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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

Computer Vision, Machine Learning, Data Mining

Theoretical Computer Science, Computer Networks

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Machine Learning, Game Theory, Information Theory
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Full-Information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Full-Information Online Learning

Predicted Label

Ground Truth

Multi-class Classification

Bandit Online Learning
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Full-Information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Full-Information Online Learning

Predicted Label

Correct or Not 

Multi-class Classification

Bandit Online Learning
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do

4: end for
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision xt ∈ D

Adversary chooses a function ft(·)

4: end for
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision xt ∈ D

Adversary chooses a function ft(·)
3: Learner suffers loss ft(xt)
4: end for
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision xt ∈ D

Adversary chooses a function ft(·)
3: Learner suffers loss ft(xt)
4: end for

Cumulative Loss

Cumulative Loss =
T∑

t=1

ℓt(xt)
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision xt ∈ D

Adversary chooses a function ft(·)
3: Learner suffers loss ft(xt)
4: end for

Regret

Regret =
T∑

t=1

ℓt(xt)−min
x∈D

T∑

t=1

ft(x)
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Formal Definitions

Online Learning

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision xt ∈ D

Adversary chooses a function ft(·)
3: Learner suffers loss ft(xt)
4: end for

Regret

Regret =
T∑

t=1

ℓt(xt)−min
x∈D

T∑

t=1

ft(x)

Full-Information Online Learning
Learner observes the function ft(·)
[Zhang et al., 2012, Zhang et al., 2013]

Bandit Online Learning
Learner only observes the value of ft(xt)
[Zhang et al., 2015, Zhang et al., 2016]
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Bandit Online Learning

Learner observes the value of ft(xt) sequentially

Offline Counterpart: zero-order optimization
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Bandit Online Learning

Learner observes the value of ft(xt) sequentially

Offline Counterpart: zero-order optimization

Learning Scenarios

Multi-Armed Bandits (MAB) [Robbins, 1952]

Multi-class Classification with Bandit Feedback
Online Convex Optimization with Bandit Feedback

Linear Bandits
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Bandit Online Learning

Learner observes the value of ft(xt) sequentially

Offline Counterpart: zero-order optimization

Learning Scenarios

Multi-Armed Bandits (MAB) [Robbins, 1952]

Multi-class Classification with Bandit Feedback
Online Convex Optimization with Bandit Feedback

Linear Bandits

Generation Process of ft ’s

Stochastic: f1, . . . , ft are i.i.d.
Adversarial

Oblivious: ft is independent of x1, . . . ,xt−1 (like exam)
Nonoblivious: ft depends on x1, . . . ,xt−1 (like interview)
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Bandit Online Learning

Learner observes the value of ft(xt) sequentially

Offline Counterpart: zero-order optimization

Learning Scenarios

Multi-Armed Bandits (MAB) [Robbins, 1952]

Multi-class Classification with Bandit Feedback
Online Convex Optimization with Bandit Feedback

Linear Bandits

Generation Process of ft ’s

Stochastic: f1, . . . , ft are i.i.d.
Adversarial

Oblivious: ft is independent of x1, . . . ,xt−1 (like exam)
Nonoblivious: ft depends on x1, . . . ,xt−1 (like interview)
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1
Arm 2
Arm 3
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1

Arm 2 X2,1

Arm 3 X3,1
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1

Arm 2 10
Arm 3 X3,1
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2

Arm 2 10 X2,2

Arm 3 X3,1 X3,2
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2

Arm 2 10 X2,2

Arm 3 X3,1 0
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 X1,3

Arm 2 10 X2,2 X2,3

Arm 3 X3,1 0 X3,3
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6
Arm 2 10 X2,2 X2,3

Arm 3 X3,1 0 X3,3
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6 X1,4

Arm 2 10 X2,2 X2,3 X2,4

Arm 3 X3,1 0 X3,3 X3,4
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6 X1,4

Arm 2 10 X2,2 X2,3 0
Arm 3 X3,1 0 X3,3 X3,4
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6 X1,4 X1,5

Arm 2 10 X2,2 X2,3 0 X2,5

Arm 3 X3,1 0 X3,3 X3,4 X3,5
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6 X1,4 X1,5

Arm 2 10 X2,2 X2,3 0 X2,5

Arm 3 X3,1 0 X3,3 X3,4 X3,5

Exploration vs Exploitation
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Stochastic Multi-Armed Bandits (MAB)

Multi-Armed Bandits (MAB)

A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward
Arm 1 X1,1 X1,2 6 X1,4 X1,5

Arm 2 10 X2,2 X2,3 0 X2,5

Arm 3 X3,1 0 X3,3 X3,4 X3,5

Exploration vs Exploitation

Stochastic Setting

Rewards of the i-th arm are i.i.d. with unknown mean µi

Regret = T max
i∈[K ]

µi −
T∑

t=1

µit

Upper Confidence Bound (UCB) [Auer et al., 2002]
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Upper Confidence Bound (UCB)

A Naive Approach based on Sample Mean
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A Naive Approach based on Sample Mean
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A Naive Approach based on Sample Mean
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Upper Confidence Bound (UCB)

A Naive Approach based on Sample Mean

A bad regret bound

Regret = T max
i∈[K ]

µi −
T∑

t=1

µit = O(T )
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Upper Confidence Bound (UCB)

The Algorithm of UCB
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Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 
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Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:

http://cs.nju.edu.cn/zlj Linear Optimization under One-bit Feedback

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Learning under One-bit Feedback Conclusion Definitions of Online Learning Bandit Online Learning

Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:
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Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:
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The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:

http://cs.nju.edu.cn/zlj Linear Optimization under One-bit Feedback

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Learning under One-bit Feedback Conclusion Definitions of Online Learning Bandit Online Learning

Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:
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Upper Confidence Bound (UCB)

The Algorithm of UCB

With high probability 

Optimism in Face of Uncertainty:

Construct µ̄i by concentration inequalities (Chernoff-Hoeffding
bound) [Auer et al., 2002]

Regret = T max
i∈[K ]

µi −
T∑

t=1

µit ≤ O(K logT )
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗

Regret = T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗

Regret = T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗

Real-valued Feedback
[Dani et al., 2008]

y = x⊤w∗ + ǫ ∈ R
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗

Regret = T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗

Real-valued Feedback
[Dani et al., 2008]

One-bit Feedback
[Zhang et al., 2016]

y = x⊤w∗ + ǫ ∈ R Buy or not? Click or not?
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Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗

Regret = T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗

Real-valued Feedback
[Dani et al., 2008]

One-bit Feedback
[Zhang et al., 2016]

y = x⊤w∗ + ǫ ∈ R Pr[y = ±1|x] = 1
1 + exp(−yx⊤w∗)

http://cs.nju.edu.cn/zlj Linear Optimization under One-bit Feedback

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Learning under One-bit Feedback Conclusion Model and Algorithm Theoretical Guarantees Experiments

Linear Optimization under One-bit Feedback

Recommendation by Multi-Armed Bandits (MAB)

Each item is an arm

User feedback is the reward

The O(K logT ) regret bound is loose for large K

Learning with Additional Information

Each arm is a feature vector x ∈ D ⊆ R
d

For arm x, the expected reward µx = x⊤w∗

Regret = T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗ ≤ O(d

√
T )

Real-valued Feedback
[Dani et al., 2008]

One-bit Feedback
[Zhang et al., 2016]

y = x⊤w∗ + ǫ ∈ R Pr[y = ±1|x] = 1
1 + exp(−yx⊤w∗)
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x

Observe

Submit

llipse

Learning History
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x

Learning History

Observe

Save

Submit

llipse
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A UCB-Type Algorithm [Zhang et al., 2016]

In the t-th Round

Construct an upper bound µ̄x ≥ µx = x⊤w∗ for each arm x ∈ D
By Optimism in Face of Uncertainty, xt = argmaxx∈D µ̄x

Partial History

llipse
Observe

Submit

Save

Online Newton Step
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Implementation Issues [Zhang et al., 2016]

Online Newton Step

Given wt−1 and (xt−1, yt−1)

Define ft−1(w) = log(1 + exp(−yt−1x⊤
t−1w))

wt = argmin
w

‖w − wt‖2
Zt

2
+ (w − wt−1)

⊤∇ft−1(wt−1)

where Zt = Zt−1 +
β
2 xt−1x⊤

t−1

Arm Selection

xt = argmax
x∈D

max
w∈Ct

x⊤w
︸ ︷︷ ︸

:=µ̄x

= argmax
x∈D

max
‖w−wt‖Zt

≤√
γt

x⊤w

The above problem is NP-hard in general

Tractable when D is discrete or a ball
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Outline

1 Introduction
Definitions of Online Learning
Bandit Online Learning

2 Online Learning under One-bit Feedback
Model and Algorithm
Theoretical Guarantees
Experimental Results

3 Conclusion and Future Work
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Regret Bound [Zhang et al., 2016]

Theorem 1 (Confidence Region)

With a high probability, we have

(w∗ − wt)
⊤
(

λI +
β

2

t−1∑

i=1

xix⊤
i

)

(w∗ − wt) ≤ γt = O (d log t)

for all t > 0.

Optimality condition of online Newton step
Bernstein’s inequality for martingales
Peeling technique for decoupling the dependence
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Regret Bound [Zhang et al., 2016]

Theorem 1 (Confidence Region)

With a high probability, we have

(w∗ − wt)
⊤
(

λI +
β

2

t−1∑

i=1

xix⊤
i

)

(w∗ − wt) ≤ γt = O (d log t)

for all t > 0.

Optimality condition of online Newton step
Bernstein’s inequality for martingales
Peeling technique for decoupling the dependence

Theorem 2 (Regret)

With a high probability, we have

T max
x∈D

x⊤w∗ −
T∑

t=1

x⊤
t w∗ ≤ 4

√

γT T
β

log
det(ZT+1)

det(Z1)
= O

(

d
√

T
)

for all T > 0.
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Outline

1 Introduction
Definitions of Online Learning
Bandit Online Learning

2 Online Learning under One-bit Feedback
Model and Algorithm
Theoretical Guarantees
Experimental Results

3 Conclusion and Future Work
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Experimental Results

D ⊆ R
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Experimental Results
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Conclusion and Future Work

Conclusion

Online stochastic linear optimization
under one-bit feedback

An efficient algorithm with O(d
√

T )
regret bound

Full-Information

Bandit

Linear + One-bit

Future Work

Parameter selection in practice

More observation models, such as the sign(·)
Select multiple arms in each round

w∗ may change from round to round
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Resources

Book

Prediction, Learning, and Games
[Cesa-Bianchi and Lugosi, 2006]

(a) Cesa-Bianchi (b) Lugosi

Surveys

Online Learning and Online Convex Optimization
[Shalev-Shwartz, 2011]

Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems [Bubeck and Cesa-Bianchi, 2012]
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