KEAEDLE 5)

FRF

LAMDA Group
AR KFHENAFEHRKF
BHHHREARELERE

liwujun@nju.edu.cn

Oct 19, 2016

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 1/125

http://cs.nju.edu.cn/lwj

e —
Outline

o Introduction

© Learing to Hash
@ Isotropic Hashing
@ Scalable Graph Hashing with Feature Transformation
@ Supervised Hashing with Latent Factor Models
@ Column Sampling based Discrete Supervised Hashing
@ Deep Supervised Hashing with Pairwise Labels
@ Supervised Multimodal Hashing with SCM
@ Multiple-Bit Quantization

e Parallel and Distributed Stochastic Learning
@ Fast Asynchronous Parallel Stochastic Gradient Descent
@ SCOPE: Scalable Composite Optimization for Learning

e Other Application-Driven Distributed Learning
@ Coupled Group Lasso for Web-Scale CTR Prediction
@ Distributed Power-Law Graph Computing
@ Distributed Stochastic ADMM for Matrix Factorization

© Conclusion

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 2 /125

http://cs.nju.edu.cn/lwj

Outline

o Introduction

n Li (http://cs.nju.edu. j Big Learning CS, NJU 3 /125

http://cs.nju.edu.cn/lwj

Big Data

Big data has attracted much attention from both academia and industry.

@ Facebook: 750 million users

@ Flickr: 6 billion photos

e Wal-Mart: 267 million items/day; 4PB data warehouse

@ Sloan Digital Sky Survey: New Mexico telescope captures 200 GB

image data/day

nature] Science

FOURTH
PARADIGM

SCIENCE IN THE
PETABYTE ERA

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU 4 /125

http://cs.nju.edu.cn/lwj

Definition of Big Data

@ Gartner (2012): "Big data is high volume, high velocity, and/or high variety
information assets that require new forms of processing to enable enhanced
decision making, insight discovery and process optimization.” (“3Vs")

@ International Data Corporation (IDC) (2011): “Big data technologies
describe a new generation of technologies and architectures, designed to
economically extract value from very large volumes of a wide variety of data,
by enabling high-velocity capture, discovery, and/or analysis.” (“4Vs")

@ McKinsey Global Institute (MGI) (2011): “Big data refers to datasets whose
size is beyond the ability of typical database software tools to capture, store,
manage, and analyze.”

Why not hot until recent years?
o Big data: &4
o Cloud computing: K& # K
o Big data machine learning: & &4 K

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 5 /125

http://cs.nju.edu.cn/lwj

Big Data Machine Learning

@ Definition: perform machine learning from big data.

@ Role: key for big data

e Ultimate goal of big data processing is to mine value from data.

e Machine learning provides fundamental theory and computational
techniques for big data mining and analysis.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 6 /125

http://cs.nju.edu.cn/lwj

Challenge

@ Storage: memory and disk

@ Computation: CPU

@ Communication: network

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

7/125

http://cs.nju.edu.cn/lwj

Our Contribution

e Learning to hash (%7 % 3]): memory/disk/cpu/communication

@ Parallel and distributed stochastic learning (#4175 47 XEAHLEF 3):
memory/disk/cpu;
but increase communication cost

@ Other application-driven distributed learning (34 52 F 4R 5h 69 97 X,
o,
53])

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 8 /125

http://cs.nju.edu.cn/lwj

Outline

© Learning to Hash
@ Isotropic Hashing
@ Scalable Graph Hashing with Feature Transformation
@ Supervised Hashing with Latent Factor Models
@ Column Sampling based Discrete Supervised Hashing
@ Deep Supervised Hashing with Pairwise Labels
@ Supervised Multimodal Hashing with SCM
@ Multiple-Bit Quantization

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 9 /125

http://cs.nju.edu.cn/lwj

Nearest Neighbor Search (Retrieval)

e Given a query point g, return the points closest (similar) to ¢ in the
database (e.g., image retrieval).

@ Underlying many machine learning, data mining, information retrieval
problems

a o]

-
/
/

m (79

~

/
-

Challenge in Big Data Applications:
@ Curse of dimensionality
@ Storage cost
@ Query speed

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 10 / 125

http://cs.nju.edu.cn/lwj

Similarity Preserving Hashing

h(Statue of Liberty) = h (Napoléon) = h (Napoléon) =
10001010 01100001 01100101

N M

Should be very different Should be similar

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 11 /125

http://cs.nju.edu.cn/lwj

Reduce Dimensionality and Storage Cost

t vector
|
Binary
reduction
10 million images 20 GB 160 MB
512values 128bits

Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

12 / 125

http://cs.nju.edu.cn/lwj

Fast Query Speed

@ By using hash-code to construct index, we can achieve constant or
sub-linear search time complexity.

@ In some cases, exhaustive search with linear time complexity is also
acceptable because the distance calculation cost is low with binary
representation.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 13 / 125

http://cs.nju.edu.cn/lwj

Two Stages of Hash Function Learning

Two main categories:
o Category I:
o Projection Stage (Dimension Reduction)
o Projected with real-valued projection function
o Given a point x, each projected dimension i will be associated with a
real-valued projection function f;(x) (e.g., fi(x) = Wi x)
e Quantization Stage

@ Turn real into binary
o Essential difference between metric learning and learning to hash

o Category II:

e Binary-Code Learning Stage
e Hash Function Learning Stage

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 14 / 125

http://cs.nju.edu.cn/lwj

Our Contribution

@ Unsupervised Hashing

o lIsotropic hashing (IsoHash) [NIPS 2012]
o Scalable graph hashing with feature transformation [IJCAI 2015]

@ Supervised Hashing

e Supervised hashing with latent factor models [SIGIR 2014]

o Column sampling based discrete supervised hashing [AAAI 2016]

o Feature learning based deep supervised hashing with pairwise labels
[1JCAI 2016]

e Multimodal Hashing
Large-scale supervised multimodal hashing with semantic correlation
maximization [AAAI 2014]

e Multiple-Bit Quantization

o Double-bit quantization (DBQ) [AAAI 2012]
e Manhattan quantization (MQ) [SIGIR 2012]

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 15 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Isotropic Hashing

Motivation

Problem:

All existing methods use the same number of bits for different projected

dimensions with different variances.

Possible Solutions:
@ Different number of bits for different dimensions
(Variable bit quantization (Moran et al, ACL 2013))

e lIsotropic (equal) variances for all dimensions

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning

CS, NJU

16 / 125

http://cs.nju.edu.cn/lwj

PCA Hash

To generate a code of m bits, PCAH performs PCA on X, and then use
the top m eigenvectors of the matrix X X7 as columns of the projection
matrix W € R¥™_ Here, top m eigenvectors are those corresponding to
the m largest eigenvalues {\;}}" ., generally arranged with the
non-increasing order A\; > Ao > --- > A, Let A = [, Aoy, A ”
Then

A=WTXXTW = diag()\)

Define hash function

h(x) = sgn(WTx)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 17 / 125

http://cs.nju.edu.cn/lwj

Idea of IsoHash

@ Learn an orthogonal matrix Q € R™*™ which makes
QTWTXXTW(Q become a matrix with equal diagonal values.

o Effect of (): to make each projected dimension have the same
variance while keeping the Euclidean distances between any two
points unchanged.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

18 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash

Accuracy (mAP)

Isotropic Hashing

| Method | CIFAR

bits | 32 64 96 128 256

IsoHash | 0.2249 | 0.2969 | 0.3256 | 0.3357 | 0.3651
PCAH | 0.0319 | 0.0274 | 0.0241 [0.0216 | 0.0168
ITQ [0.2490 [0.3051 | 0.3238 | 0.3319 | 0.3436
SH | 0.0510 | 0.0589 | 0.0802 | 0.1121 | 0.1535
SIKH [0.0353 | 0.0902 | 0.1245 | 0.1909 | 0.3614
LSH | 0.1052 | 0.1907 | 0.2396 | 0.2776 | 0.3432

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning

CS, NJU

19 / 125

http://cs.nju.edu.cn/lwj

Training Time

—+— IsoHash-GF
—&— IsoHash-LP
——ITQ

SH
—+— SIKH

LSH
r| —&— PCAH

IN
o
;

w
o

Training Time(s)
N
o

0 1 2 3 4 5
Number of training data 19

> o

i (http://cs.nju.edu.cn/1lwj) Big Learning CS, NJU 20 / 125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

Problem

@ The memory cost and time complexity are at least O(n?) for graph
hashing if all pairwise similarities are explicitly computed.

@ How to utilize the whole graph and avoid O(n?) complexity?

Scalable Graph Hashing(SGH)

@ A feature transformation (Shrivastava and Li, NIPS 2014) method to

effectively approximate the whole graph without explicitly computing
it.

@ A sequential method for bit-wise complementary learning.

@ Linear complexity.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 21 /125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

Objective function
minw |[|cS — sgn(K (X)WT)sgn(K (X)WT)T[3,
st. WKX)TKX)WT =1
e Vx, define: K(x) =
[B(x,x1) — 200 d(xix1)/n, o, O(X, Xm) — D070 G(Xi, Xm) /7]
o Sjj=28;—1¢e(-1,1].

Notation
o X = {x1,...,%x,}7 € R"*%: n data points,

@ Pairwise similarity metric defined as: S;; = e lxi—x;l%/p ¢ (0,1]

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 22 /125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

2(e2 — 1) ~lixliz 2 I
P(x) = (e)e PFX, et e PF,l]
ep e
2e2 — 1) -—lxl% 241 =3
Q(x) = -1, xS
ep e
° Vx;,x; € X
2 T 2 12 12
—1 2xTx; 1. Il E+x;ll
P(Xi)TQ(Xj) = 2[6 5 X Xi X + c ;— le L 1
e p e
11—l 13 42xE -
~ 2e o —1=29;
Big Learning CS, NJU 23 /125

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

http://cs.nju.edu.cn/lwj

Learning to Hash Scalable Graph Hashing with Feature Transformation

Feature Transformation

. . 2_
@ Here, we use an approximation &; Ly ¢ +1 = et

3

1 05 0 05 1
e We assume —1 < %xiij <1 ltis easy to prove that

p = 2max{||x;[|2}", can make —1 < 2 x x; < 1.

o Then we have S ~ P(X)7Q(X)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

24 / 125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

@ Direct relaxation may lead to poor performance. We adopt a
sequential learning strategy in a bit-wise complementary manner

@ Residual definition
R; =S — Zl 1 sgn(K(X)wi)sgn(K(X)wi)T
R1 = CS

@ Objective function:

min |[R; — sgn(K (X)w)sgn (K (X)w)T [}
st. wlKX)TKX)w; =1
By relaxation, we can get:
max tr(wl K(X)TR K (X)w;)
st. wlIKX)TKX)w; =1

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 25 / 125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

@ Then we obtain a generalized eigenvalue problem:
K(X)TR:K (X)w; = AK (X)T K (X)w;
o Key component:

cK(X)TSK(X) = ¢k (X)T P(X)"Q(X) K(X)
ﬁ—/
S

= [K(X)"P(X)"[Q(X) K (X)]
o Adopting R; = ¢S — D ittt sgn(K (X)w;)sgn(K(X)w;)T, we

continue the sequential learning procedure.

e The information in S is fully used, but is not explicitly computed.
Time complexity is decreased from O(n?) to O(n).

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

26 / 125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

Algorithm 1 Sequential learning algorithm for SGH

Input: Feature vectors X € ’R,"Xd; code length ¢; number of kernel bases m.
Output: Weight matrix W € REX™ .
Procedure
Construct P(X) and Q(X);
Construct K (X) based on the kernel bases, which are m points randomly selected from X;
Ao = [KEX)TPO)TQE)K(X));
A = cAyp;
z = K(X)TK(X) + 71
fort =1 — cdo
Solve the following generalized eigenvalue problem
Aiwi = NZwy; .
U = [K(X) T sgn(K(X)w)][K(X) T sgn(K(X)we)]T;
Aip1=A - U;
end for
Apg=Acq
Randomly permutate {1, 2, -, c} to generate a random index set M;
fort =1 — cdo
t = M(t);
R = Ko + K(X) T sgn(K (X)w;)sgn(K(X)wp) T K(X);
Solve the following generalized eigenvalue problem
Kov = A\Zv;
Update w; « v
Ag =Ap — K(X)Tsgn(K(X)w;y)sgn(K(X)w)T K (X);
end for

n Li (http://cs.nju.edu.cn/lwj Big Learning CS, NJU 27 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Scalable Graph Hashing with Feature Transformation

Scalable Graph Hashing (SGH)

Top-1k precision @TINY-1M.

Method | 32 bits | 64 bits | 96 bits | 128 bits | 256 bits
SGH 0.4697 | 0.5742 | 0.6299 0.6737 0.7357
ITQ 0.4289 | 0.4782 | 0.4947 0.4986 0.5003
AGH 0.3973 | 0.4402 | 0.4577 0.4654 0.4767
DGH-I 0.3974 | 0.4536 | 0.4737 0.4874 0.4969
DGH-R | 0.3793 | 0.4554 | 0.4871 0.4989 0.5276
PCAH 0.2457 | 0.2203 | 0.2000 0.1836 0.1421
LSH 0.2507 | 0.3575 | 0.4122 0.4529 0.5212
Top-1k precision @MIRFLICKR-1M.
Method | 32 bits | 64 bits | 96 bits | 128 bits | 256 bits
SGH 0.4919 | 0.6041 | 0.6677 | 0.6985 0.7584
ITQ 0.5177 | 0.5776 | 0.5999 0.6096 0.6228
AGH 0.4299 0.4741 0.4911 0.4998 0.506
DGH-I 0.4299 | 0.4806 | 0.5001 0.5111 0.5253
DGH-R | 0.4121 | 0.4776 | 0.5054 0.5196 0.5428
PCAH 0.2720 0.2384 0.2141 0.1950 0.1508
LSH 0.2597 | 0.3995 0.466 0.5160 0.6072
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

28 / 125

http://cs.nju.edu.cn/lwj

Scalable Graph Hashing with Feature Transformation
Scalable Graph Hashing (SGH)

Training time @TINY-1M. Here, ¢; = 1438.60

Method 32 bits 64 bits 96 bits 128 bits 256 bits
SGH 34.49 52.37 71.53 89.65 164.23
ITQ 31.72 60.62 89.01 149.18 322.06
AGH 18.60 + t1 19.40 + t; 20.08 + t1 22.48 + t1 25.09 + t1
DGH-I1 187.57 + t1 | 296.99 + t1 | 518.57 + t; 924.08 + t; 1838.30 + t1
DGH-R | 217.06 + t; | 360.18 + t1 | 615.74 + ¢ 1089.10 + ¢1 | 2300.10 + t;
PCAH 4.29 4.54 4.75 5.85 6.49
LSH 1.68 1.77 1.84 2.55 3.76
Training time @MIRFLICKR-1M. Here, to = 1564.86
Method 32 bits 64 bits 96 bits 128 bits 256 bits
SGH 41.51 59.02 74.86 97.25 168.35
ITQ 36.17 64.61 89.50 132.71 285.10
AGH 17.99 + to 18.80 + t2 20.30 + to 19.87 + to 21.60 + to
DGH-I 85.81 + to 143.68 + to | 215.41 + to | 352.73 + t2o 739.56 + t2
DGH-R | 116.25 + to | 206.24 + to | 308.32 + to | 517.97 + to | 1199.44 + to
PCAH 7.65 7.90 8.47 9.23 10.42
LSH 2.44 2.43 2.71 3.38 4.21
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

29 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Hashing with Latent Factor Models

Problem Definition

Input:
o Feature vectors: x; € RP, i=1,...,N.
(Compact form: X € RV*D)
o Similarity labels: s;;, 4,5 =1,...,N.
(Compact form: S = {s;;})
o s;; = 1 if points 7 and j belong to the same class.

e s;; = 0 if points 7 and j belong to different classes.

Output:
@ Binary codes: b; € {-1,1}9, i=1,...,N.
(Compact form: B € {—1,1}/V*?)

o When s;; = 1, the Hamming distance between b; and b, should be

low.

o When s;; = 0, the Hamming distance between b; and b; should be
high.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

30 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Hashing with Latent Factor Models
Motivation

Existing supervised methods:

@ High training complexity

@ Semantic information is poorly utilized

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

31 /125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Hashing with Latent Factor Models
Model

The likelihood on the observed similarity labels S is defined as:

p(S|B) = Hpsz]\B

5, €S

aij, sij =1
s.. | B) =
p(z]’) {1_aij7 SijZO
aij is defined as Qjj = U(@ij) with:
1
ofz) = 14+e2
0, = 2b’f b;

Relationship between the Hamming distance and the inner product:

1(Q —20;;)

, 1
dist s (bi, b)) = 5(Q - blb;) = 5

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 32 /125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Hashing with Latent Factor Models

Relaxation

Re-define ©;; as:
1
0, = §U;?;Uj*

p(S | B), p(B), p(B | §) become p(S | U), p(U), p(U | 5).
Define a normal distribution of p(U) as:

Q
p(U) = [[N(U.a | 0, 1)

d=1

The log posteriori of U can be derived as:

3 1
L=1logp(U|S) =3 (50 —log(1 + %)) — 550l +¢
Si]‘GS

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 33 /125

http://cs.nju.edu.cn/lwj

Supervised Hashing with Latent Factor Models
Stochastic Learning
Furthermore, if we choose the subset of S by randomly selecting O (Q) of

its columns and rows, we can further reduce the time cost to O (NQQ)
per iteration.

Disordered Aligned

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 34 /125

http://cs.nju.edu.cn/lwj

Supervised Hashing with Latent Factor Models
MAP (CIFAR-10)

| —6— LFH —8— KSH =—@— MLH —%— ITQ AGH =—€— LSH —P— PCAH SH SIKH

08——T——T——T—T— T T T

0.7f 1

0.6 1

0.5r 1

MAP

0.4r 1

0.3

0.2

0.1

Code Length

n Li (http://cs.nju.edu. j Big Learning CS, NJU 35 /125

http://cs.nju.edu.cn/lwj

Supervised Hashing with Latent Factor Models
Training Time (CIFAR-10)

| —6— LFH —8— KSH =—@— MLH —%— ITQ AGH =—€— LSH —P— PCAH SH SIKH
5.
é —

Q

£ e=C

= T =—

o 2f A

C

£

[

=

j=2]

o

- _

. | -

or r'-—r,——fr—; ; : ol =
-1t W
h 8 16 24 32 48 64 96 128

Code Length

n Li (http://cs.nju.edu. j Big Learning CS, NJU 36 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Column Sampling based Discrete Supervised Hashing

Motivation

@ Learning to hash is essentially a discrete optimization problem
@ Most existing methods solve relaxed continuous problems

e FastH [Lin et al., CVPR 2014] illustrates better accuracy with discrete
optimization, but it cannot utilize all training points due to high time
complexity.

We propose a discrete supervised hashing method which can leverage all
training points:
@ COlumn Sampling based Dlscrete Supervised Hashing (COSDISH).

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 37 /125

http://cs.nju.edu.cn/lwj

Objective Function

KSH [CVPR'12], TSH [ICCV'13], FastH [CVPR'14] all optimize the
following objective function:

min g8~ BBT|3 =30 (¢S, — BBL)?

— nxq
Be{-1,1} P

where S;; € {—1,1} denotes the supervised label.
The inner product reflects the opposite of the Hamming distance:

diStH(Bi*, B]*) = (q - Bz*Bg;)/2

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 38 / 125

http://cs.nju.edu.cn/lwj

Column Sampling

In each iteration, we randomly choose a subset Q of N' = {1,2,..n},
sample || columns of S with the column numbers indexed by 2.

We use S € {—1,1}9 to denote the sampled sub-similarity matrix.
Let T = A — Q, we can split S and B into two parts:

Q part: S e {—1,1}xI9 and B? € {—1,1}I%xq

I part: ST e {—1,1}T1XI20 and BT € {—1,1}IFIxq

Based on sampled columns in each iteration, the objective can be
reformulated as follows:

: ol T T2) Q Q1712
R, ¢S — B [B*]" |[% + [|¢S™ — B*[B™]" ||%.

Our learning strategy is to alternatively optimize B and BT

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

and

39 /125

http://cs.nju.edu.cn/lwj

Alternating Learning

Update BT with B Fixed

BT = sgn(S'B®) reaches the minimum of f1(-) which changes the
F-norm to L1 norm.

Theorem

Suppose that f1(F7) and f2(F%) reach their minimum at the points F7
and ¥3, respectively. We have fo(F7) < 2qf2(F3%).

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 40 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Column Sampling based Discrete Supervised Hashing

Alternating Learning

Update B with BT Fixed
When BT is fixed, the sub-problem of B is given by:

min - |gS" ~ BYBYTE + [|gS? — BB
BS2e{—1,1}I%lxa

We can transform the above problem to ¢ binary quadratic

programming (BQP) problems. The optimization of the kth bit of B is

given by:
bkg?}iﬁ}\m[bk]TQ(mbk + [bFTp®
where b* denotes the kth column of B®, and
m=1

k > k=1 1mim k
Q(z; = _Q(QS% - b; bj)s Ez) =0,

i#J
k T o k—1
p§) =-2 Ziz‘l Bll—:k: (qSll—:z - Zm:l Bllijzg,zm)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

41 /125

http://cs.nju.edu.cn/lwj

Learning to Hash Column Sampling based Discrete Supervised Hashing

Experiment

Accuracy (MAP)

[Method I CIFAR-10 (60K)

8-bits 16-bits 32-bits 64-bits
COSDISH 0.4986 0.5768 0.6191 0.6371
SDH 0.2642 0.3994 0.4145 0.4346
LFH 0.2908 0.4098 0.5446 0.6182
TSH 0.2365 0.3080 0.3455 0.3663
KSH 0.2334 0.2662 0.2923 0.3128
SPLH 0.1588 0.1635 0.1701 0.1730
COSDISH_ BT 0.5856 0.6681 0.7079 0.7346
FastH 0.4230 0.5216 0.5970 0.6446

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

42 /125

http://cs.nju.edu.cn/lwj

Learning to Hash Column Sampling based Discrete Supervised Hashing

Experiment

Training Time

Table 2: Training time (in second) on subsets of NUS-WIDE

[Method [3K [10K [50K | 100K | 200K |
COSDISH 5.6 8.0 33.7 67.7 162.2
SDH 39 11.8 66.2 126.9 | 248.2
LFH 14.3 16.3 27.8 40.8 85.9
TSH 9222 | 27360 | >50000 | - -
KSH 1104 | 4446 >50000 | - .
SPLH 25.3 185 - - -
COSDISH BT || 60.2 69.1 228.3 422.6 | 893.3
FastH 1723 | 291.6 | 1451 3602 | -
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

43 / 125

http://cs.nju.edu.cn/lwj

Deep Supervised Hashing with Pairwise Labels
Motivation and Contribution

Motivation:

@ Most existing methods are based on hand-crafted features which
might not be optimally compatible with the hashing procedure.

@ Deep hashing with simultaneous feature learning and hash-code
learning can achieve better performance.

@ Most existing deep hashing methods are supervised with
ranking (triplet) labels.

@ For pairwise labels, there have not existed methods for simultaneous
feature learning and hash-code learning.

Our contribution:

@ An end-to-end framework, called deep pairwise-supervised
hashing (DPSH), to perform simultaneous feature learning and
hash-code learning for applications with pairwise labels.

@ The first work for this case.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 44 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Deep Supervised Hashing with Pairwise Labels

Model

The end-to-end deep learning architecture for DPSH

- 11-11-11 . .
Weight Sharing 1-11-11-1 Pairwise
Binary Code . . -
.3 Cem fn n Similarity

=il Al =il dl

Convolutions Pooling |
Convolutions pooling

Feature Learning Part Objective Function Part

Feature learning part:
convolutional neural network (CNN) with 7 layers (five conv+pooling, two
4096 fully connected)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 45 / 125

http://cs.nju.edu.cn/lwj

Deep Supervised Hashing with Pairwise Labels
Objective Function Part

. el
swse? =7 2;5(817'@@' —log(1 +¢%%))

+0) Ibi — (W o(xi:0) +v)|3

=1

n points (images) X = {x;}I" 4

pairwise labels S = {s;;} with s;; € {0,1}

binary code b; € {—1,1}¢ for each point x;, B = {b;}",
©;; = sul'u;, where u; = WTg(x;;0) + v

0 is the CNN parameters of the feature learning part

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

46 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Deep Supervised Hashing with Pairwise Labels
Accuracy

Comparison to state-of-the-art baselines

[Method || CIFAR-10 (MAP) I NUS-WIDE (MAP)]

12-bits | 24-bits | 32-bits | 48-bits || 12-bits | 24-bits | 32-bits | 48-bits
DPSH || 0713 | 0.727 | 0.744 | 0.757 || 0.794 | 0.822 | 0.838 | 0.851
DPSHO || 0479 | 0472 | 0.470 | 0.495 || 0.747 | 0.751 | 0.763 | 0.776
NINH 0552 | 0566 | 0.558 | 0.581 || 0.674 | 0.607 | 0.713 | 0.715
CNNH || 0439 | 0476 | 0472 | 0.489 || 0.611 | 0618 | 0.625 | 0.608
FastH 0305 | 0349 | 0369 | 0.384 || 0.621 | 0.650 | 0.665 | 0.687
SDH 0285 | 0329 | 0341 | 0.356 || 0.568 | 0.600 | 0.608 | 0.637
KSH 0303 | 0337 | 0346 | 0.356 || 0.556 | 0572 | 0581 | 0.588
LFH 0176 | 0231 | 0211 | 0.253 || 0571 | 0568 | 0568 | 0.585
SPLH 0171 | 0173 | 0178 | 0.184 || 0.568 | 0.589 | 0.597 | 0.601
TQ 0162 | 0.169 | 0.172 | 0.175 | 0.452 | 0468 | 0472 | 0.477
SH 0127 | 0128 | 0.126 | 0.129 || 0.454 | 0406 | 0.405 | 0.400

NINH [CVPR'15]; CNNH [AAAI'14]; FastH [CVPR'14]; SDH [CVPR'15]; KSH [CVPR'12];
LFH [SIGIR'14]; SPLH [ICML'10]; ITQ [CVPR'11]; SH [NIPS'08]

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 47 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Deep Supervised Hashing with Pairwise Labels

Accuracy

Comparison to deep baselines with ranking (triplet) labels

[Method ||

CIFAR-10 (MAP) H NUS-WIDE (MAP)]
16-bits 24-bits 32-bits 48-bits 16-bits 24-bits 32-bits 48-bits
DPSH 0.763 0.781 0.795 0.807 0.715 0.722 0.736 0.741
DRSCH 0.615 0.622 0.629

0.631 0.618 0.622 0.623 0.628
DSCH 0.609 0.613 0.617 0.620 0.592 0.597 0.611 0.609
DSRH 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631

DRSCH [TIP'15]; DSCH [TIP'15]; DSRH [CVPR'15]

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 48 / 125

http://cs.nju.edu.cn/lwj

Supervised Multimodal Hashing with SCM
Supervised Multimodal Similarity Search

beach sky bjue atmosphere
fly white Hflack feathers l

Sunsdf landscape outside
sun dirgct green field sky
wide Nony fullframe

~ — -~

Sky Animal

@ Given a query of either image or text, return images or texts similar to
it in both feature space and semantics (label information).

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 49 / 125

http://cs.nju.edu.cn/lwj

Supervised Multimodal Hashing with SCM
Motivation and Contribution

Motivation

@ Existing supervised methods are not scalable

Contribution
@ Avoiding explicitly computing the pairwise similarity matrix,
linear-time complexity w.r.t. the size of training data.

@ A sequential learning method with closed-form solution to each bit,
no hyper-parameters and stopping conditions are needed.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 50 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Multimodal Hashing with SCM

In matrix form, we can rewrite the problem as follows
i (XW, YW,) S
WHzl’l‘ﬁl/y |sgn()sgn(—c HF
s.t. sgn(XW,)Tsgn(XW,) = nl.,
sgn(YW,) sgn(YW,) = nl,.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

51 /125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Multimodal Hashing with SCM

Sequential Strategy

Assuming that the projection vectors wg(cl), .. wg D and wlV ..,wg(f_l)

y
have been learned, to learn the next projection vectors wg(f) and wl(,t).
Define a residue matrix

t—1
Ry =cS — Z sgn(Xwg(Ek))sgn(Ywék))T.
k=1

Objective function can be written as

min
w:(Et) 7wzst>

‘sgn(Xwg(f))sgn(Yw(t RtH

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 52 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Multimodal Hashing with SCM

Algorithm 2 Learning Algorithm of SCM Hashing Method.
) 2XTLYYTL)T — (XT1,)(YT1,)T;
)« ex 0
Coz +— XTX +7I4,;
Cyy < YTY + 71y, ;
fort=1—cdo
Solving the following generalized eigenvalue problem
O O T w, = N2 Cpuy,
we can obtain the optimal solution wg(f) corresponding to the largest

eigenvalue \jpaz;
—1~T , (1)

WD
h§f) — sgn(Xw(t));

hgf) — sgn(YwZ(f));

C:EZH) — C’;,(;tg) — (Xngn(Xw;(vt)))(Yngn(Ywét)))T;
end for

)\ma:l:

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 53 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Multimodal Hashing with SCM

Scalability

Table: Training time (in seconds) on NUS-WIDE dataset by varying the size of

training set.
Method\ Size of Training Set 500 1000 1500 2000 2500 3000 5000 10000 20000
SCM-Seq 276 249 303 222 236 260 248 228 230
SCM-Orth 36 80 85 7 83 76 110 87 102
CCA 25 20 23 22 25 22 28 38 44
CCA-3V 69 57 68 69 62 55 67 70 86
CVH 62 116 123 149 155 170 237 774 1630
CRH 63 253 312 515 760 1076 - - -
MLBE 67071 126431 - - - - - - -
Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 54 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Supervised Multimodal Hashing with SCM

Accuracy

Table: MAP results on NUS-WIDE. The best performance is shown in boldface.

N

Code Length

l

Task Method [c=T6 [c=24 [c=37]
SCM-Seq 0.4385 0.4397 0.4390
SCM-Orth 0.3804 0.3746 0.3662
Image Query CCA 0.3625 0.3586 0.3565
V.s. CCA-3V 0.3826 0.3741 0.3692
Text Database CVH 0.3608 0.3575 0.3562
CRH 0.3957 0.3965 0.3970
MLBE 0.3697 0.3620 0.3540
SCM-Seq 0.4273 0.4265 0.4259
SCM-Orth 0.3757 0.3625 0.3581
Text Query CCA 0.3619 0.3580 0.3560
v.s. CCA-3V 0.3801 0.3721 0.3676
Image Database CVH 0.3640 0.3596 0.3581
CRH 0.3926 0.3910 0.3904
MLBE 0.3877 0.3636 0.3551

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

55 / 125

http://cs.nju.edu.cn/lwj

Double Bit Quantization

2000

e =
o o
S 9o
[SER-)

a
=3
=]

Sample Numbe

Point distribution of the real values computed by PCA on 22K LabelMe
data set, and different coding results based on the distribution:

e (a) single-bit quantization (SBQ);

@ (b) hierarchical hashing (HH);

@ (c) double-bit quantization (DBQ).

CS, NJU 56 / 125

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

http://cs.nju.edu.cn/lwj

Learning to Hash Multiple-Bit Quantization

Experiment

mAP on LabelMe data set

Z bits 32 64
SBQ AH DBQ SBQ AH DBQ
ITQ 0.2926 0.2592 0.3079 0.3413 0.3487 0.4002
SH 0.0859 0.1329 0.1815 0.1071 0.1768 0.2649
PCA 0.0535 0.1009 0.1563 0.0417 0.1034 0.1822
LSH 0.1657 0.105 0.12272 0.2594 0.2089 0.2577
SIKH 0.0590 0.0712 0.0772 0.1132 0.1514 0.1737
bits 128 256
SBQ HH DBQ SBQ HH DBQ
ITQ 0.3675 0.4032 0.4650 0.3846 0.4251 0.4998
SH 0.1730 0.2034 0.3403 0.2140 0.2468 0.3468
PCA 0.0323 0.1083 0.1748 0.0245 0.1103 0.1499
LSH 0.3579 0.3311 0.4055 0.4158 0.4359 0.5154
SIKH 0.2792 0.3147 0.3436 0.4759 0.5055 0.5325
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

57 / 125

http://cs.nju.edu.cn/lwj

Manhattan Quantization

(a) |A 0 BC|DE 1

(b) 01 00 10 11
(c) 00 01 10 11
(d) | 000 [001|010 (011|100 |101| 110 |111

Figure 1: Different quantization methods: (a) single-bit quan-
tization (SBQ); (b) hierarchical quantization (HQ); (c) 2-bit
Manhattan quantization (2-MQ); (d) 3-bit Manhattan quanti-

zation (3-MQ).

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning

CS, NJU

58 / 125

http://cs.nju.edu.cn/lwj

Learning to Hash Multiple-Bit Quantization

Experiment

Table: mAP on ANN_SIFT1M data set. The best mAP among SBQ, HQ and
2-MQ under the same setting is shown in bold face.

bits 32 64 96 [
SBQ HQ 2-MQ SBQ HQ 2-MQ SBQ HQ 2-MH
ITQ 0.1657 0.2500 0.2750 0.4641 0.4745 0.5087 0.5424 0.5871 0.6263
SIKH 0.0394 0.0217 0.0570 0.2027 0.0822 0.2356 0.2263 0.1664 0.2768
LSH 0.1163 0.0961 0.1173 0.2340 0.2815 0.3111 0.3767 0.4541 0.4599
SH 0.0889 0.2482 0.2771 0.1828 0.3841 0.4576 0.2236 0.4911 0.5929
PCA 0.1087 0.2408 0.2882 0.1671 0.3956 0.4683 0.1625 0.4927 0.5641

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 59 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning
Outline

e Parallel and Distributed Stochastic Learning
@ Fast Asynchronous Parallel Stochastic Gradient Descent
@ SCOPE: Scalable Composite Optimization for Learning

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 60 / 125

http://cs.nju.edu.cn/lwj

Machine Learning

@ Supervised Learning:
Given a set of training examples {(x;,y;)}_,, supervised learning tries
to solve the following regularized empirical risk minimization problem:

min f(w Zfz

where f;(w) is the loss function (plus some regularization term)
defined on example i, and w is the parameter to learn.

Examples:
o Logistic regression: f(w) =137 [log(1+e ¥ %) 4 3| wl?]
o SVM: f(w) =137 [max{0,1— yx!w}+ 3||w|?]
o Deep learning models

@ Unsupervised Learning:
Many unsupervised learning models, such as PCA and matrix
factorization, can also be reformulated as similar problems.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 61 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning

Machine Learning for Big Data

For big data applications, first-order methods have become much more

popular than other higher-order methods for learning (optimization).

Gradient descent methods are the most representative first-order methods.
@ (Deterministic) gradient descent (GD):

1 n
Wil <= Wy —1g[— > Vfi(wy)],
Vi)
where ¢ is the iteration number.
o Linear convergence rate: O(p")
o lteration cost is O(n)
o Stochastic gradient descent (SGD): In the t* iteration, randomly
choosing an example i; € {1,2,...,n}, then update

Wil < Wi — 0V fi, (We)

o lteration cost is O(1)
o The convergence rate is sublinear. O(1/t)

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 62 / 125

http://cs.nju.edu.cn/lwj

Stochastic Learning for Big Data

Researchers recently proposed improved versions of SGD:
SAG [Roux et al., NIPS 2012], SDCA [Shalev-Shwartz and Zhang, JMLR
2013], SVRG [Johnson and Zhang, NIPS 2013]

Number of gradient (V f;) evaluation to reach e:

GD: O(nklog(1))

SGD: O(x(1))

SAG: O(nlog(L)) when n > 8k

SDCA: O((n + &) log(L))

SVRG: O((n +)log(2))

where kK = % > 1 is the condition number of the objective function.

Stochastic Learning:
@ Stochastic GD
@ Stochastic coordinate descent

@ Stochastic dual coordinate ascent
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 63 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning

To further improve the learning scalability (speed):
o Parallel stochastic learning:
One machine with multiple cores and a shared memory

@ Distributed stochastic learning:
A cluster with multiple machines

Key issues: cooperation

o Parallel stochastic learning:
lock vs. lock-free: waiting cost and lock cost

@ Distributed stochastic learning:
synchronous vs. asynchronous: waiting cost and communication cost

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 64 / 125

http://cs.nju.edu.cn/lwj

Our Contributions

@ Parallel stochastic learning: AsySVRG
Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free
Approach with Convergence Guarantee.

@ Distributed stochastic learning: SCOPE
Scalable Composite Optimization for Learning

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 65 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Motivation and Contribution

Motivation:

e Existing asynchronous parallel SGD: Hogwild! [Recht et al. 2011],
CoCoA [Jaggi et al. 2014], and PASSCoDe [Hsieh, Yu, and Dhillon
2015]

@ No parallel methods for SVRG.
o Lock-free: empirically effective, but no theoretical proof.

Contribution:

A fast asynchronous method to parallelize SVRG, called AsySVRG.
@ A lock-free parallel strategy for both read and write

@ Linear convergence rate with theoretical proof
o

Outperforms Hogwild! in experiments

AsySVRG is the first lock-free parallel SGD method with theoretical proof
of convergence.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 66 / 125

http://cs.nju.edu.cn/lwj

Fast Asynchronous Parallel Stochastic Gradient Descent
AsySVRG: a multi-thread version of SVRG

Initialization: p threads, initialize wq, n;
fort=0,1,2,... do
Up = Wy,
All threads parallelly compute the full gradient
V(u) = £ >0, Vfi(uo);
u = Wy,
For each thread, do:
for m =1 to M do
Read current value of u, denoted as 1, from the shared memory.
And randomly pick up an i from {1,...,n};
Compute the update vector: v =V f;(a) — Vf;(ug) + Vf(uy);
u<u-—nv,;
end for

Take w;11 to be the current value of u in the shared memory;
end for

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 67 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Lock-free Analysis

In all the GD or SGD methods to solve the objective function, the key step
can be written as

u+—u+A

Notation

o A, ;: the j'" update vector computed by the i" thread;
eucRlandu= (u(l),u(2), o ,u(d));

° tg?: the time that the operation “u(®) « u(¥) 4 AE’? has been
completed (Not the time that the operation begins);

2) d)

@ Assuming Vi, 7, tglj) <tl(~j <... <t§j.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 68 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent

Lock-free Analysis: update sequence

Since u(!) can only be changed by at most one thread at any absolute

. (1)
time, these ti’j

are different from each other. So we can:
(1) (1) (1) 1) Yy .

o Sort these t; J asty” <tj’ <...<t. (M=pxM)

@ Ag,Ay,...,Ay_, are the corresponding update vectors.
Since it is lock-free, for each update vector A,,, the real update vector is
B,,A,, because of over-written. The B, is a diagonal matrix whose
diagonal elements are 0 or 1.
After all the inner-loop stop, we can get:

M—1
Wil = Ug + Z BmAm (1)
m=0

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 69 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent

Lock-free Analysis: update sequence

According to (1), we define a sequence {u,,} as follow:

m—1
uy, = ug + Z B,A; (2)
i=0
which means u,,+1 = u,, + B, Ap,.

Note

The sequence {u,,} (m =1,2,..., M — 1) is synthetic, and the whole u,,
may never occur in the shared memory. What we can get is only the final
value of uy;.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 70 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent

Lock-free Analysis: read sequence

Assume the old update vectors Ag, Ay,. .., Ayn)—1 have been completely
applied to u when one thread is reading the shared variable. At the same
time, some new update vectors might be updating u. So we can write 0,,

read by the thread to compute A, as follows:
b(m)
U, = Ug(m) + Z Pm,i—a(m)Ai
i=a(m)
where P, ;4. is a diagonal matrix whose diagonal elements are 0 or 1.

According to the principle of the order, A;(i > m) should not be read by
U,,. So b(m) < m, which means:

m—1
U = Ug(m) + Pm,i—a(m)Ai
i=a(m)
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU 71 /125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Convergence result

With some assumptions, our algorithm gets a linear convergence rate as
follows:

Ef(wir1) — f(ws) < (C{w

(B (W) — f(w.)),
&1

where c; =1 —anu+ce and ca =7 (%ﬁLQL2), M =px M
is the total number of iterations of the inner-loop.

Note
Since it is lock-free, we do not know the exact B,,, and we can not take
the average sum of B,,u,, to be wy,1.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 72 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent

Experiments

Experimental platform: A server with 12 Intel cores and 64G memory.

Model: Logistic regression with L2-norm

1 <& 0T A
Fw) = 1S tog1 e %) X
=1

Data set

dataset | instances | features | memory | type
rcvl 20,242 47,236 36M sparse
real-sim 72,309 20,958 90M sparse
news20 19,996 1,355,191 140M sparse
epsilon 400,000 2,000 11G dense

We set A = 104

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 73 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Experiments: Computation Cost

revi real-sim

—6— AsySVRG-1
—e— AsySVRG-lock-10) —6— AsySVRG-1

- AsySVRG-10 —8— AsySVRG-lock-10)
—4— Hogwild-lock-10 -~ AsySVRG-10

—+—Hogwild-10

—#— Hogwild-lock-10

log(objective value — min)
log(objective value — min)

—+— Hogwild-10

30 30

B 0 I 2 5 0 S
number of effective passes number of effective passes

(a) revl (b) realsim
. news20 : epsilon
—~ 10 —~ 10 v
£ =
£ £
| 107 | 107
[} [
= =
© 107 © 107
> >
2 2
-48 10 '3 10
8 o= AmysvRcT 3]
St} |Thsme ot | | TR
o Homlalock-10 = o Mot tock-10
[« = Hogwild-10 Is)) —%— Hogwild-10
O O

30 30

5 10 15 . 20 25
number of effective passes

(d) epsilon

CS, NJU

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning 74 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Experiments: Total Time Cost

revi real-sim

= =

€ €

]]

£ £

© © 10

> >

o)

o o

2 2

-8 -8 10°

g g

= 10 9

10 o 1 2 . 3 a4 5 6 10 o 1 2 . 3 4 5 6
time time
(a) revl (b) realsim
news20 epsilon

< = =

£ £

| | 107

S]

®© © 10

> >

0" o

o o

2 2

-8 -8 10"

g g

o O

10 o 1 2) 3 a4 5 10 0 1 2 . 3 4 5

time time

(d) epsilon
Big Learning CS, NJU 75 / 125

http://cs.nju.edu.cn/lwj

revil

Parallel and Distributed Stochastic Learning Fast Asynchronous Parallel Stochastic Gradient Descent
Experiments: Speed up

real-sim

3 a4 5 6 7 8
number of threads

(a) revl

news20

3 4 5 6 7 8
number of threads

(b) realsim

epsilon

speedup

w

—6— AsySVRG-lock
4 AsySVRG-unlock

n Li (http://cs.nju

3 a4 5 6 7 8
number of threads

c) news20

.edu.cn/1wj)

2 3 4 5 6 7 8
number of threads

(d) epsilon

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning
Motivation and Contribution

Motivation:

@ Bulk synchronous parallel (BSP) models, such as MapReduce, are
commonly considered to be inefficient for distributed stochastic
learning. Is there any technique to solve the issues of BSP models?

Contribution:

@ A novel distributed stochastic learning method, called scalable
composite optimization for learning (SCOPE), on BSP models

Both computation-efficient and communication-efficient
Linear convergence rate with theoretical proof

Can be easily integrated into the data processing pipeline of Spark

Outperform other state-of-the-art distributed learning methods on
Spark

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 77 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Framework of SCOPE

Master
w
v
Worker_1 Worker_2
Dy D,

Figure: Distributed framework of SCOPE.

Li (http://cs.nju.edu.cn/1

Big Learning

Worker_p

D

p

CS, NJU

78 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning
Optimization Algorithm: Master

Task of Master in SCOPE:

Initialization: p Workers, wy;
fort=0,1,2,...,T do
Send w; to the Workers;

Wait until it receives z1, 2o, ..., 2, from the p Workers;
Compute the full gradient z = % 2:1 7y, and then send z to each
Worker;

Wait until it receives ug, G2, . .., 0, from the p Workers;
1 oy
Compute wy 1 = > PO ERRI TS
end for

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 79 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning
Optimization Algorithm: Workers

Task of Workers in SCOPE:

Initialization: initialize n and ¢ > 0;
For the Worker_k:
fort=0,1,2,...,7 do
Wait until it gets the newest parameter w, from the Master;
Let uj o = wy, compute the local gradient sum z;, = Ziepk V fi(wy),
and then send z; to the Master;
Wait until it gets the full gradient z from the Master;
form=0to M — 1 do
Randomly pick up an instance with index iy, from Dy;
Ukm+1 = Uk,m — n(vfik,m (uk,m) - vfik’m (Wt) +z+ C(uk,m - Wt));
end for
Send uy, ps or the average of these {uy,}, which is called the locally
updated parameter and denoted as 1, to the Master;

end for
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 80 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning
Convergence

Let a=1-n2u+c) <1, B=cn+3L*n? and a + B < 1. We have the
following theorems:

Theorem

If we take w1 = LS™P ug s, then we can get the following
p k=1)
convergence result:

Ellwes — w[? < (M

Theorem

If we take w1 = Zk | Uy with 4y = 57 Zm 0 Uk,m, then we can get
the following convergence result:

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 81 /125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Communication Cost

e Traditional mini-batch based methods: O(T'n)

e SCOPE: O(T)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 82 /125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Experiment

Logistic regression (LR) with a La-norm regularization term:
Fw) = 13 [log(1+ evx™) + 3 w2,

n

Table: Datasets for evaluation.

finstances fifeatures | memory A
MNIST-8M | 8,100,000 784 39G le-4
epsilon 400,000 2,000 11G le-4
KDD12 73,209,277 | 1,427,495 21G le-4
Data-A 106,691,093 320 260G le-6

Two Spark clusters:
@ small: 1 Master and 16 Workers
@ large: 1 Master and 128 Workers

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU

83 /125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Experiment

Baselines:

e MLIib [Meng et al., 2015]: MLIib is an open source library for
distributed machine learning on Spark. We compare our method with
distributed Ibfgs for MLIib, which is a batch learning method.

e LibLinear [Lin et al., 2014a]: LibLinear is a distributed Newton
method, which is also a batch learning method.

@ Splash [Zhang and Jordan, 2015]: Splash is a distributed SGD method
by using the local learning strategy to reduce communication cost.

o CoCoA [Jaggi et al., 2014]: CoCoA is a distributed dual coordinate
ascent method.

@ CoCoA+ [Ma et al., 2015]: CoCoA+ is an improved version of
CoCoA. CoCoA+ adopts adding rather than average to combine local
updates.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 84 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Experiment

MNIST-8M with 16 cores

objective value - optimal

—e—SCOPE ©
LibLinear
——CoCoA
—=— MLliblbfgs)
——Splash
—+—CoCoAs

0
CPU Time(millisecond)

(a) MNIST-8M

KDD12 with 16 cores

x10

objective value - optimal

—o—SCOPE
—e Liblinear
—Co

—e— MLliby(lbfgs)

O
CPU Time(millisecond)

(c) KDD12

x10°

Big Learning

epsilon with 16 cores.

m
e
3
3
:
E
g
2 ol
-§ 10 ~o—SCOPE
i = ot
g
3
it
~—+—Splash
- o
%
CPU Time(millisecond) x10'
(b) epsilon
N Data-A with 128 cores
m
3
;
$
§ - —o—SCOPE
= —= LibLinear
° ~—— CoCo
~—=— MLlib(Ibfgs)
—— Splash
e
107"
CPU Time(millisecond) x10°

(d) Data-A

CS, NJU

85 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning
Experiment

ion time

Bl communication time|

lisecond) per iteration
g
g
g

20 30 40 50 60 4 8 16 32
#cores feores

(e) Speedup (f) Synchronization cost

n Li (http://cs.nju.edu. j Big Learning CS, NJU 86 / 125

http://cs.nju.edu.cn/lwj

Parallel and Distributed Stochastic Learning SCOPE: Scalable Composite Optimization for Learning

Conclusion

@ Stochastic learning is becoming popular for big data machine
learning.

@ Lock-free strategy is key to get a good speedup in parallel stochastic
learning.

o With properly designed techniques, BSP models are also efficient for
distributed stochastic learning.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 87 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning
Outline

0 Other Application-Driven Distributed Learning
@ Coupled Group Lasso for Web-Scale CTR Prediction
@ Distributed Power-Law Graph Computing
@ Distributed Stochastic ADMM for Matrix Factorization

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 88 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning
Introduction

Distributed learning:

@ Perform machine learning on clusters with several machines (nodes).

Our contributions:
@ Coupled Group Lasso for Web-Scale CTR Prediction in Display
Advertising (ICML 2014)

@ Distributed Power-law Graph Computing: Theoretical and Empirical
Analysis (NIPS 2014)

o Distributed Stochastic ADMM for Matrix Factorization (CIKM 2014)

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 89 / 125

http://cs.nju.edu.cn/lwj

Coupled Group Lasso for Web-Scale CTR Prediction
CTR Prediction for Online Advertising

@ Multi-billion business on the web and accounts for the majority of the
income for the major internet companies.

o Display advertising is a big part of online advertising.

e Click through rate (CTR) prediction is the problem of estimating the

probability that an ad is clicked when displayed to a user in a specific
context.

S [wmmincon

Google weomsesom osess amazon e/
TINYBOX, X

uuuuuu

(b) Amazon (c) Taobao

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 90 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction
Notation

@ Impression (instance): ad + user + context

e Training set {(x®¥,y®) |i=1,..,N}

o xI' = (xI' xI' xT)
e y € {0,1} with y = 1 denoting click and y = 0 denoting non-click

@ Learn h(x) = h(xy,Xq4,X,) to predict CTR

Ads
User Profile

L 1 0

h(x) i N 101
Context >{ CI'Ck, .)
Probablllty/ = 1 0 1
@

— 7 1]0 1]0
Ad Features 1]0 1
0 1)1

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 91 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction
Coupled Group Lasso (CGL)

O Likelihood
h(x) = Pr(y = 1|x, W, V,b) = g (x, W) (x. V)" +bTx,)
where
W e R*F v e REXF (xI'W) (xIV)T = xI(WVT)x,

@ Objective function
N

in which

EOW,V,bix,) = —log ((a(x@))*" (1 a(x)) ")

dy dg
21+ [Vl =D IWallo + Y [[Vill2
=1 =1

AW, V) = |[W]|

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 92 / 125

http://cs.nju.edu.cn/lwj

Coupled Group Lasso for Web-Scale CTR Prediction
Distributed Learning Framework

@ Compute gradient g;) locally on each node p in parallel.

e Compute gradient g’ = 2521 g, with AllReduce.
@ Add the gradient of the regularization term and take an L-BFGS step
in the master node.

@ Broadcast the updated parameters to each slaver node.

local 7 Takeal-BFGS

gradient 1 (ctep and updste
node 1 parameters
local
gradient 2 All Reduce master
node 2
__node |
: local updated
gradient P parameters
—> nodeP
Broadcast

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 93 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction

Experiment

Experiment Environment

@ MPI-Cluster with hundreds of nodes, each of which is a 24-core server
with 2.2GHz CPU and 96GB of RAM

Baseline and Evaluation Metric
@ Baseline: LR (with L2-norm) [Chapelle et al., 2013]

e Evalution Metric (Discrimination)

AUC (model) — 0.5

1
AUC (baseline) — 0.5 X 100%

RelalImpr =

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 94 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction
Data Sets

Data set # Instances (Billion) CTR (%) # Ads # Users (Million) Storage (TB)
Train 1 1.011 1.62 21,318 874.7 1.895
Test 1 0.295 1.70 11,558 331.0 0.646
Train 2 1.184 1.61 21,620 958.6 2.203
Test 2 0.145 1.64 6,848 190.3 0.269
Train 3 1.491 1.75 33,538 1119.3 2.865
Test 3 0.126 1.70 9,437 183.7 0.233

Real-world data sets collected from taobao of Alibaba Group

n Li (http://cs.nju.edu.cn/1lwj Big Learning CS, NJU 95 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction

Performance

Relalmpr(%)
Y
N o

Dataset-1

Dataset-3 20 30

Dataset-2 70 80
Different datasets from real-world

40 50 60
Number of computing nodes

(c) Relalmpr w.r.t. Baseline (d) Speedup

Accuracy and Scalability

n Li (http://cs.nju.edu.cn/1lwj

Big Learning CS, NJU 96 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Coupled Group Lasso for Web-Scale CTR Prediction

Feature Selection
Ad Part User Part
Important Women's Watch, Underwear,
Features clothes, Skirt, | Fur clothing, Furni-
Dress,Children’s ture
wear, Shoes,
Cellphone
Useless Features | Movie, Act, Take- | Stage Costume,
out, Food booking | Flooring, Pencil,
service Outdoor sock

Feature Selection Results

Wu-Jun Li (http:

//cs.nju.edu.cn/1wj) Big Learning CS, NJU 97 / 125

http://cs.nju.edu.cn/lwj

Distributed Power-Law Graph Computing
Graph-based Machine Learning

@ Big graphs emerge in many real applications

@ Graph-based machine learning is a hot research topic with wide
applications: relational learning, manifold learning, PageRank,
community detection, etc

@ Distributed graph computing frameworks for big graphs

(a) Social Network (b) Biological Network

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 98 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Power-Law Graph Computing

Graph Partitioning

Graph partitioning (GP) plays a key role to affect the performance of
distributed graph computing:

@ Workload balance

@ Communication cost

Two strategies for graph partitioning. Shaded vertices are ghosts and
mirrors, respectively.

(a) Edge-Cut (b) Vertex-Cut

Theoretical and empirical results show vertex-cut is better than edge-cut.

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 99 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Power-Law Graph Computing

Power-Law Graph Partitioning

Natural graphs from real world typically follow skewed power-law degree
distributions: Pr(d) oc d~¢.

.....

Different vertex-cut methods can result in different performance.
Intuition: cut the high-degree vertices

[@ 0) @J [@@) @ Eﬂ[@@ © ®J

(b) Bad partitioning

Lot it ol

(g) Sample (C) Good partitioning

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 100 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Power-Law Graph Computing

Degree-based Hashing (DBH)

Existing GP methods, such as the Random in PowerGraph (Joseph E
Gonzalez et al, 2012) and Grid in GraphBuilder (Nilesh Jain et al, 2013),
do not make effective use of the power-law degree distribution.

We propose a novel GP method called degree-based hashing (DBH):

Algorithm 3 GP with DBH

Input: The set of edges E; the set of vertices V'; number of machines p.
Output: The assignment M (e) € {1,...,p} for each edge e.
Initialization: count the degree d; for each vertex i € {1,...,n} in parallel
for all e = (v;,v;) € E do
Hash each edge in parallel:
if d; < d; then
M (e) < vertex_hash(v;)
else
M (e) < vertex_hash(v;)
end if

end for

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 101 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Power-Law Graph Computing

Theoretical Analysis

We theoretically prove that our DBH method can outperform Random and
Grid in terms of:

@ reducing replication factor (communication and storage cost)

@ keeping good edge-balance (workload balance)

Nice property: Our DBH reduces more replication factor when the
power-law graph is more skewed.

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning CS, NJU 102 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Power-Law Graph Computing

Data Set

Table: Datasets

Alias | Graph V] |E|

Tw Twitter 42M | 1.47B

Arab | Arabic-2005 22M | 0.6B

Wiki | Wiki 5.7M | 130M

LJ LiveJournal 5.4M 79M

WG | WebGoogle | 0.9M | 5.1M
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning

CS, NJU

103 / 125

http://cs.nju.edu.cn/lwj

Distributed Power-Law Graph Computing
Empirical Results (PageRank)

B Random

B Random
C—lGrnd
E==oeH

Replicaton Factor
»
5

o N s oo

(d) Replication Factor (e) Speedup relative to baselines

Figure: Experiments on real-world graphs. The number of machines is 48.

= =5
§ie ;
:glz D/ﬂ_// \\\c_n
(a) Replication Factor (b) Execution Time

Figure: The number of machines ranges from 8 to 64 on Twitter graph.

Li (http://cs.nju.edu.cn/1 Big Learning CS, NJU 104 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Recommender System

@ Recommend products (items) to customers (users) by utilizing the
customers’ historic preferences.

(a) Amazon (b) Sina Weibo

Big Learning CS, NJU 105 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Matrix Factorization

@ Popular in recommender systems for its promising performance

3N
C
| E M
D P A
o 1 &
A & b K p
S N X
Ann 5 4
James 5 & =<
e
@ : . G— X
2 Kat 2
E ate
Helen 4.5
n ltems User Factors Item Factors
R &< ur x '

1
min =) [(Ri,,- —ULV.,)?+ MUL U+ A VIV,

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 106 / 125

http://cs.nju.edu.cn/lwj

Distributed Stochastic ADMM for Matrix Factorization
Data Split Strategy (P machines)

Decouple U and V as possible as we can:

Rl
R2

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Vl

V2

<

Vo

Big Learning

CS, NJU

107 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Distributed ADMM

Reformulated MF problem :

Um\l/nvf Z > { — ULV)2+ MUL U, + X[VETVE
p=1 (i,j)eQr

st.: VP -V =0, Vpe{l,2,..,P}

where V = {Vp}]f:l, QP denotes the (i, j) indices of the ratings located in
node p

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 108 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Distributed ADMM

Define:
LP(U, VP, @7, V) = f7(U,V?) + P(VP,V,O)

(i,5)€QP

[5IVP = VI + (@ (v - V),

we can get

P
L(U,V,0,V) =) L’(U,V’,e"V).
p=1

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 109 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Distributed ADMM

Get the solutions by repeating the following three steps:

Ui, Vi argmmLp(U VP @7 V), Vp e {1,2,.., P}
VP

Vi argmin L(Ugq1, Vit1, O, V),
A%

O |« O+ p(VP, — V1), ¥p e {1,2,.., P}.

The solution for Vi is:

Vi = th+1

which can be calculated efficiently.

The problem lies in getting U1,V efficiently
Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 110 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Stochastic Learning

Batch learning is still not very efficient:

Ut+1 Ut—Tt*v f (UL,Vp)
T Vp
L [=L 4 pVy — OF — VY, fP(UL, VD)

VP —_—
1 1+pm 7

Stochastic Learning
(Usi)er1 =(Usi)e + e (VE))e — M (Usi)e),
1 — Aomy
P _ p
(VI ot = 2 V)
+eij(Uii)e + p(Vig)e — (O7;)e],

Tt

where €;j = Rij — [(Usi)e)" (VE))s-

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 111 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Scheduler Comparison

Baselines: CCD++ (H.-F Yu etc, ICDM'12); DSGD (R. Gemulla etc, KDD'11)

Number of synchronization operations for one iteration to fully scan all the
ratings:

Generate Statum Sequence Parallelly Update
for Each Node UPand V?

Parallelly Update Ug«
Setp=0
Synchronize Ug» SynchrorLize to
tV

ge

Parallelly Update

Parallelly Update V- UandV
Synchronize Vg«

Parallelly Update
@D

Synchronize V

p<P

(a) CCD++ (b) DSGD (c) DS-ADMM
synchronizes k times synchronizes P times synchronizes 1 time

n Li (http://cs.nju.edu. j Big Learning CS, NJU 112 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization

Experiment

@ Experiment environment

o MPI-Cluster with 20 nodes, each of which is a 24-core server with
2.2GHz CPU and 96GB of RAM:
e One core and 10GB memory for each node are actually used.

@ Baseline and evaluation metric

e Baseline: CCD++, DSGD, DSGD-Bias
e Evalution metric:

test RMSE : /3 (Rij — ULV.)2

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 113 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization

Data Sets

Table: Data sets and parameter settings
’ Data Set ‘ Netflix Yahoo! Music R1 | Yahoo! Music R2
m 480,190 1,938,361 1,823,179
n 17,770 49,995 136,736
#Train | 99,072,112 73,578,902 699,640,226
#Test 1,408,395 7,534,592 18,231,790
k 40 40 40
M0/ 7o 0.1 0.1 0.1
A1/ A2 0.05 0.05 0.05
p 0.05 0.05 0.1
a 0.002 0.002 0.006
15} 0.7 0.7 0.7
P 8 10 20

Wu-Jun Li (http://cs.nju.edu.cn/lwj)

Big Learning

CS, NJU

114 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Accuracy and Efficiency

1
——CCD++ ——CCD++
——DSGD ——DSGD
—— DSGD-Bias —— DSGD-Bias
—— DS-ADMM o36] —— DS-ADMM

Test RMSE
Test RMSE

0.]

b 10 20 E3 3 E) o 3 o 0
Time(s) Time(s)
(a) Netflix (b) Yahoo-Music-R1
CCD++ 8 —~©-DS-ADMM
i ——bseo) -B-DSGD
—— DSGD-Bias wo = ~&-DSGD-Bias|
—— DS-ADMM z - CCD++
" g
2 cos
g 12 g
4 e
& 2 o) 7
£
2
11 £ 24
e
£
g
k|
' 2
5 3 3 w0 0o 2 T v v
Time(s) Node Number

(c) Yahoo-Music-R2 (d) Time to fixed-RMSE (0.922)

n Li (http://cs.nju.edu. j Big Learning CS, NJU 115 / 125

http://cs.nju.edu.cn/lwj

Other Application-Driven Distributed Learning Distributed Stochastic ADMM for Matrix Factorization
Speedup

6
-6~ CCD++ :
-H-DSGD

sl DS-ADMM |
== Linear-Speedup

Node Number

n Li (http://cs.nju.edu. j Big Learning CS, NJU 116 / 125

http://cs.nju.edu.cn/lwj

Outline

© Conclusion

n Li (http://cs.nju.edu. j Big Learning CS, NJU 117 / 125

http://cs.nju.edu.cn/lwj

Our Contribution

e Learning to hash (%7 % 3]): memory/disk/cpu/communication

@ Parallel and distributed stochastic learning (#4175 47 XEAHLEF 3):
memory/disk/cpu;
but increase communication cost

@ Other application-driven distributed learning (34 52 F 4R 5h 69 97 X,
o,
53])

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 118 / 125

http://cs.nju.edu.cn/lwj

Future Work

@ Learning to hash for decreasing communication cost

@ Distributed programming models and platforms for machine learning:
MPI (fault tolerance, asynchronous), GraphLab, Spark, Parameter
Server, Petuum, MapReduce, Storm, GPU, etc

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 119 / 125

http://cs.nju.edu.cn/lwj

Future Work

Open source project:

LIBBLE: A library for big learning

o LIBBLE-Spark: https://github.com/LIBBLE/LIBBLE-Spark/

o Classification: LR, SVM

o Regression: Linear Regression

e Dimensionality Reduction: PCA

e Matrix Decomposition/Factorization: SVD

o LIBBLE-MPI
o LIBBLE-GPU

o LIBBLE-MultiCore

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 120 / 125

https://github.com/LIBBLE/LIBBLE-Spark/
http://cs.nju.edu.cn/lwj

Conclusion

Future Work

Big data machine learning (big learning) framework
#0
@@ L
jc%ﬁliﬁ’l‘ %E"”‘>
S e

% %
B i
oo
1) L
BRI SHEEZ <:|
%3
WO EIHTEE FHEENHRIFH HERIERR

B = éﬁ#z BRI IR P =4 ;M
HE FE éi i Ktk iR B

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 121 / 125

http://cs.nju.edu.cn/lwj

Related Publication (1/3)[*indicate my students]

Shen-Yi Zhao*, Ru Xiang*, Ying-Hao Shi*, Peng Gao*, Wu-Jun Li.
SCOPE: Scalable Composite Optimization for Learning on Spark.
arXiv:1602.00133v4, 2016.

Shen-Yi Zhao*, Wu-Jun Li. Fast Asynchronous Parallel Stochastic Gradient

Descent: A Lock-Free Approach with Convergence Guarantee. Proceedings
of the 30th AAAI Conference on Atrtificial Intelligence (AAAI), 2016.

Wu-Jun Li, Sheng Wang*, Wang-Cheng Kang*. Feature Learning based
Deep Supervised Hashing with Pairwise Labels. Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI), 2016.

Wang-Cheng Kang*, Wu-Jun Li, Zhi-Hua Zhou. Column Sampling based
Discrete Supervised Hashing. Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI), 2016.

Qing-Yuan Jiang*, Wu-Jun Li. Scalable Graph Hashing with Feature
Transformation. Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2015.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 122 /125

http://cs.nju.edu.cn/lwj

Related Publication (2/3)[*indicate my students]

@ Ling Yan*, Wu-Jun Li, Gui-Rong Xue, Dingyi Han. Coupled Group Lasso for
Web-Scale CTR Prediction in Display Advertising. Proceedings of the 31st
International Conference on Machine Learning (ICML), 2014.

@ Cong Xie*, Ling Yan*, Wu-Jun Li, Zhihua Zhang. Distributed Power-law
Graph Computing: Theoretical and Empirical Analysis. Proceedings of the
28th Annual Conference on Neural Information Processing Systems (NIPS),
2014.

@ Peichao Zhang*, Wei Zhang*, Wu-Jun Li, Minyi Guo. Supervised Hashing
with Latent Factor Models. Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), 2014.

@ Zhi-Qin Yu*, Xing-Jian Shi*, Ling Yan*, Wu-Jun Li. Distributed Stochastic
ADMM for Matrix Factorization. Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management (CIKM), 2014.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 123 / 125

http://cs.nju.edu.cn/lwj

Related Publication (3/3)[*indicate my students|

@ Dongqging Zhang*, Wu-Jun Li. Large-Scale Supervised Multimodal Hashing
with Semantic Correlation Maximization. Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI), 2014.

@ Weihao Kong*, Wu-Jun Li. Isotropic Hashing. Proceedings of the 26th
Annual Conference on Neural Information Processing Systems (NIPS), 2012.

@ Weihao Kong*, Wu-Jun Li, Minyi Guo. Manhattan Hashing for Large-Scale
Image Retrieval. Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR),
2012.

@ Weihao Kong*, Wu-Jun Li. Double-Bit Quantization for Hashing.
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI), 2012.

Wu-Jun Li (http://cs.nju.edu.cn/lwj) Big Learning CS, NJU 124 / 125

http://cs.nju.edu.cn/lwj

Q& A

Thanks!

—
\-—n/(.

—

n Li (http://cs.nju.edu. j Big Learning CS, NJU 125 / 125

http://cs.nju.edu.cn/lwj

	Introduction
	Learning to Hash
	Isotropic Hashing
	Scalable Graph Hashing with Feature Transformation
	Supervised Hashing with Latent Factor Models
	Column Sampling based Discrete Supervised Hashing
	Deep Supervised Hashing with Pairwise Labels
	Supervised Multimodal Hashing with SCM
	Multiple-Bit Quantization

	Parallel and Distributed Stochastic Learning
	Fast Asynchronous Parallel Stochastic Gradient Descent
	SCOPE: Scalable Composite Optimization for Learning

	Other Application-Driven Distributed Learning
	Coupled Group Lasso for Web-Scale CTR Prediction
	Distributed Power-Law Graph Computing
	Distributed Stochastic ADMM for Matrix Factorization

	Conclusion

