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Introduction (1)

A Quote

L “You are unique, and if that is not fulfilled, then J

something has been lost.”—Martha Graham

An Informal Definition

“An outlier is an observation which deviates so much from the other observations as to
arouse suspicions that it was generated by a different mechanism.”

A Complementary Concept to Clustering

B Clustering attempts to determine groups of
data points that are similar

B Outliers are individual data points that are
different from the remaining data




Introduction (2)

Applications

B Data cleaning
v" Remove noise in data

B Credit card fraud
v" Unusual patterns of credit card activity

B Network intrusion detection
v" Unusual records/changes in network traffic



Introduction (3)

The Key ldea

B Create a model of normal patterns

B Qutliers are data points that do not
naturally fit within this normal model

B The “outlierness” of a data point is
quantified by a outlier score

Outputs of Outlier Detection
Algorithms

B Real-valued outlier score
B Binary label
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Extreme Value Analysis (1)

Statistical Talls
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All extreme values are outliers
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Outliers may not be extreme values

m {1,3,3,3,50,97,97,97,100}
B 1 and 100 are extreme values
B 50 is an outlier but not extreme value



Extreme Value Analysis (2)

All extreme values are outlies
Outlies may not be extreme values
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Univariate Extreme Value
Analysis (1)

Statistical Tall Confidence Tests
B Suppose the density distribution is fy(x)
B Tails are extreme regions s.t. fy(x) <0
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Univariate Extreme Value
Analysis (2)

Statistical Tail Confidence Tests

B Suppose the density distribution is fy(x)
B Tails are extreme regions s.t. fy(x) <0

Asymmetric

Distribution o -

B Areas in two tails t o
are different % || f

B Regions in the & D-1-LGWEH|'| |||| |
interior are not = |/ \[—sltemos
tails oA ] S

(b) Asymmetric distribution



The Procedure (1)

A model distribution iIs selected

B Normal Distribution with mean u and
standard deviation o

Parameter Selection

B Prior domain knowledge
B Estimate from data
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The Procedure (2)

Z-value of a random variable

B |arge positive values of z; correspond to the

upper tail

B |Large negative values of z; correspond to

the lower tall

B 7z follows the standard normal distribution

Extreme values
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Multivariate Extreme Values (1»@

Unimodal probability distributions
with a single peak

B Suppose the density distribution is fy(x)
B Tails are extreme regions s.t. fy(x) <0

Multivariate Gaussian Distribution
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where Maha(X, z,Y) is the Mahalanobis
distance between X and [



Multivariate Extreme Values (2

1 Extreme-value Score of X
B Maha(X,[1,X)

B Larger values imply more extreme
behavior
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Multivariate Extreme Values (2»@

Extreme-value Score of X
B Maha(X,[1,X)

B Larger values imply more extreme
behavior

Extreme-value Probability of X
B Let R be the region

R ={Y|Maha(¥,i1,%) = Maha(X,,X)}
B Cumulative probability of R

B Cumulative Probability of y? distribution
for which the value is larger than
Maha(X, i1,X)




Why y? distribution?

The Mahalanobis distance
B Let X be the covariance matrix

Maha(Y,i,X) = \/(17 — DI Y -7
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Adaptive to the Shape

B IS an extreme value
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Depth-Based Methods

Convex Hull
The conver hull of a set C', denoted conv C, is the set of all convex combinations

of points in C"
convC ={bz1 +---+ 0z |2 €C, 0; 20, i=1,...,k h+---+0=1}.
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The Procedure

The index k Is the outlier score
B Smaller values indicate a grate tendency

Algorithm FindDepthQutliers(Data Set: D, Score Threshold: r)
begin
k=1;
repeat
Find set S of corners of convex hull of D:
Assign depth k to points in S;
D=D-5;
BE=FE+1;
until(D 1s empty);
Report points with depth at most r as outhers;
end



An Example

Peeling Layers of an Onion




Limitations

No Normalization
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Many data points are indistinguishable

The computational complexity increases
significantly with dimensionality
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Probabilistic Models

Related to Probabilistic Model-Based
Clustering

The Key ldea

B Assume data is generated from a
mixture-based generative model

B |Learn the parameter of the model from
data

v EM algorithm

B Evaluate the probability of each data
point being generated by the model

v' Points with low values are outliers




Mixture-based Generative
Model

Data was generated from a mixture
of k distributions with probability
distribution G, ..., Gy

G; represents a cluster/mixture
component

Each point X is generated as follows

B Select a mixture component with
probability a; = P(G;), i =1, ...,k

B Assume the r-th component is selected
B Generate a data point from G,




Learning Parameter from Data <&

The probability that X; generated by
the mixture model M Is given by

k k k
FPOm(RIM) = Y P(G1, %) = ¥ PGIPCR}IG) = ¥ ai- Fi(X))

The probability of the data set D =
{X,,..,X,} generated by M
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Ildentify Outliers

Outlier Score Is defined as
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Clustering for Outlier Detection<

Outlier Analysis v.s. Clustering

B Clustering is about finding “crowds” of data
points

B Outlier analysis is about finding data points
that are far away from these crowds

Every data point is

B Either a member of a cluster

B Or an outlier

Some clustering algorithms also detect
outliers

B DBSCAN, DENCLUE




The Procedure (1)

A Simple Way
1. Cluster the data

2. Define the outlier score as the distance
of the data point to its cluster centroid
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The Procedure (2)

A Better Approach
1. Cluster the data

2. Define the outlier score as the local
Mahalanobis distance

v' Suppose X belongs to cluster r

Maha(X .7, 2,) = \/ (X — )5 Y X — )T,
v 1. is the mean vector of the r-th cluster

v' X. is the covariance matrix of the r-th cluster

Multivariate Extreme Value Analysis
B Global Mahalanobis distance




A Post-processing Step

Remove Small-Size Clusters
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Distance-Based Outlier
Detection

An Instance-Specific Definition

B The distance-based outlier score of an
object O is its distance to its k-th nearest
neighbor
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Distance-Based Outlier
Detection

An Instance-Specific Definition

B The distance-based outlier score of an
object O is its distance to its k-th nearest
neighbor

B Sometimes, average distance is used

High-computational Cost 0(n?)
B Index structure
v Effective when the dimensionality is low

B Pruning tricks

v" Designed for the case that only the top-r
outliers are needed




The Naive Approach for Findinggy’
Top r-Outliers N

1. Evaluate the n X n distance matrix

—




The Naive Approach for Findinggy’
Top r-Outliers N

1. Evaluate the n X n distance matrix

—

Vie(X1)
Vie(X2)
Vie(X3)

— Vie(Xn)

2. FiInd the k-th smallest value In each row



The Naive Approach for Findinggy’
Top r-Outliers N

1. Evaluate the n X n distance matrix

—

Vie(X1)
Vie(X2)
Vie(X3)

— Vie(Xn)

2. Find the k-th smallest value In each row
3. Choose r data points with largest V(:)



Pruning Methods—Sampling

1. Evaluate a s X n distance matrix

al




Pruning Methods—Sampling

1. Evaluate a s X n distance matrix

Vie(X1)
S cee
Vie(Xs)

17; (Xs+1) = Vk(Xs+1)

Ve Xn) = Vi (X)

2. FInd the k-th smallest value In each row



Pruning Methods—Sampling

1. Evaluate a s X n distance matrix

Vie(X1)
S cee
Vie(Xs)
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17; (Xs+1) = Vk(Xs+1)

Ve Xn) = Vi (X)

2. Find the k-th smallest value in each row
3. ldentify the r-th score In top s-rows



Pruning Methods—Sampling

1. Evaluate a s X n distance matrix

al
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Ve(Xs)  —
17; (Xs+1) = Vk(Xs+1)

2. Find the k-th smallest value in each row
3. ldentify the r-th score In top s-rows
4. Remove points with V(1) < L,



Pruning Methods—Early
Termination

When completing the empty area
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Pruning Methods—Early
Termination

When completing the empty area

—_

{ Vie(X1)

S — ]
Ve(Xs)  —

m Ve (Fond) = Vi (Fond)

Update V, () when more distances are
known

Stop if V(1) < L,
Update L, iIf necessary




Local Distance Correction
Methods

Impact of Local Variations
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Local Outlier Factor (LOF)

Let V*(X) be the distance of X to its k-
nearest neighbor

Let L, (X) be the set of points within
the k-nearest neighbor distance of X

Reachability Distance
RiL(X,Y) = max{Dist(X,Y),V*(Y))
B Not symmetric between X and Y
B If Dist(X,Y) is large, Ry(X,Y) = Dist(X,Y)
B Otherwise, R,(X,Y) = Vk()
v' Smoothed out by V*(Y), more stable




Local Outlier Factor (LOF)

eLk(X)

Local Outlier Factor

LOF(X) = MEANy-

B Larger for Outliers

B Close to 1 for Others giiii

FEA

Outlier Score

max LOF (X)

Average Reachability Distance
R.(X.Y)

B AR;;{Y]I
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(a) Varying cluster density



Instance-Specific Mahalanobis |y
Distance (1)

Define a local Mahalanobis distance
for each point

B Based on the covariance structure of the
neighborhood of a data point

The Challenge

B Neighborhood of a data point is hard to
define with the Euclidean distance

B Euclidean distance is biased toward
capturing the circular region around that
point




Instance-Specific Mahalanobis |y
Distance (2)

An agglomerative approach for
neighborhood construction

B Add X to L*(X)

B Data points are iteratively added to L¥(X)
that have the smallest distance to L*(X)

argmingeo ., eHLlii?)?) dist(Y — 7)

Instance-specific Mahalanobis score

LMahay(X) = Maha(X, pr(X), Ep(X))

Outlier score ., LMaha,, (X)
k



Instance-Specific Mahalanobis
Distance (3)

Can be applied to both cases
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Density-Based Methods

The Key ldea

B Determine sparse regions in the
underlying data

Limitations
B Cannot handle variations of density

S e T GLUSTER G




Histogram- and Grid-Based
Techniques

Histogram for 1-dimensional data
B Data points that lie in 25, |
bins with very low frequency - o
are reported as outliers U |
https://www.mathsisfun.com/data/histograms.html 91 H—l_( "_’—‘
%40 60 80 100 120 140

Grid for high-dimensional data

Challenges .
m Size of grid s imetin e
B Sparsity



Kernel Density Estimation

Given n data points X;, ..., X,,

B K(.) Is a kernel function

d
NS 1 _ X=X
KX - X;) = (h, ’_-",rﬂ) e 2h?

The density at each data point

B Computed without including the point
itself in the density computation

B |Low values of the density indicate
greater tendency to be an outlier
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Information-Theoretic Models

An Example

ABABABABARABABABABABABABABABABABAR
ABABACABARARABRABABABABABABABABARBAR
B The 1st One: “AB 17 times”

B Cin 2" string increases its minimum
description length

Conventional Methods
B Fix model, then calculate the deviation

Information-Theoretic Models

B Fix the deviation, then learn the model

B Outlier score of X: increase of the model
size when X is present



Probabilistic Models

The Conventional Method

B [Learn the parameters of generative
model with a fixed size

B Use the fit of each data point as the
outlier score

Information-Theoretic Method

B Fix a maximum allowed deviation (a
minimum value of fit)

B |Learn the size and values of parameters

B Increase of size I1s used as the outlier
score
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Outlier Validity

Methodological Challenges

B [nternal criteria are rarely used In outlier
analysis

B A particular validity measure will favor an
algorithm using a similar objective function
criterion

B Magnified because of the small sample
solution space
External Measures

B The known outlier labels from a synthetic
data set

B The rare class labels from a real data set




Recelver Operating
Characteristic (ROC) curve

G Is the set of outliers (ground-truth)
An algorithm outputs a outlier score

Given a threshold t, we denote the set
of outliers by §(t)
B True-positive rate (recall)
S(t)Ng|
|

TPR(t) = Recall(t) = 100 %

B The false positive rate

FPR(t) = 100 «

ROC Curve

B Plot TPR(t) versus FPR(t)



An Example

Algorithm

Rank of ground-truth outliers

Algorithm A

1, 5,8, 15, 20

Algorithm B

3.7 11, 13, 15

Random Algorithm

17, 36, 45, 59. 66

Pertect Oracle

1,2,3,4,5

100

a0

a0

i}
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40
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Summary

Extreme Value Analysis
B Univariate, Multivariate, Depth-Based

Probabilistic Models
Clustering for Outlier Detection

Distance-Based Outlier Detection

B Pruning, LOF, Instance-Specific
Density-Based Methods

B Histogram- and Grid-Based, Kernel Density
Information-Theoretic Models

Outlier Validity
B ROC curve




