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Online Algorithm vs Online Learning

Online Algorithm [Karp, 1992]

An online algorithm is one that receives a sequence of requests
and performs an immediate action in response to each request.

@ Computer Vision, Machine Learning, Data Mining
@ Theoretical Computer Science, Computer Networks

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
guestions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

@ Machine Learning, Game Theory, Information Theory LAV,
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Full-Information vs Bandit

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

@ Full-Information Online Learning
Multi-class Classification
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Formal Definitions

Online Learning
1. fort=1,2,...,T do

4: end for
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Formal Definitions

Online Learning

cfort=1,2,...,T do
Learner picks a decision x; € D
Adversary chooses a function f;(-)
Learner suffers loss f;(X;)

end for
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Formal Definitions

Online Learning

1. fort=1,2,...,T do
2:  Learner picks a decision x; € D
Adversary chooses a function f;(-)
3:  Learner suffers loss fi(Xt)
4: end for
Cumulative Loss
T
Cumulative Loss = ~ 4(xt)

t=1
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Formal Definitions

Online Learning
1. fort=1,2,...,T do
2:  Learner picks a decision x; € D
Adversary chooses a function f;(-)
3:  Learner suffers loss fi(Xt)
4: end for
Regret
T T
Regret = ;&(xt) — Qgg;ft(x)

LAMDA

Learning And Mining from Data

http://cs.nju.edu.cn/zlj Linear Optimization under One-bit Feedback


http://cs.nju.edu.cn/zlj

Introduction Definitions of Online Learning Bandit Online Learning

Formal Definitions

Online Learning
1. fort=1,2,...,T do
2:  Learner picks a decision x; € D
Adversary chooses a function f;(-)
3:  Learner suffers loss fi(Xt)
4: end for

Regret

T T
Regret = > " f(x) — Q’éingt(x)
t=1 t=1

@ Full-Information Online Learning
@ Learner observes the function f;(-)
[Zhang et al., 2012, Zhang et al., 2013]
@ Bandit Online Learning
@ Learner only observes the value of f;(x;) LAMDA
[Zhang et al., 2015, Zhang et al., 2016] s
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m Learner observes the value of f;(x;) sequentially
@ Offline Counterpart: zero-order optimization
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B Learning Scenarios
@ Multi-Armed Bandits (MAB) [Robbins, 1952]
@ Multi-class Classification with Bandit Feedback

@ Online Convex Optimization with Bandit Feedback
@ Linear Bandits

B Generation Process of fi's

@ Stochastic: fq,...,f; are i.i.d.
@ Adversarial

@ Oblivious: f; is independent of X4, ..., X;_1 (like exam)
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Stochastic Multi-Armed Bandits (MAB)

B Multi-Armed Bandits (MAB)

@ A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward

MULTI-ARMED
BANDIT
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Stochastic Multi-Armed Bandits (MAB)

B Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time

he pulls 1 arm and receives a reward ¥
Arm 1 ; [ﬁ\

Arm 2 —
Arm 3

}I
MULTI-ARMED
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Stochastic Multi-Armed Bandits (MAB)

B Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time

he pulls 1 arm and receives a reward ¥
Am1 | Xq | BERR

Arm 2 X2,1 e
Arm 3 | X3 1
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B Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time

he pulls 1 arm and receives a reward ¥
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Stochastic Multi-Armed Bandits (MAB)

® Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward ‘ !
Arm 1 X171 X172 X173 ‘ [ﬁ\
Arm2 | 10 Xzp Xaa EEE
Arm 3 X371 0 X373
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B Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time

he pulls 1 arm and receives a reward ‘ !
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B Multi-Armed Bandits (MAB)

@ A gambler is facing K arms, and each time
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Stochastic Multi-Armed Bandits (MAB)

B Multi-Armed Bandits (MAB)

@ A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward ‘ !
Arm 1 X171 X172 6 X174 X175 ‘ [ﬁ\
Arm2 | 10 Xzo Xaz 0 Xos QR
Arm 3 X371 0 X373 X374 X375 (§ R

@ Exploration vs Exploitation
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Stochastic Multi-Armed Bandits (MAB)

® Multi-Armed Bandits (MAB)
@ A gambler is facing K arms, and each time
he pulls 1 arm and receives a reward ‘ !
Arm 1 X171 X172 6 X174 X175 ‘ [ﬁ\
Arm2 | 10 Xzo Xaz 0 Xos QR
A3 | Xs1 0 Xsz Xsa Xas |

@ Exploration vs Exploitation

B Stochastic Setting
@ Rewards of the i-th arm are i.i.d. with unknown mean p;

Regret =T max Wi — Z“'t

@ Upper Confidence Bound (UCB) [Auer et al., 2002] LaVipA
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Upper Confidence Bound (UCB)

B A Naive Approach based on Sample Mean
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B A Naive Approach based on Sample Mean
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Upper Confidence Bound (UCB)

B A Naive Approach based on Sample Mean

___________

He® e
i e e . )
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@ A bad regret bound
-
Regret =T max i — > _ i, = O(T) LAVIDA
= e .
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Upper Confidence Bound (UCB)

B The Algorithm of UCB
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Upper Confidence Bound (UCB)

B The Algorithm of UCB
With high probability w; < f; = fi; + 6;
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B The Algorithm of UCB
With high probability w; < f; = fi; + 6;
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Optimism in Face of Uncertainty: i; = argmax; [;

@ Construct j; by concentration inequalities (Chernoff-Hoeffding
bound) [Auer et al., 2002] T
Regret = T max y; —Z,uit <O(KlogT) LAMVDA
ie[K —y

K] Laring And Miin ram Dath
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B Recommendation by Multi-Armed Bandits (MAB)

@ Each item is an arm :>
@ User feedback is the reward ¢
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B Recommendation by Multi-Armed Bandits (MAB)
@ Each item is an arm :>
@ User feedback is the reward ¢

@ The O(K log T) regret bound is loose for large K
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B Recommendation by Multi-Armed Bandits (MAB)
@ Eachitemis anarm ::>
@ User feedback is the reward ¢
@ The O(K log T) regret bound is loose for large K

B Learning with Additional Information

@ Each arm is a feature vector x € D C RY

@ For arm x, the expected reward iy = x "' w,
T
Regret = T maxX Wy — > X, W
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B Recommendation by Multi-Armed Bandits (MAB)
@ Eachitemis anarm ::>
@ User feedback is the reward ¢
@ The O(K log T) regret bound is loose for large K

B Learning with Additional Information
@ Each arm is a feature vector x € D C RY
@ For arm x, the expected reward iy = x "' w,

A
Regret = T xTw, — ) xw,
Real-valued Feedback
[Dani et al., 2008]
y:XTW*+e€]R LaAVDA
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B Recommendation by Multi-Armed Bandits (MAB)
@ Eachitemis anarm ::>
@ User feedback is the reward ¢
@ The O(K log T) regret bound is loose for large K

B Learning with Additional Information
@ Each arm is a feature vector x € D C RY
@ For arm x, the expected reward iy = x "' w,

A
Regret = T XTwye — ) X w,
Real-valued Feedback One-bit Feedback
[Dani et al., 2008] [Zhang et al., 2016]
=x' 2 Cli ?
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B Recommendation by Multi-Armed Bandits (MAB)
@ Eachitemis anarm ::>
@ User feedback is the reward ¢
@ The O(K log T) regret bound is loose for large K

B Learning with Additional Information
@ Each arm is a feature vector x € D C RY
@ For arm x, the expected reward iy = x "' w,

A
_ Tao, T
Regret = T maxx ' w, ; X W,
Real-valued Feedback One-bit Feedback
[Dani et al., 2008] [Zhang et al., 2016]

1
1+ exp(—yXTW*)LANbA
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B Recommendation by Multi-Armed Bandits (MAB)
@ Eachitemis anarm ::>
@ User feedback is the reward ¢
@ The O(K log T) regret bound is loose for large K

B Learning with Additional Information
@ Each arm is a feature vector x € D C RY
@ For arm x, the expected reward iy = x "' w,

k
T T
= x *<
Regret TTeaﬁ(X w thw < O(dVT)

t=1
Real-valued Feedback One-bit Feedback
[Dani et al., 2008] [Zhang et al., 2016]
1
T
= N R Prly = £1|x] = 1
ymx s W= S = oy A
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

LAMpa

Learning And Mining from Data
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

Learning History

(X1, Y1), o K1, Ve-1)

EAMDA
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

1
exp(—yix] w.)

w, € R¢ ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data

Prly; = 1] = Learning History
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

w, € Ct = E”ipse(wtlztl ]/t)

Confidence Region

ﬁ prly,=+11=——— | Learning History

exp(—yix{ w,)

w, € R¢ ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

Uy = X'W, < maxX'w = jiy
WEC:

Upper Bound

]

w, € Ct = E”ipse(wtlztl ]/t)

Confidence Region

ﬁ prly,=+11=——— | Learning History

exp(—yix{ w,)

w, € R¢ ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

—xTw < Tw — /7 _ _
i = XTW, SIBXTW =l ) x, = argmaxeenily

Upper Bound

]

w, € Ct = E”ipse(wtlztl ]/t)

Confidence Region

ﬁ prly,=+11=——— | Learning History

exp(—yix{ w,)

w, € R¢ ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

—xTw < Tw — /7 _ _
i = XTW, SIBXTW =l ) x, = argmaxeenily

Wweee
Upper Bound Submit x, ﬂ

ﬂ Observe v, € {+1}
w, € Ct = E”ipse(wtlztl ]/t)

Confidence Region

ﬁ prly,=+11=——— | Learning History

exp(—yix{ w,)

w, € R¢ ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data

http://cs.nj du.cn/ zlj Linear Optimization under One-bit Feedback


http://cs.nju.edu.cn/zlj

Learning under One-bit Feedback Model and Algorithm Theoretical Guarantees  Experiments

A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

—xTw < Tw — /7 _ _
i = XTW, SIBXTW =l ) x, = argmaxeenily

e
Upper Bound Submit x, ﬂ

ﬁ Observe y; € {+1}

w, € Ct = E”ipse(wtlztl ]/t)
Confidence Region Save (¢, yt) ﬂ
il 1 .
Priy; = 1] = po o oy Learning History
w, € R? ¢ | Gy, (Rem1, Ye-1)

EAMDA

Learning And Mining from Data
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A UCB-Type Algorithm [zhang et al., 2016]

In the t-th Round
@ Construct an upper bound ji, > ux = x ' w, for each arm x € D

@ By Optimism in Face of Uncertainty, X; = argmax,¢p [ix

] T — 7 _
Ux =X W, SMaXX W = [ly [————» x, = argmaXyep/ly

WEC;
Upper Bound Submit x, ﬂ
ﬁ Observe y; € {+1}
w, € Ct = E”ipse(wtlztl ]/t)
Confidence Region Save (x¢, ) ﬂ
ﬁ Partial History

Online Newton Step
< ) Wee1 Zeg (Xe-1,Ye-1)

EAMDA
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Implementation ISSues [zhang et al., 2016]

B Online Newton Step
@ Given w;_1 and (X¢_1,Yt—1)

@ Define f;_1(w) = log(1 + exp(—Y;_1X{ ;W))
Iw — w3,
2
where Z¢ = Zy_1 + 9x_1x{

Wt = argmin + (W —w_1) Vg (Wi_q)
w

B Arm Selection

Xt = argmax max XTW = argmax max XTW
xeD WEG xeD [W=wi|lz, <%
N—_——
=[x
@ The above problem is NP-hard in general
@ Tractable when D is discrete or a ball LA
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Outline

e Online Learning under One-bit Feedback

@ Theoretical Guarantees

LAMpa
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Regret Bound [zhang et al., 2016]

Theorem 1 (Confidence Region)
With a high probability, we have

t—1
(W, —wy)" </\| + g inxiT> (We —wWi) < v =0O(dlogt)
i=1

forallt > 0.

@ Optimality condition of online Newton step
@ Bernstein’s inequality for martingales
@ Peeling technique for decoupling the dependence

LAMVDA

Learning And Mining from Data
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Regret Bound [zhang et al., 2016]

Theorem 1 (Confidence Region)
With a high probability, we have

t—1
(W, —wy)" </\| + g inxiT> (We —wWi) < v =0O(dlogt)
i=1

forallt > 0.

@ Optimality condition of online Newton step

@ Bernstein’s inequality for martingales

@ Peeling technique for decoupling the dependence
Theorem 2 (Regret)
With a high probability, we have

-
T det(ZT 1)

T Tw, = > x{w, <4/ T +1) _ o (dvT
vep M e \/ﬁ 8 " det(Zy) (avT)

forall T > 0.
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Outline

e Online Learning under One-bit Feedback

@ Experimental Results

LAMpa
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Experimental Results

m D C R and |D| = 100

=
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Instantaneous Regret
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Conclusion
Conclusion and Future Work

B Conclusion

@ Online stochastic linear optimization Bandit

under one-bit feedback Linear + Onebit

@ An efficient algorithm with O(d ﬁ) Full-Information
regret bound

m Future Work
@ Parameter selection in practice
@ More observation models, such as the sign(-)
@ Select multiple arms in each round

@ w, may change from round to round
LAVDA

Learning And Mining from Data
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Conclusion
Resources

H Book

@ Prediction, Learning, and Games
[Cesa-Bianchi and Lugosi, 2006]

PREDICTION, LEARNING, AND GAMES
Nicold Cesa-Bianchi Gibor Lugosi

(a) Cesa-Bianchi (b) Lugosi
W Surveys

@ Online Learning and Online Convex Optimization
[Shalev-Shwartz, 2011]

@ Regret Analysis of Stochastic and Nonstochastic Multi-armedLA
Bandit Problems [Bubeck and Cesa-Bianchi, 2012] ook
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