Association Pattern Mining

Lijun Zhang

zlj@nju. edu. cn

http://cs.nju. edu. cn/zlj

Outline

- Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- ☐ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

Introduction

- □ Transactions
 - Sets of items bought by customers
- □ The Goal
 - Determine associations between groups of items bought by customers
- Quantification of the Level of Association
 - Frequencies of sets of items
- □ The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

Applications

- □ Supermarket Data
 - Target marketing, shelf placement
- □ Text Mining
 - Identifying co-occurring terms
- □ Generalization to Dependencyoriented Data Types
 - Web log analysis, software bug detection
- □ Other Major Data Mining Problems
 - Clustering, classification, and outlier analysis

NANITARC UNITED

Association Rules

- ☐ Generated from Frequent Itemsets
- \square Formulation $X \Rightarrow Y$
 - \blacksquare {Beer} \Rightarrow {Diapers}
 - \blacksquare {Eggs,Milk} \Rightarrow {Yogurt}
- Applications
 - Promotion
 - Shelf placement
- Conditional Probability

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)}$$

Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- □ Association Rule Generation Framework
- ☐ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

The Frequent Pattern Mining Model

- \square U is a set of d iterms
- \square \mathcal{T} is a set of n transactions T_1, \dots, T_n
 - $T_i \subseteq U$
- \square Binary Representation of $T_1, ..., T_n$
 - $U = \{Bread, Butter, Cheese, Eggs, Milk, Yogurt\}$

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110

The Frequent Pattern Mining Model

- \square *U* is a set of *d* iterms
- \square \mathcal{T} is a set of n transactions T_1, \dots, T_n
 - $T_i \subseteq U$
- \square Binary Representation of $T_1, ..., T_n$
 - $U = \{Bread, Butter, Cheese, Eggs, Milk, Yogurt\}$

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110

- ☐ Itemset, *k*-itemset
 - \blacksquare A set of items, A set of k items

Definitions

■ Support

Definition 4.2.1 (Support) The support of an itemset I is defined as the fraction of the transactions in the database $\mathcal{T} = \{T_1 \dots T_n\}$ that contain I as a subset.

 \blacksquare Denoted by sup(I)

□ Frequent Itemset Mining

Definition 4.2.2 (Frequent Itemset Mining) Given a set of transactions $\mathcal{T} = \{T_1 \dots T_n\}$, where each transaction T_i is a subset of items from U, determine all itemsets I that occur as a subset of at least a predefined fraction minsup of the transactions in \mathcal{T} .

minsup is the minimum support

Definition 4.2.3 (Frequent Itemset Mining: Set-wise Definition) Given a set of sets $\mathcal{T} = \{T_1 \dots T_n\}$, where each element of the set T_i is drawn on the universe of elements U, determine all sets I that occur as a subset of at least a predefined fraction minsup of the sets in \mathcal{T} .

An Example

□ A Market Basket Data Set

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

- support of {Bread, Milk} is $\frac{2}{5} = 0.4$
- support of {Cheese, Yogurt} is $\frac{1}{5} = 0.2$
- \square minsup = 0.3
 - {*Bread, Milk*} is a frequent itemset

Properties

- ☐ The smaller *minsup* is, the larger the number of frequent itemsets is.
- Support Monotonicity Property

Property 4.2.1 (Support Monotonicity Property) The support of every subset J of I is at least equal to that of the support of itemset I.

$$sup(J) \ge sup(I) \ \forall J \subseteq I$$
 (4.1)

- When an itemset I is contained in a transaction, all its subsets will also be contained in the transaction.
- □ Downward Closure Property

Property 4.2.2 (Downward Closure Property) Every subset of a frequent itemset is also frequent.

Maximal Frequent Itemsets

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a given minimum support level minsup, if it is frequent, and no superset of it is frequent.

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

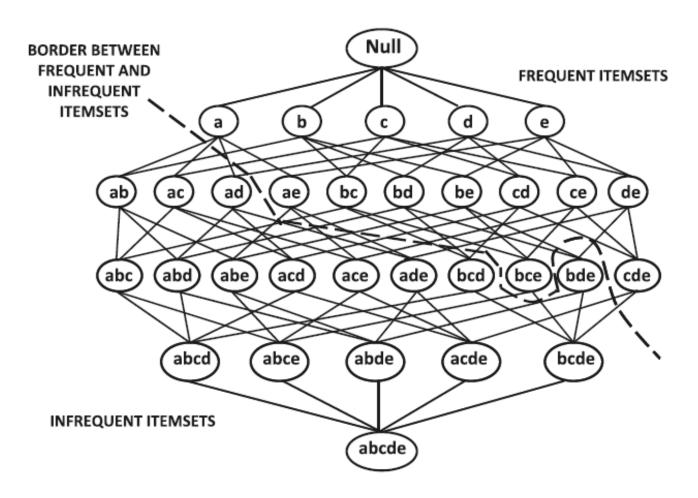
- \square Maximal frequent patterns at minsup = 0.3
 - {Bread,Milk}, {Cheese,Milk}, {Eggs,Milk, Yogurt}
- \square Frequent Patterns at minsup = 0.3
 - The total number is 11
 - Subsets of the maximal frequent patterns

Maximal Frequent Itemsets

Definition 4.2.4 (Maximal Frequent Itemsets) A frequent itemset is maximal at a given minimum support level minsup, if it is frequent, and no superset of it is frequent.

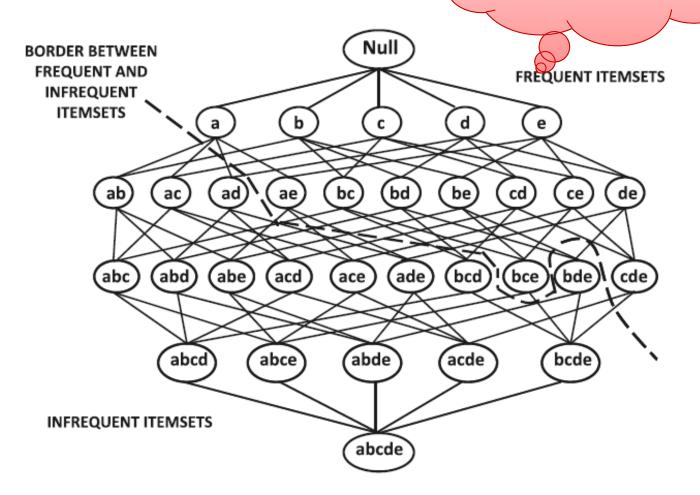
tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

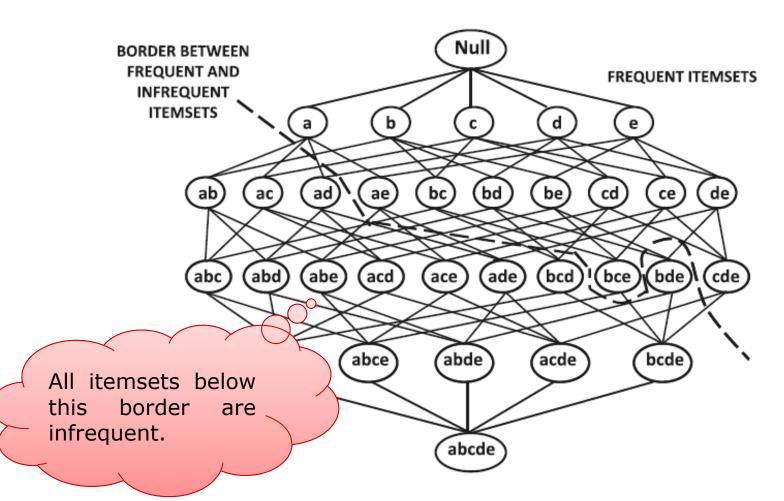
- The maximal patterns can be considered condensed representations of the frequent patterns.
- However, this condensed representation does not retain information about the support values of the subsets.

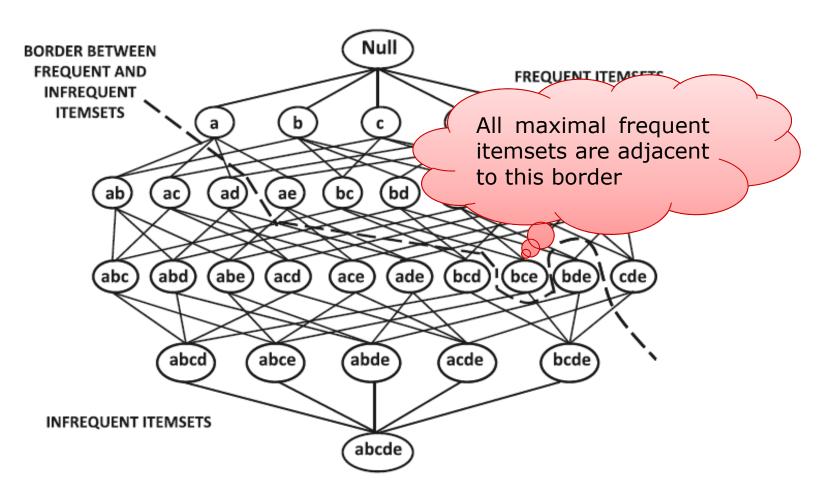


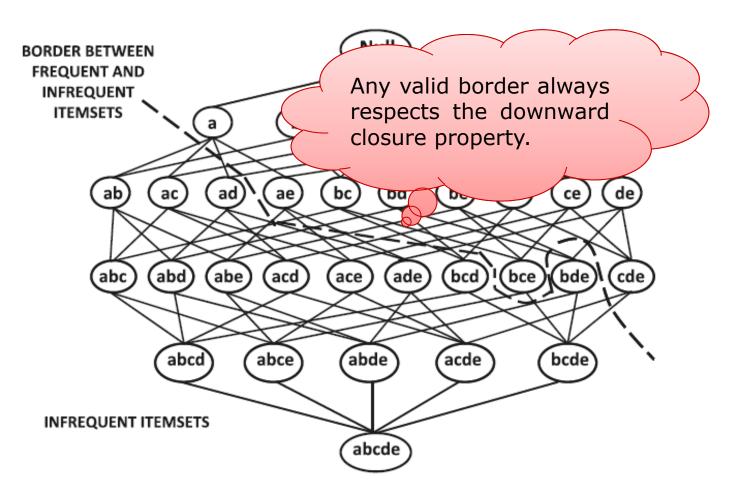
All itemsets above this border are frequent.

 \square Contain $2^{|U|}$ nodes and repr









Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

Definitions

\square The confidence of a rule $X \Rightarrow Y$

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence $conf(X \Rightarrow Y)$ of the rule $X \Rightarrow Y$ is the conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X. Therefore, the confidence $conf(X \Rightarrow Y)$ is defined as follows:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}.$$
 (4.2)

- X and Y are said to be the antecedent and the consequent
- In the previous table

$$conf(\{Eggs, Milk\} \Rightarrow \{Yogurt\}) = \frac{sup(\{Eggs, Milk, Yogurt\})}{sup(\{Eggs, Milk\})} = \frac{0.4}{0.6} = \frac{2}{3}$$

Definitions

\square The confidence of a rule $X \Rightarrow Y$

Definition 4.3.1 (Confidence) Let X and Y be two sets of items. The confidence $conf(X \Rightarrow Y)$ of the rule $X \Rightarrow Y$ is the conditional probability of $X \cup Y$ occurring in a transaction, given that the transaction contains X. Therefore, the confidence $conf(X \Rightarrow Y)$ is defined as follows:

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)}.$$
 (4.2)

☐ Association Rules

Definition 4.3.2 (Association Rules) Let X and Y be two sets of items. Then, the rule $X \Rightarrow Y$ is said to be an association rule at a minimum support of minsup and minimum confidence of minconf, if it satisfies both the following criteria:

- 1. The support of the itemset $X \cup Y$ is at least minsup.
- 2. The confidence of the rule $X \Rightarrow Y$ is at least mincon f.
 - A sufficient number of transactions are relevant
 - A sufficient strength in terms of conditional probabilities

The Overall Framework

- 1. In the first phase, all the frequent itemsets are generated at the minimum support of *minsup*.
 - The most difficult step
- 2. In the second phase, the association rules are generated from the frequent itemsets at the minimum confidence level of *minconf*.
 - Relatively straightforward

Implementation of 2nd Phase

- □ A Straightforward Implentation
 - Given a frequent itemset *I*
 - Generate all possible partitions X and Y = I X
 - **Examine** the confidence of each $X \Rightarrow Y$
- □ Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X_1 , X_2 , and I be itemsets such that $X_1 \subset X_2 \subset I$. Then the confidence of $X_2 \Rightarrow I - X_2$ is at least that of $X_1 \Rightarrow I - X_1$.

$$conf(X_2 \Rightarrow I - X_2) \ge conf(X_1 \Rightarrow I - X_1) \tag{4.3}$$

$$sup(X_2) \le sup(X_1) \Rightarrow \frac{sup(I)}{sup(X_2)} \ge \frac{sup(I)}{sup(X_1)}$$

Implementation of 2nd Phase

- □ A Straightforward Implentation
 - Given a frequent itemset *I*
 - Generate all possible partitions X and Y = I X
 - **Examine** the confidence of each $X \Rightarrow Y$
- □ Reduce the Search Space

Property 4.3.1 (Confidence Monotonicity) Let X_1 , X_2 , and I be itemsets such that $X_1 \subset X_2 \subset I$. Then the confidence of $X_2 \Rightarrow I - X_2$ is at least that of $X_1 \Rightarrow I - X_1$.

$$conf(X_2 \Rightarrow I - X_2) \ge conf(X_1 \Rightarrow I - X_1)$$
 (4.3)

Techniques for frequent itemsets mining can also be applied here

Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- ☐ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

Frequent Itemset Mining Algorithms

- □ Brute Force Algorithms
- □ The Apriori Algorithm
- Enumeration-Tree Algorithms
- □ Recursive Suffix-Based Pattern Growth Methods

Brute Force Algorithms (1)

□ The Naïve Approach

- Generate all these candidate itemsets
 - ✓ For a universe of items U, there are a total of $2^{|U|} 1$ distinct subsets
 - ✓ When U = 1000, $2^{1000} \ge 10^{300}$
- Count their support against the transaction database

Observation

no (k + 1)-patterns are frequent if no kpatterns are frequent.

Brute Force Algorithms (2)

- A Improved Approach
 - Generate all candidate k-itemsets with k
 - Count their support against the transaction database
 - If no frequent itemsets are found, then stop; Otherwise, k + + and continue;
- □ A Significant Improvement
 - Let l be the final value of k

$$\sum_{i=1}^{l} \binom{|U|}{i} \ll 2^{|U|}$$

|U| = 1000 and l = 10, it is $O(10^{23})$

Brute Force Algorithms (3)

- □ A very minor application of the downward closure property made the algorithm much faster
- ☐ To Further Improve the Efficiency
- 1. Reducing the size of the explored search space (lattice of Fig. 4.1) by pruning candidate *itemsets* (lattice nodes) using tricks, such as the *downward closure* property.
- 2. Counting the support of each candidate more efficiently by pruning transactions that are known to be irrelevant for counting a candidate itemset.
- 3. Using compact data structures to represent either candidates or transaction databases that support efficient counting.

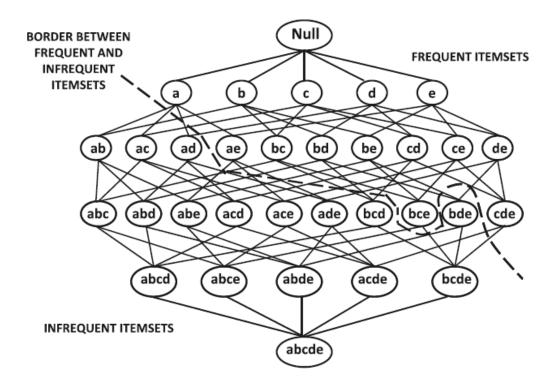
Frequent Itemset Mining Algorithms

- □ Brute Force Algorithms
- □ The Apriori Algorithm
- Enumeration-Tree Algorithms
- □ Recursive Suffix-Based Pattern Growth Methods

The Apriori Algorithm

☐ The Basic Idea

Use the downward closure property to prune the candidate search space



The Apriori Algorithm

☐ The Basic Idea

Use the downward closure property to prune the candidate search space

☐ The Overall Procedure (level-wise)

- Using the frequent k-itemsets to generate (k + 1)-candidates
- Prune the candidates before counting
- Counts the supports of the remaining (k+1)-candidates
- Stop if there is no frequent (k + 1)itemsets

The pseudocode

```
Algorithm Apriori(Transactions: \mathcal{T}, Minimum Support: minsup)
begin
  k = 1;
  \mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};
  while \mathcal{F}_k is not empty do begin
      Generate \mathcal{C}_{k+1} by joining itemset-pairs in \mathcal{F}_k;
     Prune itemsets from C_{k+1} that violate downward closure;
     Determine \mathcal{F}_{k+1} by support counting on (\mathcal{C}_{k+1}, \mathcal{T}) and retaining
             itemsets from C_{k+1} with support at least minsup;
     k = k + 1:
  end;
  \operatorname{return}(\cup_{i=1}^k \mathcal{F}_i);
end
```

NANALIZAC UZITAL

Candidates Generation (1)

- □ A Naïve Approach
 - Check all the possible combination of frequent k-itemsets
 - Keep all the (k + 1)-itemsets
- □ An Example of the Naive Approach
 - *k*-itemsets: {abc} {bcd} {abd} {cde}

 - \blacksquare {bcd} + {abd} = {abcd}

 -

Candidates Generation (1)

- □ A Naïve Approach
 - Check all the possible combination of frequent k-itemsets

Inefficiency

- Keep all the (k + 1)-it Redundancy and
- □ An Example of the
 - *k*-itemsets: {abc} {

 - {bcd} + {abd} = {abcd}

 - **.....**

Candidates Generation (2)

- Introduction of Ordering
 - \blacksquare Items in U have a lexicographic ordering
 - Itemsets can be order as strings
- □ A Better Approach
 - \blacksquare Order the frequent k-itemsets
 - Merge two itemset if the first k-1 items of them are the same

Candidates Generation (3)

- Examples of the New Methods
 - *k*-itemsets: {abc} {abd} {bcd}

 - *k*-itemsets: {abc} {acd} {bcd}
 - No (k + 1)-candidates
 - Early stop is possible
 - ✓ Donot need to check {abc} +{bcd} after checking {abc} + {acd}
 - Do we miss {abcd}?
 - ✓ No, due to the Downward Closure Property

Level-wise Pruning Trick

- \square Let F_k be the set of frequent kitemsets
- \square Let C_{k+1} be the set of (k+1)candidates
- □ For an $I \in C_{k+1}$, it is frequent only if all the all the k-subsets of I are frequent
- Pruning
 - Generate all the k-subsets of I
 - If any one of them does not belong to F_k , then remove I

Support Counting (1)

- □ A Naïve Approach
 - For each candidate $I_i \in C_{k+1}$
 - ✓ For each transaction T_j in the transaction database T
 - \blacksquare Check whether I_i appears in T_i
- □ The Limitation
 - Inefficient if both $|C_{k+1}|$ and |T| are very large

Support Counting (2)

□ A Better Approach

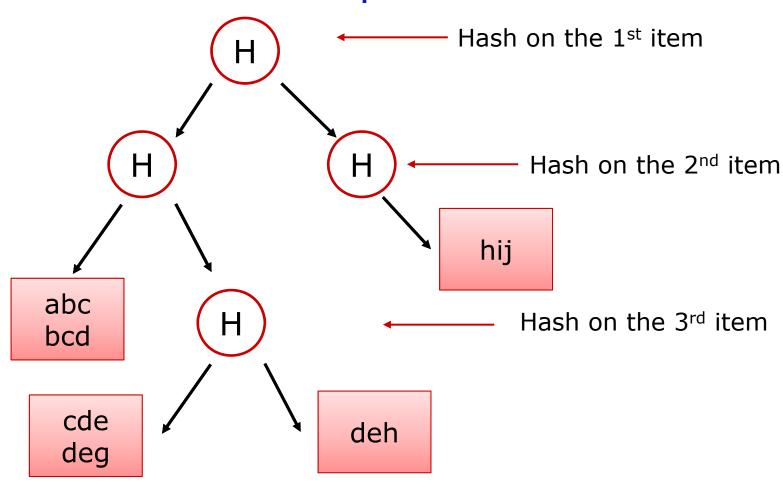
- Organize the candidate patterns in C_{k+1} with a hash tree
 - Hash tree construction
- Use the hash tree to accelerate counting
 - ✓ Each transaction T_i is examined with a small number of candidates in C_{k+1}

Hash Tree

- ☐ A tree with a fixed degree of the internal nodes
- □ Each internal node is associated with a random hash function that maps an item to one of its children
- □ A leaf node contains a list of lexicographically sorted itemsets
- \square Every itemset in C_{k+1} is contained in exactly one leaf node of the hash tree.

Hash Tree of C_3

\square The Maximum Depth is 3+1



Counting based on Hash Tree

- \square For each T_j , identify leaves in the hash tree that might contain subset items
- ☐ The Procedure
 - Root node hash on all items in T_i
 - ✓ Suppose the i-th item of T_j is hashed to one node, then pass this position i to that node
 - If we are at a leaf find all itemsets contained in T_j
 - If we are at an interior node hash on each item after the given position
 - ✓ Suppose the i-th item of T_j is hashed to one node, then pass this position i to that node

Frequent Itemset Mining Algorithms

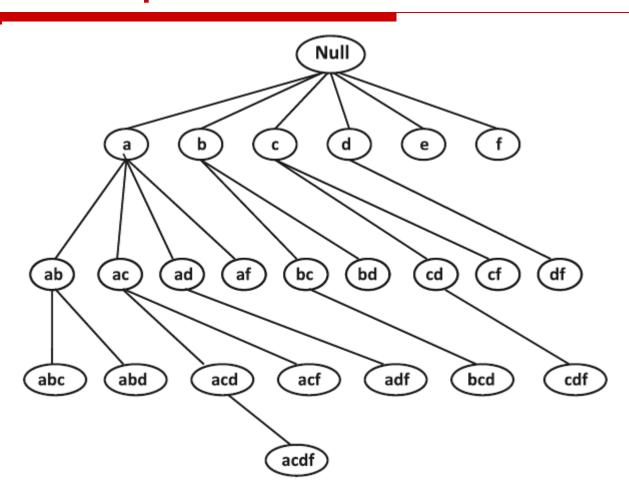
- □ Brute Force Algorithms
- ☐ The Apriori Algorithm
- Enumeration-Tree Algorithms
- □ Recursive Suffix-Based Pattern Growth Methods

Enumeration-Tree

□ Lexicographic Tree

- A node exists in the tree corresponding to each frequent itemset.
- The root of the tree corresponds to the null itemset.
- Let $I = \{i_1, ..., i_k\}$ be a frequent itemset, where $i_1, ..., i_k$ are listed in lexicographic order. The parent of the node I is the itemset $\{i_1, ..., i_{k-1}\}$

An Example



- ☐ Frequent Tree Extension
 - An item that is used to extend a node

Enumeration Tree Algorithms

```
Algorithm GenericEnumerationTree(Transactions: \mathcal{T},
            Minimum Support: minsup)
begin
  Initialize enumeration tree \mathcal{ET} to single Null node;
  while any node in \mathcal{ET} has not been examined do begin
    Select one of more unexamined nodes \mathcal{P} from \mathcal{ET} for examination;
    Generate candidates extensions C(P) of each node P \in \mathcal{P};
    Determine frequent extensions F(P) \subseteq C(P) for each P \in \mathcal{P} with support counting;
    Extend each node P \in \mathcal{P} in \mathcal{ET} with its frequent extensions in F(P);
  end
  return enumeration tree \mathcal{ET};
end
   \square Let Q be the parent of P
   \square Let F(Q) be the frequent extensions of Q
   \square Then, C(P) \subseteq F(Q)
```

Enumeration-Tree-Based Interpretation of Apriori

- ☐ Apriori constructs the enumeration tree in breadth-first manner
- Apriori generates candidate (k + 1)itemsets by merging two frequent kitemsets of which the first k-1 items
 of are the same

 \square Extend $\{ab\}$ with $\{cdf\} \subseteq F(\{a\})$

TreeProjection (1)

□ The Goal

Reuse the counting work that has already been done before

□ Projected Databases

- Each projected transaction database is specific to an enumeration-tree node.
- Transactions that do not contain the itemset P are removed.
- Projected database at node P can be expressed only in terms of the items in C(P)

TreeProjection (2)

☐ The Algorithm

```
Algorithm ProjectedEnumerationTree(Transactions: \mathcal{T},
                Minimum Support: minsup)
begin
  Initialize enumeration tree \mathcal{ET} to a single (Null, \mathcal{T}) root node;
  while any node in \mathcal{ET} has not been examined do begin
     Select an unexamined node (P, \mathcal{T}(P)) from \mathcal{E}\mathcal{T} for examination;
     Generate candidates item extensions C(P) of node (P, \mathcal{T}(P));
     Determine frequent item extensions F(P) \subseteq C(P) by support counting
            of individual items in smaller projected database \mathcal{T}(P);
     Remove infrequent items in \mathcal{T}(P);
     for each frequent item extension i \in F(P) do begin
        Generate \mathcal{T}(P \cup \{i\}) from \mathcal{T}(P);
        Add (P \cup \{i\}, \mathcal{T}(P \cup \{i\})) as child of P in \mathcal{ET};
     end
  end
  return enumeration tree \mathcal{ET};
end
```


Vertical Counting Methods (1)

□ Vertical Representation of Market Basket Data Set

Item	Set of tids	Binary representation
Bread	$\{1, 3\}$	10100
Butter	{1}	10000
Cheese	$\{3, 5\}$	00101
Eggs	$\{2, 3, 4\}$	01110
Milk	$\{1, 2, 3, 4, 5\}$	11111
Yogurt	$\{2, 4, 5\}$	01011

- ☐ Intersection of two item *tid* list gives a new list
 - The length is the support of the 2itemset

Vertical Counting Methods (2)

☐ The Algorithm

```
Algorithm VerticalApriori(Transactions: \mathcal{T}, Minimum Support: minsup)
begin
  k = 1;
  \mathcal{F}_1 = \{ \text{ All Frequent 1-itemsets } \};
  Construct vertical tid lists of each frequent item;
  while \mathcal{F}_k is not empty do begin
     Generate C_{k+1} by joining itemset-pairs in \mathcal{F}_k;
     Prune itemsets from C_{k+1} that violate downward closure;
     Generate tid list of each candidate itemset in \mathcal{C}_{k+1} by intersecting
         tid lists of the itemset-pair in \mathcal{F}_k that was used to create it;
     Determine supports of itemsets in C_{k+1} using lengths of their tid lists;
     \mathcal{F}_{k+1} = Frequent itemsets of \mathcal{C}_{k+1} together with their tid lists;
     k = k + 1:
  end;
  return(\bigcup_{i=1}^k \mathcal{F}_i);
end
```

Frequent Itemset Mining Algorithms

- ☐ Brute Force Algorithms
- ☐ The Apriori Algorithm
- □ Enumeration-Tree Algorithms
- □ Recursive Suffix-Based Pattern Growth Methods

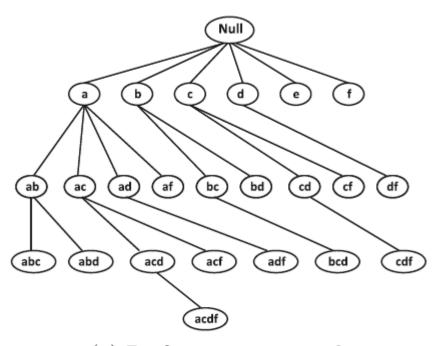
Generic Recursive Suffix Growth Algorithm

☐ *T* is expressed in terms of only frequent 1-itemset

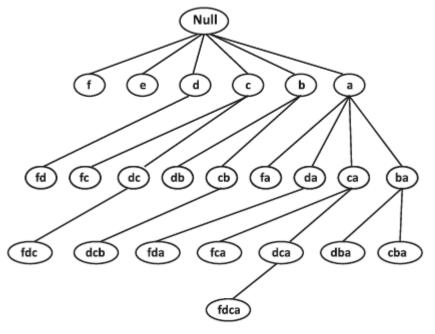
```
Algorithm RecursiveSuffixGrowth (Transactions in terms of frequent 1-items: \mathcal{T}, Minimum Support: minsup, Current Suffix: P) begin for each item i in \mathcal{T} do begin report itemset P_i = \{i\} \cup P as frequent; Extract all transactions \mathcal{T}_i from \mathcal{T} containing item i; Remove all items from \mathcal{T}_i that are lexicographically \geq i; Remove all infrequent items from \mathcal{T}_i; if (\mathcal{T}_i \neq \phi) then RecursiveSuffixGrowth(\mathcal{T}_i, minsup, P_i); end end
```

Relationship Between FP-Growth and Enumeration-Tree Methods

☐ They are Equivalent



(a) Prefix extensions with ordering of a, b, c, d, e, f (Enumeration Tree Prefixes shown)



(b) FP-growth with ordering of f, e, d, c, b, a (Recursion Tree Suffixes shown)

Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- ☐ Frequent Itemset Mining Algorithms
- □ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

Motivations (1)

- □ Advantages of Frequent Itemsets
 - Very simple and intuitive
 - Raw frequency for the support
 - Conditional probabilities for the confidence
 - Downward Closure Property
 - Enable efficient algorithms

Motivations (2)

□ Disadvantages of Frequent Itemsets

Patterns are not always significant from an application-specific perspective

tid	Set of items	Binary representation
1	$\{Bread, Butter, Milk\}$	110010
2	$\{Eggs, Milk, Yogurt\}$	000111
3	$\{Bread, Cheese, Eggs, Milk\}$	101110
4	$\{Eggs, Milk, Yogurt\}$	000111
5	$\{Cheese, Milk, Yogurt\}$	001011

- Milk can be appended to any set of items, without changing its frequency
- ✓ For any set of items X, the association rule $X \Rightarrow \{Milk\}$ has 100% confidence

Motivations (2)

□ Disadvantages of Frequent Itemsets

- Patterns are not always significant from an application-specific perspective
- Cannot adjust to the skew in the individual item support values
 - ✓ Support of $\{Milk, Butter\}$ is very different from $\{\neg Milk, \neg Butter\}$
 - ✓ But the statistical coefficient of correlation is exactly the same in both cases

□ Bit Symmetric Property

■ Values of 0 in the binary matrix are treated in a similar way to values of 1

Statistical Coefficient of Correlation

□ Pearson Coefficient

$$\rho = \frac{E[X \cdot Y] - E[X] \cdot E[Y]}{\sigma(X) \cdot \sigma(Y)}$$

■ Estimated Correlation

$$\rho_{ij} = \frac{\sup(\{i,j\}) - \sup(i) \cdot \sup(j)}{\sqrt{\sup(i) \cdot \sup(j) \cdot (1 - \sup(i)) \cdot (1 - \sup(j))}}.$$

- ☐ Properties
 - Lies in the range [-1,1]
 - Satisfies the bit symmetric property
 - Intuitively hard to interpret

χ^2 Measure

- \square Given a set X of k items, there are 2^k possible states
 - k = 2 items {Bread, Butter}, the 2^2 states are {Bread, Butter}, {Bread, ¬Butter}, {¬Bread, Butter}, and {¬Bread, ¬Butter}

χ^2 Measure

- \square Given a set X of k items, there are 2^k possible states
- \square The χ^2 -measure for set of items X

$$\chi^{2}(X) = \sum_{i=1}^{2^{|X|}} \frac{(O_{i} - E_{i})^{2}}{E_{i}}.$$

 O_i and E_i be the observed and expected values of the absolute support of state i

χ^2 Measure

- \square Given a set X of k items, there are 2^k possible states
- \square The χ^2 -measure for set of items X
- Properties
 - Larger values of this quantity indicate greater dependence
 - Do not reveal whether the dependence between items is positive or negative
 - Is bit-symmetric
 - Satisfies the upward closure property
 - High computational complexity

Interest Ratio

Definition

$$I(\lbrace i_1 \dots i_k \rbrace) = \frac{\sup(\lbrace i_1 \dots i_k \rbrace)}{\prod_{j=1}^k \sup(i_j)}$$

Properties

- When the items are statistically independent, the ratio is 1.
- Value greater than 1 indicates that the variables are positively correlated.
- When some items are extremely rare, the interest ratio can be misleading.
- Donot satisfy the downward closure property.

Symmetric Confidence Measures

☐ Confidence Measure is Asymmetric

$$conf(X \Rightarrow Y) \neq conf(Y \Rightarrow X)$$

- \square Let X and Y be two 1-itemsets
 - Minimum of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$
 - Maximum of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$
 - Average of $conf(X \Rightarrow Y)$ and $conf(Y \Rightarrow X)$
 - ✓ Geometric mean is the cosine measure
- ☐ Can be generalized to k-itemsets
- Do not satisfy the downward closure property

NANH 1902 WAYE

Cosine Coefficient on Columns

□ Definition

$$cosine(i,j) = \frac{sup(\{i,j\})}{\sqrt{sup(i)} \cdot \sqrt{sup(j)}}.$$

- □ Interpretation
 - Cosine similarity between two columns of the data matrix
- □ A Symmetric Confidence Measure

Jaccard Coefficient and the Minhash Trick

 \square Jaccard coefficient $J(S_1, S_2)$ between the two sets

$$J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

□ Jaccard coefficient between multiway sets

$$J(S_1 \dots S_k) = \frac{|\cap S_i|}{|\cup S_i|}.$$

- Properties
 - Satisfy the downward closure property
 - Speed up by min-hash trick

Collective Strength (1)

□ Violation

If some of the items of I are present in the transaction, and others are not.

\square Violation Rate v(I)

The fraction of violations of the itemset I over all transactions.

Collective Strength (2)

☐ Collective Strength

$$C(I) = \frac{1 - v(I)}{1 - E[v(I)]} \cdot \frac{E[v(I)]}{v(I)}.$$

■ The expected value of v(I) is calculated assuming statistical independence of the individual items.

$$E[v(I)] = 1 - \prod_{i \in I} p_i - \prod_{i \in I} (1 - p_i).$$

- 0 indicates a perfect negative correlation
- ∞ indicates a perfectly positive correlation

Collective Strength (3)

■ Interpretation of Collective Strength

$$C(I) = \frac{\text{Good Events}}{\text{E[Good Events]}} \cdot \frac{\text{E[Bad Events]}}{\text{Bad Events}}.$$

☐ Strongly Collective Itemsets

Definition 4.5.1 An itemset I is denoted to be strongly collective at level s, if it satisfies the following properties:

- 1. The collective strength C(I) of the itemset I is at least s.
- 2. Closure property: The collective strength C(J) of every subset J of I is at least s.
 - The closure property is enforced.

Relationship to Negative Pattern Mining

Motivation

- Determine patterns between items or their absence
- ☐ Satisfy Bit Symmetric Property
 - Statistical coefficient of correlation
 - $\sim \chi^2$ measure
 - Jaccard Coefficient, Strongly Collective strength
 - Also satisfy downward closure property

Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- □ Useful Meta-algorithms
- □ Summary

Useful Meta-algorithms

Definition

- An algorithm that uses a particular algorithm as a subroutine
 - either to make the original algorithm more efficient (e.g., by sampling)
 - ✓ or to gain new insights
- □ Sampling Methods
- □ Data Partitioned Ensembles
- □ Generalization to Other Data Types

Sampling Methods

☐ The Procedure

- Sample a subset of the transactions
- Apply mining algorithm to sampled data

□ Challenges

- False positives: These are patterns that meet the support threshold on the sample but not on the base data.
 - ✓ Post-processing
- False negatives: These are patterns that do not meet the support threshold on the sample, but meet the threshold on the data.
 - Reduce the support threshold

Data Partitioned Ensembles

☐ The Procedure

- The transaction database is partitioned into *k* disjoint segments
- The mining algorithm is independently applied to each of these *k* segments
- Post-processing to remove false positives

☐ Property

No false negatives

Generalization to Other Data Types

Quantitative Data

Rules contain quantitative attributes

```
(Age = 90) \Rightarrow Checkers Age[85, 95] \Rightarrow Checkers
```

- Discretize and converte to binary form
- Categorical Data
 - Rules contain mixed attributes

```
(Gender = Male), Age[20, 30] \Rightarrow Basketball.
```

Transform to binary values

Outline

- □ Introduction
- □ The Frequent Pattern Mining Model
- ☐ Association Rule Generation Framework
- □ Frequent Itemset Mining Algorithms
- ☐ Alternative Models: Interesting Patterns
- ☐ Useful Meta-algorithms
- □ Summary

Summary

- □ Frequent Pattern Mining
 - Support, Downward Closure Property
- ☐ Association Rule
 - Support, Confidence
- ☐ Frequent Itemset Mining Algorithms
 - Brute Force Algorithms, Apriori, Enumeration-Tree Algorithms, Recursive Suffix-Based Pattern Growth Methods
- □ Alternative Models: Interesting Patterns
 - Pearson coefficient, χ^2 Measure, Interest Ratio, Symmetric Confidence Measures, ...
- ☐ Useful Meta-algorithms
 - Sampling, Data Partitioned Ensembles, Generalization