of (3

'he Maximum Depthis 3+ 1

@ < Hash on the 1st item

/N
@ @) Hash on the 2" item
/ \ \ hij
Egg @ “ Hash on the 3 item
cde / \ deh

deg

Counting based on Hash Tree

For each T;, identify leaves in the hash
tree that might contain subset items

The Procedure

B Root node - hash on all items in T;

v" Suppose the i-th item of T; is hashed to one node,
then pass this position i to that node

B If we are at a leaf - find all itemsets
contained in T;

B If we are at an interior node - hash on each
item after the given position

v Suppose the i-th item of T; is hashed to one node,
then pass this position i to that node

Frequent Itemset Mining
Algorithms

Brute Force Algorithms

'he Apriori Algorithm

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern
Growth Methods

Enumeration-Tree

Lexicographic Tree

B A node exists in the tree corresponding
to each frequent itemset.

B The root of the tree corresponds to the
null itemset.

m let]={i,.. i} be afrequent itemset,
where iy, ..., i, are listed in lexicographic
order. The parent of the node I is the
itemset {i,,...,ix_1}

An Example

<D

ofoJoXoRoRo
® @ @@ ® @ @O ®

@@@@@
Cacdf>

[l Frequent Tree Extension
B An item that is used to extend a node

Enumeration Tree Algorithms

Algorithm GenericEnumerationTree(Transactions: T,
Minimum Support: minsup)
begin
Initialize enumeration tree £7 to single Null node;
while any node in £7 has not been examined do begin
Select one of more unexamined nodes P from £7T for examination;
Generate candidates extensions C'(P) of each node P € P;
Determine frequent extensions F(P) C C(P) for each P € P with support counting;
Extend each node P € P in £T with its frequent extensions in F'(P);
end
return enumeration tree £7;
end

Let Q be the parent of P
Let F(Q) be the frequent extensions of Q
Then, C(P) € F(Q)

Enumeration-Tree-Based
Interpretation of Apriori

Apriori constructs the enumeration
tree in breadth-first manner

Apriori generates candidate (k + 1)-

itemsets by merging two frequent k-
itemsets of which the first k—1 items
of are the same

Extend {ab} with {cdf} € F({a})

TreeProjection (1)

[he Goal

B Reuse the counting work that has

already been ¢

Projected Data
B Each projected

one before
DASES

transaction database is

specific to an enumeration-tree node.

B Transactions that do not contain the
itemset P are removed.

B Projected database at node P can be
expressed only in terms of the items in

C(P)

TreeProjection (2)

[he Algorithm

Algorithm Projected EnumerationTree(Transactions: T,
Minimum Support: minsup)

begin
Initialize enumeration tree £7 to a single (Nwull, T) root node;
while any node in £7 has not been examined do begin
Select an unexamined node (P, T (P)) from £7T for examination;
Generate candidates item extensions C'(P) of node (P, 7T (P));
Determine frequent item extensions F'(P) C C(P) by support counting
of individual items in smaller projected database T (P):
Remove infrequent items in T(P);‘
for each frequent item extension 7 € F'(P) do begin
Generate T (P U{i}) from T (P);
Add (PuU {i},T(P U{i})) as child of P in £T;
end
end
return enumeration tree £7;
end

Vertical Counting Methods (1)

Vertical Representation of Market
Basket Data Set

Item Set of tids | Binary representation
Bread {1,3} 10100
Butter {1} 10000
C'heese {3,5} 00101
FEqgs {2,3,4} 01110
Milk {1,2,3,4,5} 11111
Y ogurt {2,4,5} 01011

Intersection of two item tid list gives
a hew list

B The length is the support of the 2-
itemset

Vertical Counting Methods (2)

[he Algorithm

Algorithm Vertical Apriori(Transactions: 7, Minimum Support: minsup)
begin
k=1;
Fi = { All Frequent 1l-itemsets };
Construct vertical tid lists of each frequent 1tem:;
while Fj. is not empty do begin
Generate Cr+1 by joining itemset-pairs in Fx:
Prune itemsets from Cy4; that violate downward closure;
Generate tid list of each candidate itemset in Cr+1 by intersecting
tid lists of the 1itemset-pair in JF;, that was used to create it;
Determine supports of itemsets in Cr4; using lengths of their tid lists;
Fr+1= Frequent itemsets of Cr4+1 together with their fid lists;
k=Fk+1;
end;
return(UF_, F;);
end

Frequent Itemset Mining
Algorithms

Brute Force Algorithms

'he Apriori Algorithm

Enumeration-Tree Algorithms

Recursive Suffix-Based Pattern
Growth Methods

Generic Recursive Suffix
Growth Algorithm

1 T is expressed in terms of only
frequent 1-itemset

Algorithm RecursiveSuffizGrowth(Transactions in terms of frequent 1-items: 7T,
Minimum Support: minsup, Current Suffix: P)
begin
for each item 7 in 7 do begin
report itemset P, = {i} U P as frequent;
Extract all transactions 7; from 7 contaming item i;
Remove all items from 7; that are lexicographically > i;
Remove all infrequent items from 7;;
if (7; # ¢) then RecursiveSuffixGrowth(T;, minsup, P;);
end
end

Relationship Between FP-Growth
and Enumeration-Tree Methods *

hey are Equivalent

ojojojJoRoXo ojojJoJoXoxo

@ G @) GO G (D () () (@D (D () (o) (@ () () (i) () ()

CRCPRCORCHRCHRCIRCIERCIRCIRCPRCORCIRCIACY

<D (dea)
(a) Prefix extensions with (b) FP-growth with ordering
ordering of a,b,c,d, e, f of f,e,d,e,b,a

(Enumeration Tree Prefixes shown) (Recursion Tree Suffixes shown)

Outline

Introduction
'he Frequent Pattern Mining Model

Association Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

Motivations (1)

Advantages of Frequent Itemsets

B Very simple and intuitive
v Raw frequency for the support
v" Conditional probabilities for the confidence

B Downward Closure Property
v' Enable efficient algorithms

Motivations (2)

Disadvantages of Frequent Itemsets

B Patterns are not always significant from
an application-specific perspective

tid Set of items Binary representation
1 {Bread, Butter, Milk} 110010

2 {Eggs, Milk,Y ogurt} 000111

3 | {Bread, Cheese, Eggs., Milk} 101110

4 {Eggs, Milk,Y ogurt} 000111

5 {Cheese, Milk,Y ogurt} 001011

v" Milk can be appended to any set of items,
without changing its frequency

v For any set of items X, the association rule
X = {Milk} has 100% confidence

Motivations (2)

Disadvantages of Frequent Itemsets

B Patterns are not always significant from
an application-specific perspective

B Cannot adjust to the skew in the
individual item support values

v' Support of {Milk, Butter} is very different
from {_IMllk, —|Butter}

v But the statistical coefficient of correlation
is exactly the same in both cases

Bit Symmetric Property

B Values of 0 in the binary matrix are
treated in a similar way to values of 1

Statistical Coefficient of
Correlation

Pearson Coefficient

_ F[X-Y|-E[X]-E]Y]
P T (X) oY)

Estimated Correlation

i = sup({i,7}) — sup(i) - sup(j) |
Vv sup(i) - sup(j) - (1 — sup(i)) - (1 — sup(j))
Properties
M Lies in the range [—1,1]
B Satisfies the bit symmetric property
B Intuitively hard to interpret

¥ Measure

Given a set X of k items, there are 2%-
possible states

B k=2 items {Bread, Butter}, the 22
states are {Bread, Butter}, {Bread,
— Butter}, {—- Bread, Butter}, and
{- Bread, —Butter}

¥ Measure

Given a set X of k items, there are 2%-
possible states

'he y?-measure for set of items X

21X

2 Oi_Ef :
r(X)ZZ(7 r
i=1 !

B 0; and E; be the observed and expected
values of the absolute support of state i

¥ Measure

Given a set X of k items, there are 2%-
possible states

'he y?-measure for set of items X

Properties

B Larger values of this quantity indicate
greater dependence

B Do not reveal whether the dependence
between items is positive or negative

B [s bit-symmetric
Satisfies the upward closure property
B High computational complexity

Interest Ratio

Definition

I({ir. ..ix}) = Sﬁﬁ{“ ' ;“?
=1 sup(ij

Properties

B When the items are statistically independent,
the ratio is 1.

B Value greater than 1 indicates that the
variables are positively correlated.

B When some items are extremely rare, the
interest ratio can be misleading.

B Donot satisfy the downward closure property.

Symmetric Confidence
Measures

Confidence Measure is Asymmetric
conf(X =Y) + conf(Y = X)

Let X and Y be two 1-itemsets

B Minimum of conf(X = Y) and conf (Y = X)

B Maximum of conf(X = Y) and conf (Y = X)

B Average of conf(X =Y) and conf (Y = X)
v' Geometric mean is the cosine measure

Can be generalized to k-itemsets

Do not satisfy the downward closure
property

Cosine Coefficient on Columns &

Definition

sup({i,3})
sup(®) \/5up())

cosine(i,j) =

Interpretation

B Cosine similarity between two columns of
the data matrix

A Symmetric Confidence Measure

Jaccard Coefficient and the Min:
hash Trick

Jaccard coefficient J(S{,S,) between
the two sets

S1 NSy
51 U Ss

J(S1,85) =

Jaccard coefficient between multiway

sets " s,

U S;|

J(S1...5) =

Properties

B Satisfy the downward closure property
B Speed up by min-hash trick

Collective Strength (1)

Violation

B If some of the items of I are present in
the transaction, and others are not.

Violation Rate v(J)

B The fraction of violations of the itemset I
over all transactions.

Collective Strength (2)

Collective Strength

c(I)

L—v(l) E[()]

T 1-Ep()]

v(l)

B The expected value of v(I) is calculated
assuming statistical independence of the

individual items.

Efv(l)]=1—]|pi-

e
iel

b

icl

(1—pi).

B 0 indicates a perfect negative correlation
B o indicates a perfectly positive

correlation

Collective Strength (3)

Interpretation of Collective Strength

Good Events E[Bad Events]

o) = E[Good Events] Bad Events

Strongly Collective Itemsets

Definition 4.5.1 An itemset I is denoted to be strongly collective at level s, if it satisfies
the following properties:

1. The collective strength C'(I) of the itemset I is at least s.

2. Closure property: The collective strength C(J) of every subset J of I is at least s.

B The closure property is enforced.

Relationship to Negative
Pattern Mining

Motivation

B Determine patterns between items or
their absence

Satisfy Bit Symmetric Property
B Statistical coefficient of correlation
B vy’ measure

B Jaccard Coefficient, Strongly Collective
strength

v Also satisfy downward closure property

Outline

Introduction

'he Frequent Pattern Mining Model

Association Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

Useful Meta-algorithms

Definition
B An algorithm that uses a particular

algorithm as a subroutine

v either to make the original algorithm more
efficient (e.g., by sampling)
v' or to gain new insights

Sampling Methods

Data Partitioned Ensembles

Generalization to Other Data Types

Sampling Methods

'he Procedure
B Sample a subset of the transactions
B Apply mining algorithm to sampled data

Challenges

B False positives: These are patterns that
meet the support threshold on the sample
but not on the base data.

v' Post-processing
B False negatives: These are patterns that do

not meet the support threshold on the
sample, but meet the threshold on the data.

v Reduce the support threshold

Data Partitioned Ensembles

[he Procedure

B The transaction database is partitioned
into k disjoint segments

B The mining algorithm is independently
applied to each of these k segments

B Post-processing to remove false positives

Property
B No false negatives

Generalization to Other Data
Types

Quantitative Data
B Rules contain quantitative attributes

(Age = 90) = Checkers. Age[85,95] = Checkers.

B Discretize and converte to binary form

Categorical Data
B Rules contain mixed attributes

(Gender = Male), Age|20,30] = Basketball

B Transform to binary values

Outline

Introduction
'he Frequent Pattern Mining Model

Association Rule Generation
Framework

Frequent Itemset Mining Algorithms

Alternative Models: Interesting
Patterns

Useful Meta-algorithms
Summary

Summary

[0 Frequent Pattern Mining
B Support, Downward Closure Property

[0 Association Rule
B Support, Confidence

[0 Frequent Itemset Mining Algorithms

B Brute Force Algorithms, Apriori, Enumeration-Tree
Algorithms, Recursive Suffix-Based Pattern Growth
Methods

[0 Alternative Models: Interesting Patterns

B Pearson coefficient, y> Measure, Interest Ratio,
Symmetric Confidence Measures, ...

0 Useful Meta-algorithms
B Sampling, Data Partitioned Ensembles, Generalization

