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Statistical Machine Learning
Input

Training data: (x1, y1), . . . , (xn, yn) ∈ X × Y

A hypothesis class: H = {h : X 7→ R}

Output: h ∈ H
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Output: h ∈ H

Goal—Prediction

h(x) ≈ y
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Statistical Machine Learning
Input

Training data: (x1, y1), . . . , (xn, yn) ∈ X × Y

A hypothesis class: H = {h : X 7→ R}

Output: h ∈ H

Goal—Risk Minimization (RM)

min
h∈H

ℓ(h(x), y)

ℓ(·, ·) : R× R 7→ R is certain loss
e.g., 0−1 loss, square loss

Statistical Assumption

Training and testing data are sampled
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Training data: (x1, y1), . . . , (xn, yn) ∈ X × Y

A hypothesis class: H = {h : X 7→ R}

Output: h ∈ H

Goal—Risk Minimization (RM)

min
h∈H

E(x,y)∼D

[
ℓ(h(x), y)

]

ℓ(·, ·) : R× R 7→ R is certain loss
e.g., 0−1 loss, square loss

Statistical Assumption

Training and testing data are sampled
independently from D
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Empirical Risk Minimization (ERM)

Risk Minimization (RM)

min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

The distribution D is unknown
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[
ℓ(h(x), y)

]

The distribution D is unknown
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min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))
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Empirical Risk Minimization (ERM)

Risk Minimization (RM)

min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

The distribution D is unknown

Empirical Risk Minimization (ERM)

min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

(x1, y1), . . . , (xn, yn) are sampled independently from D

Examples—Least Squares

min
w∈W

F̂ (w) =
1
n

n∑

i=1

(x⊤
i w − yi)

2

W = {w ∈ R
d : ‖w‖ ≤ R} is the domain
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Empirical Risk Minimization (ERM)

Risk Minimization (RM)

min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

The distribution D is unknown

Empirical Risk Minimization (ERM)

min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

(x1, y1), . . . , (xn, yn) are sampled independently from D

Examples—Support Vector Machine (SVM)

min
w∈Rd

F̂ (w) =
1
n

n∑

i=1

ℓ(x⊤
i w, yi) +

λ

2
‖w‖2

ℓ(u, v) = max(0, 1 − uv) is the hinge loss
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Foundational Problem of Statistical Learning Theory
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Theoretical Guarantees of ERM

Foundational Problem of Statistical Learning Theory

Generalization Error

F (ĥ)− F̂ (ĥ) = E(x,y)∼D

[
ℓ(ĥ(x), y)

]
− 1

n

n∑

i=1

ℓ(ĥ(xi), yi))

where ĥ = argminh∈H F̂ (h) is the empirical minimizer
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Theoretical Guarantees of ERM

Foundational Problem of Statistical Learning Theory

Generalization Error

F (ĥ)− F̂ (ĥ) = E(x,y)∼D

[
ℓ(ĥ(x), y)

]
− 1

n

n∑

i=1

ℓ(ĥ(xi), yi))

where ĥ = argminh∈H F̂ (h) is the empirical minimizer

Excess Risk
F (ĥ)− min

w∈W
F (h) = F (ĥ)− F (h∗)

=E(x,y)∼D

[
ℓ(ĥ(x), y)

]
− E(x,y)∼D [ℓ(h∗(x), y)]

where h∗ = argminh∈H F (h) is the optimal solution
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Stochastic Optimization

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P
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Stochastic Optimization

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P

Examples—Risk Minimization (RM)

min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

h → w, H → W, ℓ(h(x), y) → f (w)
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Stochastic Optimization

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P

Examples—Risk Minimization (RM)

min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

h → w, H → W, ℓ(h(x), y) → f (w)

Examples—Newsvendor Problem (  )

max
x

F (x) = Eξ∼D

[
pmin(x , ξ)− cx

]

x is the supply, ξ is the random demand

p is the price, c is the cost

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions Statistical Machine Learning Stochastic Optimization

Sample Average Approximation (SAA)

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P

Sample Average Approximation (SAA)

min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

f1, . . . , fn are sampled independently from P
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Sample Average Approximation (SAA)

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P

Sample Average Approximation (SAA)

min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

f1, . . . , fn are sampled independently from P

Examples—Newsvendor Problem (  )

max
x

F̂ (x) =
1
n

n∑

i=1

(
p min(x , ξi)− cx

)

ξ1, . . . , ξn are i.i.d. samples
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Sample Average Approximation (SAA)

Stochastic Optimization

min
w∈W

F (w) = Ef∼P [f (w)]

f (·) : W 7→ R is a random function sampled from P

Sample Average Approximation (SAA)

min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

f1, . . . , fn are sampled independently from P

Excess Risk

F (ŵ)− min
w∈W

F (w) = F (ŵ)− F (w∗)

ŵ = argminw∈W F̂ (w) is the empirical minimizer

w∗ = argminw∈W F (w) is the optimal solution
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Our Contributions [Zhang et al., 2017]

ERM/SAA for Statistical Machine Learning

F (ĥ)− F (h∗) = O
(

1√
n
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F (ĥ)− F (h∗) = O
(

1√
n

) Smoothness

Strong Convexity

O
(

1
n

) Smoothness &

Strong Convexity
O
(

1
n2

)

100 200 300 400 500

10−4

10−2

100

n

E
xc

es
s

R
is

k

1√
n

1
n
1
n2

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions Statistical Machine Learning Stochastic Optimization

Our Contributions [Zhang et al., 2017]

ERM/SAA for Statistical Machine Learning
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Our Contributions [Zhang et al., 2017]
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Statistical Machine Learning—0−1 Losses

0−1 Losses [Vapnik and Chervonenkis, 1971]

RM: min
h∈H

F (h) = E(x,y)∼D

[
1(h(x) 6= y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

1(h(xi) 6= yi)
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Statistical Machine Learning—0−1 Losses

0−1 Losses [Vapnik and Chervonenkis, 1971]

RM: min
h∈H

F (h) = E(x,y)∼D

[
1(h(x) 6= y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

1(h(xi) 6= yi)

Risk Bound

F (ĥ)− F (h∗) = O

(√
VC(H)

n

)

VC(H) is the VC-dimension of H
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Statistical Machine Learning—0−1 Losses

0−1 Losses [Vapnik and Chervonenkis, 1971]

RM: min
h∈H

F (h) = E(x,y)∼D

[
1(h(x) 6= y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

1(h(xi) 6= yi)

Risk Bound

F (ĥ)− F (h∗) = O

(√
VC(H)

n

)

VC(H) is the VC-dimension of H

Limitations:
1 Minimizing 0−1 losses is intractable

2 VC-dimension is data-independent

3 Vacuous when VC(H) = ∞ (e.g., kernels)
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Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is Lipschitz continuous for any y ∈ Y

Definition 1

A function f : W ∈ R is G-Lipschitz continuous if

|f (x)− f (y)| ≤ G|x − y |, ∀x , y ∈ W
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Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is Lipschitz continuous for any y ∈ Y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
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Hinge loss
Logistic loss
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Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is Lipschitz continuous for any y ∈ Y
Risk Bound

F (ĥ)− F (h∗) = O
(

1√
n
+Rn(H)

)

Rn(H) is the Rademacher complexity

Rn(H) = E

[
sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

σih(xi)

∣∣∣∣∣

]

σi ∈ {±1} is Rademacher random variable
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Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is Lipschitz continuous for any y ∈ Y
Risk Bound

F (ĥ)− F (h∗) = O
(

1√
n
+Rn(H)

)

Suppose

H = {fw : x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ R}
then

Rn(H) = E

[
sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

σih(xi)

∣∣∣∣∣

]
= O

(
1√
n

)
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F (ĥ)− F (h∗) = O
(

1√
n
+Rn(H)

)
= O

(
1√
n

)

Suppose

H = {fw : x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ R}
then

Rn(H) = E

[
sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

σih(xi)

∣∣∣∣∣

]
= O

(
1√
n

)

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is Lipschitz continuous for any y ∈ Y
Risk Bound

F (ĥ)− F (h∗) = O
(

1√
n
+Rn(H)

)
= O

(
1√
n

)

Advantages:
1 Most convex losses are Lipschitz continues

2 Rademacher complexity is data-dependent

3 Rademacher complexity could be applied even when
VC(H) = ∞ (e.g., kernels)
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Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is L-smooth for any y ∈ Y

Definition 2

A function f : W ∈ R is L-smooth if

|f ′(x)− f ′(y)| ≤ L|x − y |, ∀x , y ∈ W
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Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is L-smooth for any y ∈ Y
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Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is L-smooth for any y ∈ Y
Risk Bound

F (ĥ)− F (h∗) = Õ
(
R2

n(H) +Rn(H)
√

F∗
)

Rn(H) is the Rademacher complexity

Rn(H) = E

[
sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

σih(xi)

∣∣∣∣∣

]

F∗ = F (h∗) is the minimal risk
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Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM: min
h∈H

F (h) = E(x,y)∼D

[
ℓ(h(x), y)

]

ERM: min
h∈H

F̂ (h) =
1
n

n∑

i=1

ℓ(h(xi), yi))

ℓ(·, y) is L-smooth for any y ∈ Y
Risk Bound

F (ĥ)− F (h∗) = Õ
(
R2

n(H) +Rn(H)
√

F∗
)

= Õ
(

1
n

)

When
F∗ = O

(
1
n

)

Rn(H) = E

[
sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

σih(xi)

∣∣∣∣∣

]
= O

(
1√
n

)
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Statistical Machine Learning—Strongly Convex

Strongly Convex Losses [Sridharan et al., 2009]

RM: min
w∈W

F (w) = E(x,y)∼D

[
ℓ(〈w, φ(x)〉, y) + r(w)

]

ERM: min
w∈W

F̂ (w) =
1
n

n∑

i=1

ℓ(〈w, φ(xi)〉, yi)) + r(w)

F (·) is λ-strongly convex over domain W

Definition 3

A function f : W ∈ R is λ-strongly convex if

f (x) + 〈∇f (x), y − x〉+ λ

2
‖y − x‖2 ≤ f (y), ∀x, y ∈ W.
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Statistical Machine Learning—Strongly Convex

Strongly Convex Losses [Sridharan et al., 2009]

RM: min
w∈W

F (w) = E(x,y)∼D

[
ℓ(〈w, φ(x)〉, y) + r(w)

]

ERM: min
w∈W

F̂ (w) =
1
n

n∑

i=1

ℓ(〈w, φ(xi)〉, yi)) + r(w)

F (·) is λ-strongly convex over domain W
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Statistical Machine Learning—Strongly Convex

Strongly Convex Losses [Sridharan et al., 2009]

RM: min
w∈W

F (w) = E(x,y)∼D

[
ℓ(〈w, φ(x)〉, y) + r(w)

]

ERM: min
w∈W

F̂ (w) =
1
n

n∑

i=1

ℓ(〈w, φ(xi)〉, yi)) + r(w)

F (·) is λ-strongly convex over domain W
ℓ(·, y) is Lipschitz continuous for any y ∈ Y
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Statistical Machine Learning—Strongly Convex

Strongly Convex Losses [Sridharan et al., 2009]

RM: min
w∈W

F (w) = E(x,y)∼D

[
ℓ(〈w, φ(x)〉, y) + r(w)

]

ERM: min
w∈W

F̂ (w) =
1
n

n∑

i=1

ℓ(〈w, φ(xi)〉, yi)) + r(w)

F (·) is λ-strongly convex over domain W
ℓ(·, y) is Lipschitz continuous for any y ∈ Y

Risk Bound

F (ŵ)− F (w∗) = O
(

1
λn

)

Based on the Rademacher complexity
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Risk Bounds of Empirical Risk Minimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions

Stochastic Optimization

Stochastic Optimization and Sample Average Approximation

SO: min
w∈W

F (w) = Ef∼P [f (w)]

SAA: min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)
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Introduction Related Work Our Results Conclusions

Stochastic Optimization

Stochastic Optimization and Sample Average Approximation

SO: min
w∈W

F (w) = Ef∼P [f (w)]

SAA: min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
Asymptotic analysis
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Stochastic Optimization

Stochastic Optimization and Sample Average Approximation

SO: min
w∈W

F (w) = Ef∼P [f (w)]

SAA: min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
Asymptotic analysis

f (·) is Lipschitz continuous [Shalev-Shwartz et al., 2009]

F (ŵ)− F (w∗) = Õ

(√
d
n

)
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Stochastic Optimization

Stochastic Optimization and Sample Average Approximation

SO: min
w∈W

F (w) = Ef∼P [f (w)]

SAA: min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w)

Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
Asymptotic analysis

f (·) is Lipschitz continuous [Shalev-Shwartz et al., 2009]

F (ŵ)− F (w∗) = Õ

(√
d
n

)

f (·) is λ-strongly convex and Lipschitz continuous
[Shalev-Shwartz et al., 2009]

E
[
F (ŵ)− F (w∗)

]
= O

(
1
λn

)
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Introduction Related Work Our Results Conclusions

Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
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Outline

1 Introduction
Statistical Machine Learning
Stochastic Optimization

2 Related Work

3 Our Results
Statistical Machine Learning
Stochastic Optimization

4 Conclusions
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Statistical Machine Learning

Risk Minimization (RM)
min
w∈W

F (w) =E(x,y)∼D

[
ℓ(〈w, φ(x)〉, y)

]
+ r(w)

w∗ =argmin
w∈W

F (w)

Empirical Risk Minimization (ERM)

min
w∈W

F̂ (w) =
1
n

n∑

i=1

ℓ(〈w, φ(xi)〉, yi)) + r(w)

ŵ =argmin
w∈W

F̂ (w)

Excess Risk

F (ŵ)− F (w∗)
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]
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Smoothness & Strong Convexity

Theorem 1

Assume

ℓ(·, y) is nonnegative, and L-smooth

r(·) is Lipschitz continuous

F (·) is λ-strongly convex

When n = Ω(κ2), with high probability, we have

F (ŵ)− F (w∗) = O
(

1
λn2 +

κH∗
n

)

where κ = L/λ and H∗ = F (w∗)− r(w∗).
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Smoothness & Strong Convexity

Theorem 1

Assume

ℓ(·, y) is nonnegative, and L-smooth

r(·) is Lipschitz continuous

F (·) is λ-strongly convex

When n = Ω(κ2), with high probability, we have

F (ŵ)− F (w∗) = O
(

1
λn2 +

κH∗
n

)

where κ = L/λ and H∗ = F (w∗)− r(w∗).

Corollary 1

When n = Ω(κ2) and H∗ = O(1/n),

F (ŵ)− F (w∗) = O
(

1
λn2

)
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Examples

Least Squares

min
w∈W

F (w) = E(x,y)∼D

[(
x⊤w − y

)2
]

min
w∈W

F̂ (w) =
1
n

n∑

i=1

(
x⊤

i w − yi

)2

F (·) is strongly convex if E[xx⊤] is full-rank
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Examples

Least Squares

min
w∈W

F (w) = E(x,y)∼D

[(
x⊤w − y

)2
]

min
w∈W

F̂ (w) =
1
n

n∑

i=1

(
x⊤

i w − yi

)2

F (·) is strongly convex if E[xx⊤] is full-rank

Regularized Logistic Regression

min
w∈W

F (w) = E(x,y)∼D

[
log
(

1 + e−yx⊤w
)]

+ λ‖w‖2

min
w∈W

F̂ (w) =
1
n

n∑

i=1

log
(

1 + e−yi x⊤

i w
)
+ λ‖w‖2
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Implications

When n is large and H∗ is small, ERM has O(1/n2) rate.
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Implications

When n is large and H∗ is small, ERM has O(1/n2) rate.

The number of training data n is large

Big data is powerful

The minimal risk H∗ is small

Representation learning is necessary
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Implications

When n is large and H∗ is small, ERM has O(1/n2) rate.

The number of training data n is large

Big data is powerful

The minimal risk H∗ is small

Representation learning is necessary

 

!  

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions Statistical Machine Learning Stochastic Optimization

Outline

1 Introduction
Statistical Machine Learning
Stochastic Optimization

2 Related Work

3 Our Results
Statistical Machine Learning
Stochastic Optimization

4 Conclusions
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Stochastic Optimization

Stochastic Optimization
min
w∈W

F (w) =Ef∼P [f (w)] + r(w)

w∗ =argmin
w∈W

F (w)

Sample Average Approximation (SAA)

min
w∈W

F̂ (w) =
1
n

n∑

i=1

fi(w) + r(w)

ŵ =argmin
w∈W

F̂ (w)

Excess Risk
F (ŵ)− F (w∗)
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]Smooth: Õ
(

d
n

)

[Zhang et al., 2017]
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Smoothness

Theorem 2

Assume

f (·) is nonnegative, L-smooth, and convex

F (·) is Lipschitz continuous

Then, with high probability, we have

F (ŵ)− F (w∗) = O

(
d log n

n
+

√
H∗
n

)
= Õ

(
d
n
+

√
H∗
n

)

where H∗ = F (w∗)− r(w∗).
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Smoothness

Theorem 2

Assume

f (·) is nonnegative, L-smooth, and convex

F (·) is Lipschitz continuous

Then, with high probability, we have

F (ŵ)− F (w∗) = O

(
d log n

n
+

√
H∗
n

)
= Õ

(
d
n
+

√
H∗
n

)

where H∗ = F (w∗)− r(w∗).

Corollary 2

Under the above assumptions, when H∗ = O(d2/n)

F (ŵ)− F (w∗) = Õ
(

d
n

)
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex: O
(

1
λn

)
in expection

[Shalev-Shwartz et al., 2009]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]Smooth: Õ
(

d
n

)

[Zhang et al., 2017]
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Smooth: Õ
(

d
n

)

[Zhang et al., 2017]

Strongly Convex: Õ
(

d
n +

1
λn

)

[Zhang et al., 2017]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]
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Smoothness & Strong Convexity I

Theorem 3

Assume

f (·) is nonnegative, L-smooth, and convex

F (·) is Lipschitz continuous

F (·) is λ-strongly convex

Then, with high probability, we have

F (ŵ)− F (w∗) = O
(

d log n
n

+
κH∗

n

)
= Õ

(
d
n
+

1
λn

)

where

κ =
L
λ

and H∗ = F (w∗)− r(w∗).
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Smooth: Õ
(

d
n

)

[Zhang et al., 2017]

Strongly Convex: Õ
(

d
n +

1
λn

)

[Zhang et al., 2017]
Strongly Convex & Smooth: O

(
1

λn2

)

[Zhang et al., 2017]
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Risk Bounds of Empirical Risk Minimization

Stochastic Optimization

Statistical Machine LearningLipschitz: O
(√

1
n

)

[Bartlett and Mendelson, 2002]

Smooth: Õ
(

1
n

)

[Srebro et al., 2010]

Strongly Convex: O
(

1
λn

)

[Sridharan et al., 2009]
Lipschitz: Õ

(√
d
n

)

[Shalev-Shwartz et al., 2009]

Strongly Convex & Smooth: O
(

1
λn2

)

[Zhang et al., 2017]Smooth: Õ
(

d
n

)

[Zhang et al., 2017]

Strongly Convex: Õ
(

d
n +

1
λn

)

[Zhang et al., 2017]

Strongly Convex & Smooth: O
(

1
λn2

)

[Zhang et al., 2017]
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Smoothness & Strong Convexity II

Theorem 4

Assume

f (·) is nonnegative, L-smooth, and convex

F (·) is Lipschitz continuous

F (·) is λ-strongly convex

When n = Ω(κd log n) = Ω̃(κd), with high probability, we have

F (ŵ)− F (w∗) = O
(

1
λn2 +

κH∗
n

)

where κ = L/λ and H∗ = F (w∗)− r(w∗).
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Smoothness & Strong Convexity II

Theorem 4

Assume

f (·) is nonnegative, L-smooth, and convex

F (·) is Lipschitz continuous

F (·) is λ-strongly convex

When n = Ω(κd log n) = Ω̃(κd), with high probability, we have

F (ŵ)− F (w∗) = O
(

1
λn2 +

κH∗
n

)

where κ = L/λ and H∗ = F (w∗)− r(w∗).

Corollary 3

When n = Ω̃(κd) and H∗ = O(1/n),

F (ŵ)− F (w∗) = O
(

1
λn2

)
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Analysis I

Uniform Convergence of Functions (Traditional Analysis)

sup
w∈W

∣∣∣F (w)− F̂ (w)
∣∣∣

O(1/n) is the best rate
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Analysis I

Uniform Convergence of Functions (Traditional Analysis)

sup
w∈W

∣∣∣F (w)− F̂ (w)
∣∣∣

O(1/n) is the best rate

Uniform Convergence of Gradients (Our Analysis)

sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥

O(1/n) is the best rate
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Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖
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Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖

≤ sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥ ‖ŵ − w∗‖
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Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖

≤ sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥ ‖ŵ − w∗‖

≤ c
n
‖ŵ − w∗‖
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Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖

≤ sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥ ‖ŵ − w∗‖

≤ c
n
‖ŵ − w∗‖

2ab≤a2+b2

≤ c2

2λn2 +
λ

2
‖ŵ − w∗‖2
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Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖

≤ sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥ ‖ŵ − w∗‖

≤ c
n
‖ŵ − w∗‖

2ab≤a2+b2

≤ c2

2λn2 +
λ

2
‖ŵ − w∗‖2

implying

F (ŵ)− F (w∗) ≤
c2

2λn2 = O
(

1
λn2

)

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Learning And Mining from DatA

A DAML

http://cs.nju.edu.cn/zlj


Introduction Related Work Our Results Conclusions Statistical Machine Learning Stochastic Optimization

Analysis II

The Basic Idea

F (ŵ)− F (w∗) +
λ

2
‖ŵ − w∗‖2

≤
∥∥∥∇F (ŵ)−∇F̂ (ŵ)

∥∥∥ ‖ŵ − w∗‖

≤ sup
w∈W

∥∥∥∇F (w)−∇F̂ (w)
∥∥∥ ‖ŵ − w∗‖

≤ c
n
‖ŵ − w∗‖

2ab≤a2+b2

≤ c2

2λn2 +
λ

2
‖ŵ − w∗‖2

implying

F (ŵ)− F (w∗) ≤
c2

2λn2 = O
(

1
λn2

)

Rademacher Complexity, Covering Number
Concentration Inequality of Vectors
Convexity, Smoothness
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Conclusions

ERM/SAA for Statistical Machine Learning

f (·) F (·) Risk Bounds

Smooth Strongly convex O( 1
λn2 + κH∗

n ) when n = Ω(κ2)

ERM/SAA for Stochastic Optimization

f (·) F (·) Risk Bounds

Smooth Lipschitz Õ(d
n +

√
H∗

n )

Smooth
Lipschitz

Strongly Convex
Õ(d

n + κH∗

n )

O( 1
λn2 + κH∗

n ) when n = Ω̃(κd)
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Future Work

Optimality of Our Bounds

Is the risk bound tight?

Is the lower bound on n unavoidable?

Can the assumptions (e.g., strong convexity) be relaxed?

Fast Rates for Stochastic Approximation (SA)

Stochastic gradient descent (SGD)

Fast Rates for Non-convex Losses

Deep learning
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