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Density-Based Algorithms

 One Motivation
 Find clusters with arbitrary shape

 The Key Idea
 Identify fine-grained dense regions
 Merge regions into clusters

 Representative Algorithms
 Grid-Based Methods
 DBSCAN
 DENCLUE



Grid-Based Methods

 The Algorithm



Limitations-2 Parameters (1)

 The number of Grids 



Limitations-2 Parameters (2)

 The Level of Density



DBSCAN (1)

1. Classify data points into
 Core point: A data point is defined as a 

core point, if it contains at least data 
points within a radius .

 Border point: A data point is defined as a 
border point, if it contains less than 
points, but it also contains at least one 
core point within a radius .

 Noise point: A data point that is neither 
a core point nor a border point is defined 
as a noise point.



DBSCAN (2)

1. Classify data points into Core point, 
Border point, and Noise points.



DBSCAN (3)

1. Classify data points into Core point, 
Border point, and Noise points.

2. A connectivity graph is constructed 
with respect to the core points
 Core points are connected if they are 

within of one another
3. Determine connected components
4. Assign each border point to 

connected component
 with which it is best connected



Limitations of DBSCAN 

 Two Parameters
 Radius and Level of Density 

 They are related to each other
 High Computational Cost
 Identifying neighbors ଶ



DENCLUE—Preliminary

 Kernel-density Estimation
 Given data points ଵ 

 is a kernel function

[Hinneburg and Keim, 1998] 



DENCLUE—The Key Idea

 Determine clusters by using a density 
threshold 

2 clusters 3 clusters



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak

 Identify a Peak for Each Data Point
 An iterative gradient ascent



DENCLUE—Procedure

 Density Attractors
 Local Maximum/Peak

 Identify a Peak for Each Data Point
 An iterative gradient ascent

 Post-Processing
 Attractors whose density is smaller than 

are excluded
 Density attractors are connected to each 

other by a path of density at least will 
be merged



DENCLUE—Implementation

 Gradient Ascent
 Gradient

 Gaussian Kernel

 Mean-shift Method

 Converges much faster
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Graph Construction for a Set 
of Points 

 A node is defined for each 

 An edge exists between  and 

 If the distance  

 If either one is a -nearest neighbor of 
the other (A better approach)

 If there is an edge, then its weight is
 1
 Heat Kernel: ିௗ ை,ைೕ

మ/௧మ



Spectral Clustering

 Dimensionality Reduction
 Find a low-dimensional representation for 

each node in the graph

 Laplacian Eigenmap [Belkin and Niyogi, 
2002]

 -means
 Apply ݇-means to new representations of 

the data
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Laplacian Eigenmap (1)

 The Objective Function ( )
  is a -dimensional representation 

of 

  is the similarity between  and 

 Similar points will be mapped closer
 Similar points have larger weights

ܱ ൌݓ ݕ െ ݕ
ଶ
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Laplacian Eigenmap (2)

 The Objective Function ( )
 Vector Form

 ଵ 
ୃ 

 ൈ is the graph Laplacian
 Positive Semidefinite  (PSD)

 
ൈ is the similarity matrix

 ൈ is a diagonal matrix with 



ୀଵ

ܱ ൌݓ ݕ െ ݕ
ଶ



ୀଵ



ୀଵ

ൌ ܡܮୃܡ2



Laplacian Eigenmap (3)

 The Optimization Problem ( )

 Add a Constraint to Remove Scaling Factor
 ܦ is introduced for normalization [Luxburg, 2007]

 The Solution

 Generalized Eigenproblem [Luxburg 2007]
 The smallest eigenvector is ܡଵ ൌ 
 Useless since ݕଵଵ ൌ ଶଵݕ ൌ ⋯ ൌ ଵݕ

Թ∋ܡ
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Laplacian Eigenmap (3)

 The Optimization Problem ( )

 Add a Constraint to Remove Scaling Factor
 ܦ is introduced for normalization [Luxburg, 2007]

 The Solution

 Generalized Eigenproblem [Luxburg 2007]
 The smallest eigenvector is ܡଵ ൌ 
 Use the second smallest eigenvector ܡଶ

 The new representation for ܱ is ݕଶ

Թ∋ܡ
ୃ

ୃ



Laplacian Eigenmap (4)

 The Objective Function ( )
 Vector Form

 ଵ 
ୃ ൈ

 ൈ is the graph Laplacian
 

ൈ is the similarity matrix
 ൈ is a diagonal matrix with 
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Laplacian Eigenmap (4)

 The Optimization Problem ( )

 The Solution

 Generalized Eigenproblem [Luxburg 2007]
 Use ܻ ൌ …,ଶܡ , ାଵܡ ∈ Թൈ as the optimal 

solution
 ܡ is the ݅-th generalized eigenvector
 The new representation ܡ ∈ Թ for ܱ is the ݅-th

row of ܻ
 Don’t forget the normalization ܻୃܻܦ ൌ ܫ

∈Թൈೖ
ୃ

ୃ



Properties of Spectral 
Clustering

 Varying Cluster Shape and Density

 Due to the nearest neighbor graph
 High Computational Cost
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Non-negative Matrix 
Factorization (NMF)

 Let ଵ 
ௗൈ be a non-

negative data matrix
 NMF aims to factor as ୃ

 ௗൈ and ൈ are non-negative
 The Optimization Problem

 Non-convex

∈Թൈೖ,∈Թൈೖ
ୃ

ி
ଶ



Interpretation of NMF (1)

 Matrix Appromation

 Element-wise
 ଵ 

ௗൈ, where 
ௗ

 ଵ 
ௗൈ, where 

ௗ

 ୃ
ଵ 

ൈ, where 


 ܞ is the ݅-th column of ܸୃ

 ୃܞ is the ݅-th row of ܸ
 Then,

 ݒ is the ݆-th element of vector ܞ

ୃ

ܠ ൎ ܞܷ ൌܝݒ
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Interpretation of NMF (2)

 Vector Approximation

 ଵ 
ௗ can be treated as basis 

vectors
 They may be not orthonormal
 They are non-negative

  ଵ 
ୃ  can be treated as a 

new -dimensional representation of 

ܠ ൎ ܞܷ ൌܝݒ
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Parts-Based Representations

 When each  is a face image

 [Lee and Seung, 1999] 



Clustering by NMF

 Vector Approximation

  can be treated as an representative of 
the -th cluster

  can be treated as the association 
between  and 

 The cluster label  for 

 [Xu et al., 2003] 

ܠ ൎ ܞܷ ൌܝݒ
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݈ ൌ argmaxݒ



An Example

 Discover both Row and Column 
Clusters



Optimization in NMF

 Alternating between and 

 Local Optimal Solutions
 Run multiple times and choose the best one

 Other Optimization Algorithms are 
also Possible
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Concepts

 Cluster validation
 Evaluate the quality of a clustering

 Internal Validation Criteria
 Do not need additional information
 Biased toward one algorithm or the other

 External Validation Criteria
 Ground-truth clusters are known
 Ground-truth may not reflect the natural 

clusters in the data



Internal Validation Criteria

 Sum of square distances to centroids

 Intracluster to intercluster distance 
ratio

 Silhouette coefficient
 Probabilistic measure

  ܠ െ ܋ ଶ
ଶ

∈ࣝೕܠ
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External Validation Criteria

 Class Labels
 The Ground-truth

 Confusion Matrix
 Each row corresponds to the class label 
 Each column corresponds to the 

algorithm-determined cluster 

 Ideal clustering a diagonal matrix after 
permutation



Notations

 : number of data points from class 
(ground-truth) cluster that are mapped 
to (algorithm-determined) cluster 

 : number of data points in true cluster 

 : number of data points in algorithm-
determined cluster 



Purity

 For a given algorithm-determined 
cluster , define  as number of data 
points in its dominant class

 The overall purity

 High values of the purity are desirable



Gini index

 Limitation of Purity
 Only accounts for the dominant label in 

the cluster and ignores the distribution of 
the remaining points

 Gini index  for column (algorithm-
determined cluster) 

 The average Gini coefficient
 Low values
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Summary

 Grid-Based and Density-Based 
Algorithms
 Grid-Based Methods
 DBSCAN, DENCLUE

 Graph-Based Algorithms
 Laplacian Eigenmap

 Non-negative Matrix Factorization
 Cluster Validation
 Purity, Gini index
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