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What Happens in an Internet Minute?
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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.
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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

Computer Vision, Machine Learning, Data Mining

Theoretical Computer Science, Computer Networks

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.
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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

Computer Vision, Machine Learning, Data Mining

Theoretical Computer Science, Computer Networks

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Machine Learning, Game Theory, Information Theory
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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

The Ski Rental Problem: in the t-th day
Rent (1$) or Buy (10$)?

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.
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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

The Ski Rental Problem: in the t-th day
Rent (1$) or Buy (10$)?

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Online Classification: in the t-th round
Recevie xt ∈ R

d , predict ŷt , observe yt
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Full-information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.
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Full-information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Full-information Online Learning
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Full-information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Bandit Online Learning
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do

4: end for
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)

4: end for

Learner Adversary

A classifier

An example 

A loss 
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Learner Adversary

Suffer and update 

A classifier

An example 

A loss 
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Full-information Online Learning
Learner observes the function ft(·)
Online first-order optimization

Bandit Online Learning
Learner only observes the value of ft(wt)
Online zero-order optimization
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret =
T∑

t=1

ft(wt) − min
w∈W

T∑

t=1

ft(w)
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret =
T∑

t=1

ft(wt)

︸ ︷︷ ︸
Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸
Minimal Loss of Batch Learner
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret =
T∑

t=1

ft(wt)

︸ ︷︷ ︸
Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸
Minimal Loss of Batch Learner

Hannan Consistent

lim sup
T→∞

1
T

(
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w)

)
= 0, with probability 1
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Regret

Cumulative Loss

Cumulative Loss =
T∑

t=1

ft(wt)

Regret

Regret =
T∑

t=1

ft(wt)

︸ ︷︷ ︸
Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸
Minimal Loss of Batch Learner

Hannan Consistent
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) = o(T ), with probability 1
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}
3: The expert advice is revealed to the forecaster

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}
3: The expert advice is revealed to the forecaster
4: The forecaster chooses the prediction p̂t

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}
3: The expert advice is revealed to the forecaster
4: The forecaster chooses the prediction p̂t

5: The environment reveals the next outcome yt

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}
3: The expert advice is revealed to the forecaster
4: The forecaster chooses the prediction p̂t

5: The environment reveals the next outcome yt

6: The forecaster incurs loss ℓ(p̂t , yt) and each expert i
incurs loss ℓ(fi,t , yt)

7: end for
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Definitions

The Prediction Protocol
1: for t = 1, . . . ,T do
2: The environment chooses the next outcome yt and the

expert advice {fi,t : i ∈ [N]}
3: The expert advice is revealed to the forecaster
4: The forecaster chooses the prediction p̂t

5: The environment reveals the next outcome yt

6: The forecaster incurs loss ℓ(p̂t , yt) and each expert i
incurs loss ℓ(fi,t , yt)

7: end for

Regret with respect to expect i

Ri,T =

T∑

t=1

(
ℓ(p̂t , yt)− ℓ(fi,t , yt)

)
= L̂T − Li,T
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Online Algorithms

Weighted Average Prediction

p̂t =

∑N
i=1 wi,t−1fi,t∑N

j=1 wj,t−1

where wi,t−1 is the weight assigned to expert i
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Online Algorithms

Weighted Average Prediction

p̂t =

∑N
i=1 wi,t−1fi,t∑N

j=1 wj,t−1

where wi,t−1 is the weight assigned to expert i

Polynomially Weighted Average Forecaster

wi,t−1 =
2(Ri,t−1)

p−1
+

‖(Rt−1)+‖p−2
p

and

p̂t =

∑N
i=1

(∑t−1
s=1

(
ℓ(p̂s, ys)− ℓ(fi,s, ys)

))p−1

+
fi,t

∑N
j=1

(∑t−1
s=1

(
ℓ(p̂s, ys)− ℓ(fj,s, ys)

))p−1

+
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Online Algorithms

Weighted Average Prediction

p̂t =

∑N
i=1 wi,t−1fi,t∑N

j=1 wj,t−1

where wi,t−1 is the weight assigned to expert i

Exponentially Weighted Average Forecaster

wi,t−1 =
eηRi,t−1

∑N
j=1 eηRj,t−1

and

p̂t =

∑N
i=1 exp

(
η(L̂t−1 − Li,t−1)

)
fi,t

∑N
j=1 exp

(
η(L̂t−1 − Lj,t−1)

) =

∑N
i=1 e−ηLi,t−1 fi,t∑N

j=1 e−ηLj,t−1
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Regret Bounds I

Corollary 2.1 of [Cesa-Bianchi and Lugosi, 2006]

Assume that the loss function ℓ is convex in its first argument
and that it takes values in [0, 1]. Then, for any sequence
y1, y2, . . . of outcomes and for any T ≥ 1, the regret of the
polynomially weighted average forecaster satisfies

L̂T − min
i=1,...,N

Li,T ≤
√

T (p − 1)N2/p
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Regret Bounds I

Corollary 2.1 of [Cesa-Bianchi and Lugosi, 2006]

Assume that the loss function ℓ is convex in its first argument
and that it takes values in [0, 1]. Then, for any sequence
y1, y2, . . . of outcomes and for any T ≥ 1, the regret of the
polynomially weighted average forecaster satisfies

L̂T − min
i=1,...,N

Li,T ≤
√

T (p − 1)N2/p

When p = 2, we have

L̂T − min
i=1,...,N

Li,T ≤
√

TN

When p = 2 lnN, we have

L̂T − min
i=1,...,N

Li,T ≤
√

Te(2 lnN − 1)
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Regret Bounds II

Corollary 2.2 of [Cesa-Bianchi and Lugosi, 2006]

Assume that the loss function ℓ is convex in its first argument
and that it takes values in [0, 1]. Then, for any sequence
y1, y2, . . . of outcomes and for any T ≥ 1, the regret of the
exponentially weighted average forecaster satisfies

L̂T − min
i=1,...,N

Li,T ≤ lnN
η

+
ηT
2
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Regret Bounds II

Corollary 2.2 of [Cesa-Bianchi and Lugosi, 2006]

Assume that the loss function ℓ is convex in its first argument
and that it takes values in [0, 1]. Then, for any sequence
y1, y2, . . . of outcomes and for any T ≥ 1, the regret of the
exponentially weighted average forecaster satisfies

L̂T − min
i=1,...,N

Li,T ≤ lnN
η

+
ηT
2

When η =
√

2 lnN/T , we have

L̂T − min
i=1,...,N

Li,T ≤
√

2T lnN
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Extensions

Tighter Regret Bounds

Small Losses

L̂T − min
i=1,...,N

Li,T ≤
√

2L∗
T lnN + lnN

where L∗
T = mini=1,...,N Li,T

Exp-concave Losses

L̂T − min
i=1,...,N

Li,T ≤ lnN
η
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Extensions

Tighter Regret Bounds

Small Losses

L̂T − min
i=1,...,N

Li,T ≤
√

2L∗
T lnN + lnN

where L∗
T = mini=1,...,N Li,T

Exp-concave Losses

L̂T − min
i=1,...,N

Li,T ≤ lnN
η

Tracking Regret

R(i1, . . . , iT ) =
T∑

t=1

(
ℓ(p̂t , yt)− ℓ(fit ,t , yt)

)
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Definitions

Online Convex Optimization
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for
where W and ft ’s are convex
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Introduction Expert Advice OCO Convex Functions Strongly Convex Functions Exponentially Conca

Definitions

Online Convex Optimization
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for
where W and ft ’s are convex

Online Gradient Descent

wt+1 = ΠW (wt − ηt∇ft(wt))

where ΠW(·) is the projection operator
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Introduction Expert Advice OCO Convex Functions Strongly Convex Functions Exponentially Conca

Analysis I

Define w′

t+1 = wt − ηt∇ft(wt). For any w ∈ W, we have

ft(wt)− ft(w) ≤〈∇ft(wt),wt − w〉 = 1
ηt
〈wt − w′

t+1,wt − w〉

=
1

2ηt

(
‖wt − w‖2

2 − ‖w′

t+1 − w‖2
2 + ‖wt − w′

t+1‖2
2

)

=
1

2ηt

(
‖wt − w‖2

2 − ‖w′

t+1 − w‖2
2

)
+

ηt

2
‖∇ft(wt)‖2

2

≤ 1
2ηt

(
‖wt − w‖2

2 − ‖wt+1 − w‖2
2

)
+

ηt

2
‖∇ft(wt)‖2

2

By adding the inequalities of all iterations, we have

T∑

t=1

ft(wt)− ft(w) ≤ 1
2η1

‖w1 − w‖2
2 −

1
2ηT

‖wT+1 − w‖2
2

+
1
2

T∑

t=2

(
1
ηt

− 1
ηt−1

)
‖wt − w‖2

2 +
1
2

T∑

t=1

ηt‖∇ft(wt)‖2
2
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Introduction Expert Advice OCO Convex Functions Strongly Convex Functions Exponentially Conca

Analysis II

Assuming

ηt ≤ ηt−1, ‖wt − w‖2
2 ≤ D2, and ‖∇ft(wt)‖2

2 ≤ G2,

we have

T∑

t=1

ft(wt)− ft(w) ≤ D2

2η1
+

D2

2

T∑

t=2

(
1
ηt

− 1
ηt−1

)
+

G2

2

T∑

t=1

ηt

=
D2

2ηT
+

G2

2

T∑

t=1

ηt

By setting

ηt =
1√
t
,

we have
T∑

t=1

ft(wt)− ft(w) ≤
√

T
(

D2

2
+ G2

)
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Introduction Expert Advice OCO Convex Functions Strongly Convex Functions Exponentially Conca

Analysis I

Define w′

t+1 = wt − ηt∇ft(wt). For any w ∈ W, we have

ft(wt)− ft(w)

≤〈∇ft(wt),wt − w〉 − λ

2
‖wt − w‖2

2

≤ 1
2ηt

(
‖wt − w‖2

2 − ‖wt+1 − w‖2
2

)
+

ηt

2
‖∇ft(wt)‖2

2 −
λ

2
‖wt − w‖2

2

By adding the inequalities of all iterations, we have

T∑

t=1

ft(wt)− ft(w) ≤ 1
2η1

‖w1 − w‖2
2 −

λ

2
‖w1 − w‖2

2 −
1

2ηT
‖wT+1 − w‖2

2

+
1
2

T∑

t=2

(
1
ηt

− 1
ηt−1

− λ

)
‖wt − w‖2

2 +
1
2

T∑

t=1

ηt‖∇ft(wt)‖2
2
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Analysis II

Assuming
‖∇ft(wt)‖2

2 ≤ G2,

we have

T∑

t=1

ft(wt)− ft(w) ≤ 1
2η1

‖w1 − w‖2
2 −

λ

2
‖w1 − w‖2

2

+
1
2

T∑

t=2

(
1
ηt

− 1
ηt−1

− λ

)
‖wt − w‖2

2 +
G2

2

T∑

t=1

ηt

By setting

ηt =
1
λt

,

we have

T∑

t=1

ft(wt)− ft(w) ≤ G2

2λ

T∑

t=1

1
t
≤ G2

2λ
(logT + 1)
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Outline

1 Introduction
Definitions
Regret

2 Prediction with Expert Advice

3 Online Convex Optimization
Convex Functions
Strongly Convex Functions
Exponentially Concave Functions

http://cs.nju.edu.cn/zlj Online Learning

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Expert Advice OCO Convex Functions Strongly Convex Functions Exponentially Conca

Definitions

Exponential Concavity

A function f (·) : W 7→ R is α-exp-concave if exp(−αf (·)) is
concave over W.
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Definitions

Exponential Concavity

A function f (·) : W 7→ R is α-exp-concave if exp(−αf (·)) is
concave over W.

Logistic Loss

f (w) = log
(

1 + exp(−yx⊤w)
)

Square Loss
f (w) = (x⊤w − y)2

Negative Logarithm Loss

f (w) = − log(x⊤w)
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Online Newton Step

The Algorithm
1: A1 = 1

β2D2 I
2: for t = 1, 2, . . . ,T do
3:

At+1 = At +∇ft(wt)[∇ft(wt)]
⊤

4:

wt+1 =ΠAt
W

(
wt −

1
β

A−1
t ∇ft(wt)

)

=argmin
w∈W

(
w − w′

t+1

)
At
(
w − w′

t+1

)⊤

where w′
t+1 = wt − 1

βA−1
t ∇ft(wt)

5: end for
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Regret Bound

Theorem 2 of [Hazan et al., 2007]

Assume that for all t , the loss function ft : W ⊆ R
d 7→ R is

α-exp-concave and has the property that

‖∇ft(w)‖2 ≤ G, ∀w ∈ W, t ∈ [T ]

Then, online Newton Step with

β =
1
2
min

{
1

4GD
, α

}

has the following regret bound
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) ≤ 5
(

1
α
+ GD

)
d logT
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Online-to-batch Conversion

Statistical Assumption
f1, f2, . . . are sampled independently from P
Define

F (w) = Ef∼P [f (w)]
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Online-to-batch Conversion

Statistical Assumption
f1, f2, . . . are sampled independently from P
Define

F (w) = Ef∼P [f (w)]

Regret Bound
T∑

t=1

ft(wt)−
T∑

t=1

ft(w) ≤ C

Taking expectation over both sides, we have

E

[
T∑

t=1

F (wt)

]
−

T∑

t=1

F (w) ≤ C
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Online-to-batch Conversion

Statistical Assumption
f1, f2, . . . are sampled independently from P
Define

F (w) = Ef∼P [f (w)]

Regret Bound
T∑

t=1

ft(wt)−
T∑

t=1

ft(w) ≤ C

Taking expectation over both sides, we have

E

[
T∑

t=1

F (wt)

]
−

T∑

t=1

F (w) ≤ C

Risk Bound

E [F (w̄)]− F (w) ≤ C
T
, where w̄ =

1
T

T∑

t=1

wt
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Examples of Conversion

Convex Functions

E [F (w̄)]− F (w) ≤ 1√
T

(
D2

2
+ G2

)

High-probability Bound [Cesa-bianchi et al., 2002]
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Examples of Conversion

Convex Functions

E [F (w̄)]− F (w) ≤ 1√
T

(
D2

2
+ G2

)

High-probability Bound [Cesa-bianchi et al., 2002]

Strongly Convex Functions

E [F (w̄)]− F (w) ≤ G2

2λT
(logT + 1)

High-probability Bound [Kakade and Tewari, 2009]
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Examples of Conversion

Convex Functions

E [F (w̄)]− F (w) ≤ 1√
T

(
D2

2
+ G2

)

High-probability Bound [Cesa-bianchi et al., 2002]

Strongly Convex Functions

E [F (w̄)]− F (w) ≤ G2

2λT
(logT + 1)

High-probability Bound [Kakade and Tewari, 2009]

Exponentially Concave Functions

E [F (w̄)]− F (w) ≤ 5
(

1
α
+ GD

)
d logT

T
High-probability Bound [Mahdavi et al., 2015]
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Extensions

Faster Rates [Srebro et al., 2010]
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) ≤ O(
√

Tf∗)

where f∗ = minw∈W

∑T
t=1 ft(w)
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Extensions

Faster Rates [Srebro et al., 2010]
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) ≤ O(
√

Tf∗)

where f∗ = minw∈W

∑T
t=1 ft(w)

Dynamic Regret [Zinkevich, 2003, Yang et al., 2016]

R(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)
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Extensions

Faster Rates [Srebro et al., 2010]
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) ≤ O(
√

Tf∗)

where f∗ = minw∈W

∑T
t=1 ft(w)

Dynamic Regret [Zinkevich, 2003, Yang et al., 2016]

R(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

Adaptive Regret
[Hazan and Seshadhri, 2007, Daniely et al., 2015]

R(T , τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑

t=s

ft(wt)− min
w∈W

s+τ−1∑

t=s

ft(w)

)
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