

イロト イヨト イヨト

ъ

Fast Rates for Empirical Risk Minimization: Beyond the O(1/n) Risk Bound

Lijun Zhang

LAMDA group, Nanjing University, China

The 16th China Conference on Machine Learning (CCML 2017)

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

Our Results

- Statistical Machine Learning
- Stochastic Optimization

4 Conclusions

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

3 Our Results

- Statistical Machine Learning
- Stochastic Optimization

Conclusions

<回とくほとくほ

Input

- Training data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A hypothesis class: $\mathcal{H} = \{h : \mathcal{X} \mapsto \mathbb{R}\}$

• Output: $h \in \mathcal{H}$

イロト イポト イヨト イヨ

Input

- Training data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A hypothesis class: $\mathcal{H} = \{h : \mathcal{X} \mapsto \mathbb{R}\}$

• Output: $h \in \mathcal{H}$

Goal—Prediction

 $h(\mathbf{x}) \approx y$

• where (**x**, y) is a testing pair

イロト イポト イヨト イヨ

Input

- Training data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A hypothesis class: $\mathcal{H} = \{h : \mathcal{X} \mapsto \mathbb{R}\}$

Output: $h \in \mathcal{H}$

Goal—Prediction

 $h(\mathbf{x}) \approx y$

- where (**x**, y) is a testing pair
- Statistical Assumption
 - Training and testing data are sampled independently from D

Input

- Training data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A hypothesis class: $\mathcal{H} = \{h : \mathcal{X} \mapsto \mathbb{R}\}$

Output: $h \in \mathcal{H}$

- Goal—Risk Minimization (RM) min h∈H ℓ(h(x), y)
 ℓ(⋅, ⋅) : ℝ × ℝ ↦ ℝ is certain loss e.g., 0-1 loss, square loss
- Statistical Assumption
 - Training and testing data are sampled independently from D

Input

- Training data: $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- A hypothesis class: $\mathcal{H} = \{h : \mathcal{X} \mapsto \mathbb{R}\}$

Output: $h \in \mathcal{H}$

- Goal—Risk Minimization (RM) $\min_{h \in \mathcal{H}} E_{(\mathbf{x}, \mathbf{y}) \sim \mathbb{D}} [\ell(h(\mathbf{x}), \mathbf{y})]$ • $\ell(\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is certain loss e.g., 0-1 loss, square loss
- Statistical Assumption
 - Training and testing data are sampled independently from \mathbb{D}

3 1 4 3

Statistical Machine Learning Stochastic Optimization

Empirical Risk Minimization (ERM)

Risk Minimization (RM)

$$\min_{h \in \mathcal{H}} F(h) = \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \big[\ell(h(\mathbf{x}), y) \big]$$

• The distribution \mathbb{D} is unknown

<回とくほとくほ

Statistical Machine Learning Stochastic Optimization

Empirical Risk Minimization (ERM)

Risk Minimization (RM)

$$\min_{h \in \mathcal{H}} F(h) = \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \big[\ell(h(\mathbf{x}), y) \big]$$

• The distribution \mathbb{D} is unknown

Empirical Risk Minimization (ERM)

$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are sampled independently from \mathbb{D}

<回とくほとくほ

Statistical Machine Learning Stochastic Optimization

Empirical Risk Minimization (ERM)

Risk Minimization (RM)

$$\min_{h \in \mathcal{H}} F(h) = \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \big[\ell(h(\mathbf{x}), y) \big]$$

• The distribution \mathbb{D} is unknown

Empirical Risk Minimization (ERM)

$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are sampled independently from \mathbb{D}

Examples—Least Squares

$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i^{\top} \mathbf{w} - \mathbf{y}_i)^2$$

• $\mathcal{W} = \{ \mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\| \le R \}$ is the domain

Empirical Risk Minimization (ERM)

Risk Minimization (RM)

$$\min_{h \in \mathcal{H}} F(h) = \mathrm{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \big[\ell(h(\mathbf{x}), y) \big]$$

• The distribution \mathbb{D} is unknown

Empirical Risk Minimization (ERM)

$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are sampled independently from \mathbb{D}

Examples—Support Vector Machine (SVM)

$$\min_{\mathbf{w}\in\mathbb{R}^d} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i^{\top} \mathbf{w}, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

• $\ell(u, v) = \max(0, 1 - uv)$ is the hinge loss

< □ > < □ > < □ > < □ > < □ > < □ >

Theoretical Guarantees of ERM

Foundational Problem of Statistical Learning Theory

イロト イヨト イヨト イヨト

Theoretical Guarantees of ERM

Foundational Problem of Statistical Learning Theory

Generalization Error

$$F(\hat{h}) - \widehat{F}(\hat{h}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathbb{D}} \left[\ell(\hat{h}(\mathbf{x}), \mathbf{y}) \right] - \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(\mathbf{x}_i), \mathbf{y}_i))$$

• where
$$\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \widehat{F}(h)$$
 is the empirical minimizer

Theoretical Guarantees of ERM

Foundational Problem of Statistical Learning Theory

Generalization Error

$$F(\hat{h}) - \widehat{F}(\hat{h}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathbb{D}} \left[\ell(\hat{h}(\mathbf{x}), \mathbf{y}) \right] - \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(\mathbf{x}_i), \mathbf{y}_i))$$

• where $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \widehat{F}(h)$ is the empirical minimizer

Excess Risk $F(\hat{h}) - \min_{\mathbf{w} \in \mathcal{W}} F(h) = F(\hat{h}) - F(h_*)$ $= E_{(\mathbf{x}, y) \sim \mathbb{D}} \left[\ell(\hat{h}(\mathbf{x}), y) \right] - E_{(\mathbf{x}, y) \sim \mathbb{D}} \left[\ell(h_*(\mathbf{x}), y) \right]$

• where $h_* = \operatorname{argmin}_{h \in \mathcal{H}} F(h)$ is the optimal solution

A (10) × (10) × (10)

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

3 Our Results

- Statistical Machine Learning
- Stochastic Optimization

Conclusions

<回とくほとくほ

<ロ> (日) (日) (日) (日) (日)

Stochastic Optimization

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot) : \mathcal{W} \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

イロト イポト イヨト イヨト

Stochastic Optimization

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot): \mathcal{W} \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

■ Examples—Risk Minimization (RM) $\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$ ● $h \rightarrow \mathbf{w}, \ \mathcal{H} \rightarrow \mathcal{W}, \ \ell(h(\mathbf{x}), y) \rightarrow f(\mathbf{w})$

イロト イポト イヨト イヨト

Stochastic Optimization

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot): \mathcal{W} \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

Examples—Risk Minimization (RM) $\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$

• $h \rightarrow \mathbf{w}, \ \mathcal{H} \rightarrow \mathcal{W}, \ \ell(h(\mathbf{x}), y) \rightarrow f(\mathbf{w})$

■ Examples—Newsvendor Problem (报童问题) max F(x) = E_{ξ~D}[pmin(x, ξ) - cx]

- x is the supply, ξ is the random demand
- *p* is the price, *c* is the cost

<ロト < 回 > < 回 > < 回) < 回)

Sample Average Approximation (SAA)

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot) : \mathcal{W} \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

Sample Average Approximation (SAA)

$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

• f_1, \ldots, f_n are sampled independently from \mathbb{P}

Sample Average Approximation (SAA)

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot) : W \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

Sample Average Approximation (SAA)

$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

• f_1, \ldots, f_n are sampled independently from \mathbb{P}

■ Examples—Newsvendor Problem (报童问题)

$$\max_{\mathbf{x}} \widehat{F}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} (p \min(\mathbf{x}, \xi_i) - c\mathbf{x})$$

• ξ_1, \ldots, ξ_n are i.i.d. samples

3 > 4 3

Sample Average Approximation (SAA)

Stochastic Optimization

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{f\sim\mathbb{P}}\left[f(\mathbf{w})\right]$$

• $f(\cdot): \mathcal{W} \mapsto \mathbb{R}$ is a random function sampled from \mathbb{P}

Sample Average Approximation (SAA)

$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

• f_1, \ldots, f_n are sampled independently from \mathbb{P}

Excess Risk

$$F(\widehat{\mathbf{w}}) - \min_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w}) = F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*)$$

• $\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} \widehat{F}(\mathbf{w})$ is the empirical minimizer

• $\mathbf{w}_* = \operatorname{argmin}_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w})$ is the optimal solution

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right)$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right)$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Stochastic Optimization

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\sqrt{n}}\right)$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Stochastic Optimization

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{O\left(\frac{1}{n}\right)}$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Stochastic Optimization

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Smoothness}]{\text{Smoothness}} O\left(\frac{1}{n}\right)$$

Strong Convexity

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Stochastic Optimization

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Smoothness}]{\text{Smoothness}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Statistical Machine Learning

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

ERM/SAA for Stochastic Optimization

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n}\right) \xrightarrow[\text{Strong Convexity}]{\text{Strong Convexity}} O\left(\frac{1}{n^2}\right)$$

The 30th Annual Conference on Learning Theory (COLT'17)

1 of 18 long talks

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

Our Result

- Statistical Machine Learning
- Stochastic Optimization

Conclusions

<ロト < 回 > < 回 > < 回) < 回)

Statistical Machine Learning—0–1 Losses

■ 0-1 Losses [Vapnik and Chervonenkis, 1971]

RM:
$$\min_{h \in \mathcal{H}} F(h) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \left[\mathbb{1}(h(\mathbf{x}) \neq y) \right]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(\mathbf{x}_i) \neq y_i)$$

イロト イヨト イヨト イヨト

Statistical Machine Learning—0–1 Losses

■ 0-1 Losses [Vapnik and Chervonenkis, 1971]

RM:
$$\min_{h \in \mathcal{H}} F(h) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{D}} [\mathbb{1}(h(\mathbf{x}) \neq y)]$$

ERM:
$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(\mathbf{x}_i) \neq y_i)$$

Risk Bound

$$m{F}(\hat{h}) - m{F}(h_*) = m{O}\left(\sqrt{rac{ extsf{VC}(\mathcal{H})}{n}}
ight)$$

 $VC(\mathcal{H})$ is the VC-dimension of \mathcal{H}

http://cs.nju.edu.cn/zlj Empirical Risk Minimization

Statistical Machine Learning—0–1 Losses

0-1 Losses [Vapnik and Chervonenkis, 1971]

RM:
$$\min_{h \in \mathcal{H}} F(h) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathbb{D}} [\mathbb{1}(h(\mathbf{x}) \neq \mathbf{y})]$$

ERM:
$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(\mathbf{x}_i) \neq y_i)$$

Risk Bound

$${m F}(\hat{h}) - {m F}(h_*) = {m O}\left(\sqrt{rac{{m VC}({\mathcal H})}{n}}
ight)$$

 $VC(\mathcal{H})$ is the VC-dimension of \mathcal{H}

Limitations:

Minimizing 0-1 losses is intractable

VC-dimension is data-independent

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$

Definition 1

A function $f : W \in \mathbb{R}$ is *G*-Lipschitz continuous if

$$|f(\mathbf{x}) - f(\mathbf{y})| \le G|\mathbf{x} - \mathbf{y}|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{W}$$

イロト イヨト イヨト イヨ

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$

Risk Bound

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}} + \mathcal{R}_n(\mathcal{H})\right)$$

 $\mathcal{R}_n(\mathcal{H})$ is the Rademacher complexity

$$\mathcal{R}_n(\mathcal{H}) = \mathbf{E}\left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i h(\mathbf{x}_i) \right| \right]$$

 $\sigma_i \in \{\pm 1\}$ is Rademacher random variable

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

- $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$
- Risk Bound

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}} + \mathcal{R}_n(\mathcal{H})\right)$$

Suppose

$$\mathcal{H} = \{ f_{\mathbf{w}} : \mathbf{x} \mapsto \langle \mathbf{w}, \phi(\mathbf{x}) \rangle : \|\mathbf{w}\| \le R \}$$

then

$$\mathcal{R}_{n}(\mathcal{H}) = \mathbf{E}\left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(\mathbf{x}_{i}) \right| \right] = O\left(\frac{1}{\sqrt{n}}\right)$$

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

- $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$
- Risk Bound

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}} + \mathcal{R}_n(\mathcal{H})\right) = O\left(\frac{1}{\sqrt{n}}\right)$$

Suppose

$$\mathcal{H} = \{ f_{\mathbf{w}} : \mathbf{x} \mapsto \langle \mathbf{w}, \phi(\mathbf{x}) \rangle : \|\mathbf{w}\| \le R \}$$

then

Statistical Machine Learning—Lipschitz Losses

Lipschitz Continuous Losses [Bartlett and Mendelson, 2002]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

- $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$
- Risk Bound

$$F(\hat{h}) - F(h_*) = O\left(\frac{1}{\sqrt{n}} + \mathcal{R}_n(\mathcal{H})\right) = O\left(\frac{1}{\sqrt{n}}\right)$$

- Advantages:
 - M
 - Most convex losses are Lipschitz continues
 - 2
 - Rademacher complexity is data-dependent
 - Rademacher complexity could be applied even when $VC(\mathcal{H}) = \infty$ (e.g., kernels)

Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $\ell(\cdot, y)$ is *L*-smooth for any $y \in \mathcal{Y}$

Definition 2

A function $f : W \in \mathbb{R}$ is *L*-smooth if

$$|f'(\mathbf{x}) - f'(\mathbf{y})| \le L|\mathbf{x} - \mathbf{y}|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{W}$$

イロト イポト イヨト イヨ

Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h \in \mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

• $\ell(\cdot, y)$ is *L*-smooth for any $y \in \mathcal{Y}$

Risk Bound

$$F(\hat{h}) - F(h_*) = \widetilde{O}\left(\mathcal{R}_n^2(\mathcal{H}) + \mathcal{R}_n(\mathcal{H})\sqrt{F_*}\right)$$

 $\mathcal{R}_n(\mathcal{H})$ is the Rademacher complexity

$$\mathcal{R}_n(\mathcal{H}) = \mathbf{E}\left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i h(\mathbf{x}_i) \right| \right]$$

 $F_* = F(h_*)$ is the minimal risk

Statistical Machine Learning—Smooth Losses

Smooth Losses [Srebro et al., 2010]

RM:
$$\min_{h \in \mathcal{H}} F(h) = E_{(\mathbf{x}, y) \sim \mathbb{D}} [\ell(h(\mathbf{x}), y)]$$

ERM:
$$\min_{h\in\mathcal{H}} \widehat{F}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mathbf{x}_i), y_i))$$

- $\ell(\cdot, y)$ is *L*-smooth for any $y \in \mathcal{Y}$
- Risk Bound

$$F(\hat{h}) - F(h_*) = \widetilde{O}\left(\mathcal{R}_n^2(\mathcal{H}) + \mathcal{R}_n(\mathcal{H})\sqrt{F_*}\right) = \widetilde{O}\left(\frac{1}{n}\right)$$

When

$$F_* = O\left(\frac{1}{n}\right)$$
$$\mathcal{R}_n(\mathcal{H}) = E\left[\sup_{h \in \mathcal{H}} \left|\frac{1}{n} \sum_{i=1}^n \sigma_i h(\mathbf{x}_i)\right|\right] = O\left(\frac{1}{\sqrt{n}}\right)$$

Strongly Convex Losses [Sridharan et al., 2009]

RM:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{(\mathbf{x},y)\sim\mathbb{D}} [\ell(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle, y) + r(\mathbf{w})]$$

ERM:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle, y_i)) + r(\mathbf{w})$$

• $F(\cdot)$ is λ -strongly convex over domain \mathcal{W}

Definition 3

A function $f : W \in \mathbb{R}$ is λ -strongly convex if

$$f(\mathbf{x}) + \langle
abla f(\mathbf{x}), \mathbf{y} - \mathbf{x}
angle + rac{\lambda}{2} \|\mathbf{y} - \mathbf{x}\|^2 \leq f(\mathbf{y}), \; orall \mathbf{x}, \mathbf{y} \in \mathcal{W}.$$

イロト イポト イヨト イヨ

Strongly Convex Losses [Sridharan et al., 2009]

RM:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{(\mathbf{x},y)\sim\mathbb{D}} [\ell(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle, y) + r(\mathbf{w})]$$

ERM:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle, y_i)) + r(\mathbf{w})$$

• $F(\cdot)$ is λ -strongly convex over domain \mathcal{W}

Strongly Convex Losses [Sridharan et al., 2009]

RM:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{(\mathbf{x},y)\sim\mathbb{D}} [\ell(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle, y) + r(\mathbf{w})]$$

ERM:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle, y_i)) + r(\mathbf{w})$$

- $F(\cdot)$ is λ -strongly convex over domain \mathcal{W}
- $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$

イロト イヨト イヨト イヨト

Strongly Convex Losses [Sridharan et al., 2009]

RM:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{(\mathbf{x},y)\sim\mathbb{D}} [\ell(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle, y) + r(\mathbf{w})]$$

ERM:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle, y_i)) + r(\mathbf{w})$$

- $F(\cdot)$ is λ -strongly convex over domain \mathcal{W}
- $\ell(\cdot, y)$ is Lipschitz continuous for any $y \in \mathcal{Y}$
- Risk Bound

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n}\right)$$

Based on the Rademacher complexity

イロト イヨト イヨト イヨト

Risk Bounds of Empirical Risk Minimization

Stochastic Optimization and Sample Average Approximation

SO:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{f\sim\mathbb{P}}[f(\mathbf{w})]$$

SAA:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Stochastic Optimization and Sample Average Approximation

SO:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{f\sim\mathbb{P}}[f(\mathbf{w})]$$

SAA:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

- Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
 - Asymptotic analysis

<回とくほとくほ

Stochastic Optimization and Sample Average Approximation

SO:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{f\sim\mathbb{P}}[f(\mathbf{w})]$$

SAA:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

- Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
 Asymptotic analysis
- $f(\cdot)$ is Lipschitz continuous [Shalev-Shwartz et al., 2009]

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = \widetilde{O}\left(\sqrt{\frac{d}{n}}\right)$$

<回とくほとくほ

Stochastic Optimization and Sample Average Approximation

SO:
$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = E_{f\sim\mathbb{P}}[f(\mathbf{w})]$$

SAA:
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$$

- Maximum Likelihood Estimate [Wald, 1949, Huber, 1967]
 Asymptotic analysis
- $f(\cdot)$ is Lipschitz continuous [Shalev-Shwartz et al., 2009]

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = \widetilde{O}\left(\sqrt{\frac{d}{n}}\right)$$

f(·) is λ-strongly convex and Lipschitz continuous
 [Shalev-Shwartz et al., 2009]

$$\mathbf{E}\left[F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*)\right] = O\left(\frac{1}{\lambda n}\right)_{\text{Biggender the set of the$$

Risk Bounds of Empirical Risk Minimization

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

3

Our Results

- Statistical Machine Learning
- Stochastic Optimization

Conclusions

<回とくほとくほ

イロト イポト イヨト イヨ

Statistical Machine Learning

$$\begin{array}{l} \blacksquare \text{ Risk Minimization (RM)} \\ \min_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w}) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{D}} \left[\ell(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle, y) \right] + r(\mathbf{w}) \\ \mathbf{w}_* = \operatorname*{argmin}_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w}) \end{array}$$

Empirical Risk Minimization (ERM)

$$\min_{\mathbf{w}\in\mathcal{W}} \ \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle, y_i)) + r(\mathbf{w})$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}\in\mathcal{W}}{\operatorname{argmin}} \ \widehat{F}(\mathbf{w})$$

Excess Risk

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*)$$

Risk Bounds of Empirical Risk Minimization

Risk Bounds of Empirical Risk Minimization

イロト イポト イヨト イヨー

Smoothness & Strong Convexity

Theorem 1

Assume

- $\ell(\cdot, y)$ is nonnegative, and L-smooth
- $r(\cdot)$ is Lipschitz continuous
- $F(\cdot)$ is λ -strongly convex

When $n = \Omega(\kappa^2)$, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2} + \frac{\kappa H_*}{n}\right)$$

where $\kappa = L/\lambda$ and $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Smoothness & Strong Convexity

Theorem 1

Assume

- $\ell(\cdot, y)$ is nonnegative, and L-smooth
- $r(\cdot)$ is Lipschitz continuous
- $F(\cdot)$ is λ -strongly convex

When $n = \Omega(\kappa^2)$, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2} + \frac{\kappa H_*}{n}\right)$$

where $\kappa = L/\lambda$ and $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Corollary 1

When
$$n = \Omega(\kappa^2)$$
 and $H_* = O(1/n)$,
 $F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2}\right)$

イロト イポト イヨト イヨト

Examples

Least Squares

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{(\mathbf{x},y)\sim\mathbb{D}} \left[\left(\mathbf{x}^{\top}\mathbf{w} - y \right)^2 \right]$$
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^{\top}\mathbf{w} - y_i \right)^2$$

• $F(\cdot)$ is strongly convex if $E[\mathbf{x}\mathbf{x}^{\top}]$ is full-rank

Examples

Least Squares

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathrm{E}_{(\mathbf{x},y)\sim\mathbb{D}} \left[\left(\mathbf{x}^{\top}\mathbf{w} - y \right)^2 \right]$$
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^{\top}\mathbf{w} - y_i \right)^2$$

• $F(\cdot)$ is strongly convex if $E[\mathbf{x}\mathbf{x}^{\top}]$ is full-rank

Regularized Logistic Regression

$$\min_{\mathbf{w}\in\mathcal{W}} F(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathbb{D}} \left[\log\left(1 + e^{-y\mathbf{x}^{\top}\mathbf{w}}\right) \right] + \lambda \|\mathbf{w}\|^2$$
$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y_i\mathbf{x}_i^{\top}\mathbf{w}}\right) + \lambda \|\mathbf{w}\|^2$$

<回とくほとくほ

イロト イヨト イヨト イヨト

Implications

When *n* is large and H_* is small, ERM has $O(1/n^2)$ rate.

Implications

When *n* is large and H_* is small, ERM has $O(1/n^2)$ rate.

- The number of training data *n* is large
 - Big data is powerful
- The minimal risk *H*_{*} is small
 - Representation learning is necessary

Implications

When *n* is large and H_* is small, ERM has $O(1/n^2)$ rate.

- The number of training data n is large
 - Big data is powerful
- The minimal risk *H*_{*} is small
 - Representation learning is necessary

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

Our Results

- Statistical Machine Learning
- Stochastic Optimization

Conclusions

<回とくほとくほ

イロト イポト イヨト イヨ

Stochastic Optimization

Stochastic Optimization

$$\min_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w}) = \mathbb{E}_{f \sim \mathbb{P}} [f(\mathbf{w})] + r(\mathbf{w})$$
$$\mathbf{w}_* = \operatorname*{argmin}_{\mathbf{w} \in \mathcal{W}} F(\mathbf{w})$$

Sample Average Approximation (SAA)

$$\min_{\mathbf{w}\in\mathcal{W}} \widehat{F}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w}) + r(\mathbf{w})$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}\in\mathcal{W}}{\operatorname{argmin}} \widehat{F}(\mathbf{w})$$

Excess Risk

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*)$$

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

Smoothness

Theorem 2

Assume

wł

- $f(\cdot)$ is nonnegative, L-smooth, and convex
- $F(\cdot)$ is Lipschitz continuous

Then, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{d \log n}{n} + \sqrt{\frac{H_*}{n}}\right) = \widetilde{O}\left(\frac{d}{n} + \sqrt{\frac{H_*}{n}}\right)$$

where $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

→ E > < E</p>

< < >> < </>

Smoothness

Theorem 2

Assume

- $f(\cdot)$ is nonnegative, L-smooth, and convex
- $F(\cdot)$ is Lipschitz continuous

Then, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{d\log n}{n} + \sqrt{\frac{H_*}{n}}\right) = \widetilde{O}\left(\frac{d}{n} + \sqrt{\frac{H_*}{n}}\right)$$

where $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Corollary 2

Under the above assumptions, when $H_* = O(d^2/n)$

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = \widetilde{O}\left(\frac{d}{n}\right)$$

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

< < >> < </>

.

Smoothness & Strong Convexity I

Theorem 3

Assume

- $f(\cdot)$ is nonnegative, L-smooth, and convex
- $F(\cdot)$ is Lipschitz continuous
- $F(\cdot)$ is λ -strongly convex

Then, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{d\log n}{n} + \frac{\kappa H_*}{n}\right) = \widetilde{O}\left(\frac{d}{n} + \frac{1}{\lambda n}\right)$$

where

$$\kappa = \frac{L}{\lambda}$$
 and $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

Statistical Machine Learning Stochastic Optimization

Risk Bounds of Empirical Risk Minimization

Smoothness & Strong Convexity II

Theorem 4

Assume

- $f(\cdot)$ is nonnegative, L-smooth, and convex
- $F(\cdot)$ is Lipschitz continuous
- $F(\cdot)$ is λ -strongly convex

When $n = \Omega(\kappa d \log n) = \widetilde{\Omega}(\kappa d)$, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2} + \frac{\kappa H_*}{n}\right)$$

where $\kappa = L/\lambda$ and $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Smoothness & Strong Convexity II

Theorem 4

Assume

- $f(\cdot)$ is nonnegative, L-smooth, and convex
- $F(\cdot)$ is Lipschitz continuous
- $F(\cdot)$ is λ -strongly convex

When $n = \Omega(\kappa d \log n) = \widetilde{\Omega}(\kappa d)$, with high probability, we have

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2} + \frac{\kappa H_*}{n}\right)$$

where $\kappa = L/\lambda$ and $H_* = F(\mathbf{w}_*) - r(\mathbf{w}_*)$.

Corollary 3

When
$$n = \widetilde{\Omega}(\kappa d)$$
 and $H_* = O(1/n)$,
 $F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) = O\left(\frac{1}{\lambda n^2}\right)$

Analysis I

■ Uniform Convergence of Functions (Traditional Analysis) $\sup_{\mathbf{w} \in \mathcal{W}} \left| F(\mathbf{w}) - \widehat{F}(\mathbf{w}) \right|$

• O(1/n) is the best rate

イロト イポト イヨト イヨト

Analysis I

■ Uniform Convergence of Functions (Traditional Analysis) $\sup_{\mathbf{w} \in \mathcal{W}} \left| F(\mathbf{w}) - \widehat{F}(\mathbf{w}) \right|$

• O(1/n) is the best rate

■ Uniform Convergence of Gradients (Our Analysis) $\sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\|$

• O(1/n) is the best rate

イロト イヨト イヨト イヨト

Analysis II

$$egin{aligned} & m{F}(\widehat{\mathbf{w}}) - m{F}(\mathbf{w}_*) + rac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_*\|^2 \ & \leq \left\|
abla m{F}(\widehat{\mathbf{w}}) -
abla \widehat{m{F}}(\widehat{\mathbf{w}})
ight\| \, \|\widehat{\mathbf{w}} - \mathbf{w}_*\| \end{aligned}$$

Analysis II

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_{*}) + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

$$\leq \left\| \nabla F(\widehat{\mathbf{w}}) - \nabla \widehat{F}(\widehat{\mathbf{w}}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

Analysis II

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_{*}) + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

$$\leq \left\| \nabla F(\widehat{\mathbf{w}}) - \nabla \widehat{F}(\widehat{\mathbf{w}}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq rac{c}{n} \|\widehat{\mathbf{w}} - \mathbf{w}_*\|$$

Analysis II

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_{*}) + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

$$\leq \left\| \nabla F(\widehat{\mathbf{w}}) - \nabla \widehat{F}(\widehat{\mathbf{w}}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \frac{c}{n} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\| \stackrel{2ab \leq a^{2} + b^{2}}{\leq} \frac{c^{2}}{2\lambda n^{2}} + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Analysis II

The Basic Idea

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_{*}) + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

$$\leq \left\| \nabla F(\widehat{\mathbf{w}}) - \nabla \widehat{F}(\widehat{\mathbf{w}}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \frac{c}{n} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2ab \leq a^{2} + b^{2}} \frac{c^{2}}{2\lambda n^{2}} + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

implying

$$\mathcal{F}(\widehat{\mathbf{w}}) - \mathcal{F}(\mathbf{w}_*) \leq rac{c^2}{2\lambda n^2} = O\left(rac{1}{\lambda n^2}
ight)$$

Analysis II

The Basic Idea

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_{*}) + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$

$$\leq \left\| \nabla F(\widehat{\mathbf{w}}) - \nabla \widehat{F}(\widehat{\mathbf{w}}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \sup_{\mathbf{w} \in \mathcal{W}} \left\| \nabla F(\mathbf{w}) - \nabla \widehat{F}(\mathbf{w}) \right\| \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|$$

$$\leq \frac{c}{n} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\| \stackrel{2ab \leq a^{2} + b^{2}}{\leq} \frac{c^{2}}{2\lambda n^{2}} + \frac{\lambda}{2} \|\widehat{\mathbf{w}} - \mathbf{w}_{*}\|^{2}$$
implying

$$F(\widehat{\mathbf{w}}) - F(\mathbf{w}_*) \leq rac{c^2}{2\lambda n^2} = O\left(rac{1}{\lambda n^2}
ight)$$

- Rademacher Complexity, Covering Number
- Concentration Inequality of Vectors
- Convexity, Smoothness

3 1 4 3

Outline

Introduction

- Statistical Machine Learning
- Stochastic Optimization

2 Related Work

3 Our Results

- Statistical Machine Learning
- Stochastic Optimization

4 Conclusions

<ロト < 回 > < 回 > < 回) < 回)

Conclusions

ERM/SAA for Statistical Machine Learning

$f(\cdot)$	$F(\cdot)$	Risk Bounds
Smooth	Strongly convex	$O(rac{1}{\lambda n^2}+rac{\kappa H_*}{n})$ when $n=\Omega(\kappa^2)$

ERM/SAA for Stochastic Optimization

Smooth Lip Smooth Lip		
Smooth Strong	schitz	$\widetilde{O}(\frac{d}{n}+\sqrt{\frac{H_*}{n}})$
	schitz ly Convex	$\begin{array}{ c c } \widetilde{O}(\frac{d}{n} + \frac{\kappa H_*}{n}) \\ O(\frac{1}{\lambda n^2} + \frac{\kappa H_*}{n}) \text{ when } n = \widetilde{\Omega}(\kappa d) \end{array}$

→ E → < E</p>

Future Work

- Optimality of Our Bounds
 - Is the risk bound tight?
 - Is the lower bound on n unavoidable?
 - Can the assumptions (e.g., strong convexity) be relaxed?
- Fast Rates for Stochastic Approximation (SA)
 - Stochastic gradient descent (SGD)
- Fast Rates for Non-convex Losses
 - Deep learning

Reference I

Thanks!

Bartlett, P. L. and Mendelson, S. (2002). Rademacher and gaussian complexities: risk bounds and structural results. *Journal of Machine Learning Research*, 3:463–482.

Huber, P. J. (1967).

The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pages 221–233.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan, K. (2009). Stochastic convex optimization.

In Proceedings of the 22nd Annual Conference on Learning Theory.

Srebro, N., Sridharan, K., and Tewari, A. (2010). Optimistic rates for learning with a smooth loss. *ArXiv e-prints*, arXiv:1009.3896.

Sridharan, K., Shalev-shwartz, S., and Srebro, N. (2009). Fast rates for regularized objectives.

In Advances in Neural Information Processing Systems 21, pages 1545–1552

イロト イポト イヨト イヨ

Reference II

Vapnik, V. N. and Chervonenkis, A. Y. (1971).

On the uniform convergence of relative frequencies of events to their probabilities.

Theory of Probability & Its Applications, 16(2):264–280.

Wald, A. (1949).

Note on the consistency of the maximum likelihood estimate. *The Annals of Mathematical Statistics*, 20(4):595–601.

Zhang, L., Yang, T., and Jin, R. (2017).

Empirical risk minimization for stochastic convex optimization: O(1/n)- and $O(1/n^2)$ -type of risk bounds.

In Proceedings of the 30th Annual Conference on Learning Theory, pages 1954–1979.

<ロト < 回 > < 回 > < 回) < 回)