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Online Learning

The Learning Process [Shalev-Shwartz, 2011]
1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·) : W 7→ R

3: Learner suffers loss ft(wt) and updates wt

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0

Cumulative Loss

Cumulative Loss=
T∑

t=1

ft(wt)
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Performance Measure
Regret

Regret(T ) =
T∑

t=1

ft(wt)

︸ ︷︷ ︸
Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸
Minimal Loss of Offline Learner
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Performance Measure
Regret

Regret(T ) =
T∑

t=1

ft(wt)

︸ ︷︷ ︸
Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸
Minimal Loss of Offline Learner

Convex Functions [Zinkevich, 2003]
Online Gradient Descent (OGD)

Regret(T ) = O
(√

T
)

Strongly Convex Functions [Hazan et al., 2007]
Online Gradient Descent (OGD)

Regret(T ) = O (logT )

Exponentially Concave Functions [Hazan et al., 2007]
Online Newton Step (ONS)

Regret(T ) = O (d logT )
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W

∑T
t=1 ft(w)

One of the decision is reasonably good during T rounds
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W

∑T
t=1 ft(w)

One of the decision is reasonably good during T rounds

Changing Environments

Different decisions will be good in different periods

Recommendation: the interests of a user could change

Stock market: the best stock changes over time
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Definitions
General Dynamic Regret [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Worst-case Dynamic Regret [Besbes et al., 2015]

D-Regret(w∗
1, . . . ,w

∗
T ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗
t )

=
T∑

t=1

ft(wt)−
T∑

t=1

min
w∈W

ft(w)

where w∗
t ∈ argminw∈W ft(w)
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Definitions
General Dynamic Regret [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Worst-case Dynamic Regret [Besbes et al., 2015]

D-Regret(w∗
1, . . . ,w

∗
T ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗
t )

=
T∑

t=1

ft(wt)−
T∑

t=1

min
w∈W

ft(w)

where w∗
t ∈ argminw∈W ft(w)

The Challenge

Sublinear Dynamic Regret is Impossible in General!
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Worst-case Dynamic Regret
Functional Variation [Besbes et al., 2015]

Suppose

FT =
T∑

t=1

sup
w∈W

|ft+1(w)− ft(w)| ≤ VT

Restarted Online Gradient Descent

D-Regret(w∗
1, . . . ,w

∗
T ) =





O
(

V 1/3
T T 2/3

)
, Convex

O
(
logT

√
VT T

)
, Strongly Convex
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Worst-case Dynamic Regret
Functional Variation [Besbes et al., 2015]

Suppose

FT =
T∑

t=1

sup
w∈W

|ft+1(w)− ft(w)| ≤ VT

Restarted Online Gradient Descent

D-Regret(w∗
1, . . . ,w

∗
T ) =





O
(

V 1/3
T T 2/3

)
, Convex

O
(
logT

√
VT T

)
, Strongly Convex

Path-length [Mokhtari et al., 2016]
Strongly Convex and Smooth Functions

D-Regret(w∗
1, . . . ,w

∗
T ) = O (P∗

T )

where

P∗
T =

T∑

t=2

‖w∗
t − w∗

t−1‖2
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Our Contributions
Path-length [Yang et al., 2016]

D-Regret(w∗
1, . . . ,w

∗
T ) =





O (P∗
T ) , Convex and Smooth

O
(√

TBT

)
, Convex,P∗

T ≤ BT

Squared Path-length [Zhang et al., 2017]

S∗
T =

T∑

t=1

‖w∗
t+1 − w∗

t ‖2
2

Strongly convex and smooth functions
Semi-strongly convex and smooth functions
Self-concordant functions

D-Regret(w∗
1, . . . ,w

∗
T ) = O (min(P∗

T ,S
∗
T ))
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Our Contributions
Path-length [Yang et al., 2016]

D-Regret(w∗
1, . . . ,w

∗
T ) =





O (P∗
T ) , Convex and Smooth

O
(√

TBT

)
, Convex,P∗

T ≤ BT

Squared Path-length [Zhang et al., 2017]

S∗
T =

T∑

t=1

‖w∗
t+1 − w∗

t ‖2
2

Strongly convex and smooth functions
Semi-strongly convex and smooth functions
Self-concordant functions

D-Regret(w∗
1, . . . ,w

∗
T ) = O (min(P∗

T ,S
∗
T ))

However, the worst-case dynamic regret is too pessimistic and
may overfit in stationary environments.
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General Dynamic Regret

General Dynamic Regret

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Static Regret:

D-Regret(u, . . . ,u) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(u)

Worst-case Dynamic Regret:

D-Regret(w∗
1, . . . ,w

∗
T ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗
t )
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General Dynamic Regret

General Dynamic Regret

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Static Regret:

D-Regret(u, . . . ,u) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(u)

Worst-case Dynamic Regret:

D-Regret(w∗
1, . . . ,w

∗
T ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗
t )

The general dynamic regret can handle both the stationary and
changing environments!
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Our Contributions

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

where

PT =
T∑

t=1

‖ut+1 − ut‖2

The bound automatically becomes tighter when PT is small
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Our Contributions

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

where

PT =
T∑

t=1

‖ut+1 − ut‖2

The bound automatically becomes tighter when PT is small

The First Lower Bound [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = Ω
(√

T (1 + PT )
)

An Optimal Algorithm—Ader [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)
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Our Contributions

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

where

PT =
T∑

t=1

‖ut+1 − ut‖2

The bound automatically becomes tighter when PT is small

The First Lower Bound [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = Ω
(√

T (1 + PT )
)

An Optimal Algorithm—Ader [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

Problem-dependent Algorithms [Zhao et al., 2020]
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Ader [Zhang et al., 2018a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert (OGD) for each discrete PT

Prediction with expert advice
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Ader [Zhang et al., 2018a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert (OGD) for each discrete PT

Prediction with expert advice

A Set of Experts
Online Gradient Descent (OGD) with η = 1
· · ·
Online Gradient Descent (OGD) with η = 1/

√
T

wη
t+1 = ΠW

[
wη

t − η∇ft(w
η
t )
]
, η ∈ H
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Ader [Zhang et al., 2018a]

The Basic Idea

Discretize the possible values of PT ∈ [0,TD]

Create one expert (OGD) for each discrete PT

Prediction with expert advice

A Set of Experts
Online Gradient Descent (OGD) with η = 1
· · ·
Online Gradient Descent (OGD) with η = 1/

√
T

wη
t+1 = ΠW

[
wη

t − η∇ft(w
η
t )
]
, η ∈ H

A Meta-algorithm
The exponentially weighted average forecaster (Hedge)

wt =
∑

η∈H

ωη
t wη

t , ωη
t+1 =

ωη
t e−αft (w

η

t )

∑
µ∈H ωµ

t e−αft (w
µ

t )

Aggregation
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Definitions
Weakly Adaptive Regret [Hazan and Seshadhri, 2007]

WA-Regret(T ) = max
[r ,s]⊆[T ]

(
s∑

t=r

ft(wt)− min
w∈W

s∑

t=r

ft(w)

)

The maximum regret over any interval
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Definitions
Weakly Adaptive Regret [Hazan and Seshadhri, 2007]

WA-Regret(T ) = max
[r ,s]⊆[T ]

(
s∑

t=r

ft(wt)− min
w∈W

s∑

t=r

ft(w)

)

The maximum regret over any interval

Strongly Adaptive Regret [Daniely et al., 2015]

SA-Regret(T , τ) = max
[r ,r+τ−1]⊆[T ]

(
r+τ−1∑

t=r

ft(wt)− min
w∈W

r+τ−1∑

t=r

ft(w)

)

The maximum regret over any interval of length τ
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Definitions
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(
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)
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(
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)

The maximum regret over any interval of length τ

f1(·), f2(·), . . . , fτ (·), fτ+1(·) , . . . , fs(·), fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Definitions
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Definitions
Weakly Adaptive Regret [Hazan and Seshadhri, 2007]

WA-Regret(T ) = max
[r ,s]⊆[T ]

(
s∑

t=r

ft(wt)− min
w∈W

s∑

t=r

ft(w)

)

The maximum regret over any interval

Strongly Adaptive Regret [Daniely et al., 2015]

SA-Regret(T , τ) = max
[r ,r+τ−1]⊆[T ]

(
r+τ−1∑

t=r

ft(wt)− min
w∈W

r+τ−1∑

t=r

ft(w)

)

The maximum regret over any interval of length τ
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τ∑

t=1
ft (wt )− min
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ft (w)

f1(·),

τ+1∑
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ft (wt )− min

w∈W
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t=2
ft (w)
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f2(·), . . . , fτ (·), fτ+1(·) , . . . , ︸ ︷︷ ︸

s+τ−1∑

t=s
ft (wt )− min

w∈W

s+τ−1∑

t=s
ft (w)

fs(·),

s+τ∑

t=s+1
ft (wt )− min

w∈W

s+τ∑

t=s+1
ft (w)

︷ ︸︸ ︷
fs+1(·), . . . , fs+τ−1(·), fs+τ (·) , . . .
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Existing Results
Follow the leading history (FLH) [Hazan and Seshadhri, 2007]

WA-Regret(T ) =





O
(

d log2 T
)
, Exponentially Concave

O
(√

T log3 T
)
, Convex

The O(

√
T log3 T ) bound is meaningless for short intervals
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Existing Results
Follow the leading history (FLH) [Hazan and Seshadhri, 2007]

WA-Regret(T ) =





O
(

d log2 T
)
, Exponentially Concave

O
(√

T log3 T
)
, Convex

The O(

√
T log3 T ) bound is meaningless for short intervals

Convex Functions

SA-Regret(T , τ) =





O
(√

τ logT
)
, [Daniely et al., 2015]

O
(√

τ logT
)
, [Jun et al., 2017a]
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Existing Results
Follow the leading history (FLH) [Hazan and Seshadhri, 2007]

WA-Regret(T ) =





O
(

d log2 T
)
, Exponentially Concave

O
(√

T log3 T
)
, Convex

The O(

√
T log3 T ) bound is meaningless for short intervals

Convex Functions

SA-Regret(T , τ) =





O
(√

τ logT
)
, [Daniely et al., 2015]

O
(√

τ logT
)
, [Jun et al., 2017a]

Convex and Smooth Functions [Jun et al., 2017b]

Regret
(
[r , s]

)
=

s∑

t=r

ft(wt)−
s∑

t=r

ft(w) = O


log s

√√√√
s∑

t=r

ft(w)
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Our Contributions

Strongly Convex Functions [Zhang et al., 2018b]

SA-Regret(T , τ) = O (log τ logT )

Efficient Algorithms for Adaptive Regret [Wang et al., 2018]

Reduce the # of gradient evaluations from O(log t) to 1
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Our Contributions

Strongly Convex Functions [Zhang et al., 2018b]

SA-Regret(T , τ) = O (log τ logT )

Efficient Algorithms for Adaptive Regret [Wang et al., 2018]

Reduce the # of gradient evaluations from O(log t) to 1

Convex and Smooth Functions [Zhang et al., 2019a]

Regret
(
[r , s]

)
= O



√√√√
(

s∑

t=r

ft(w)

)
log

s∑

t=1

ft(w) · log
s∑

t=r

ft(w)
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Our Contributions

Strongly Convex Functions [Zhang et al., 2018b]

SA-Regret(T , τ) = O (log τ logT )

Efficient Algorithms for Adaptive Regret [Wang et al., 2018]

Reduce the # of gradient evaluations from O(log t) to 1

Convex and Smooth Functions [Zhang et al., 2019a]

Regret
(
[r , s]

)
= O



√√√√
(

s∑

t=r

ft(w)

)
log

s∑

t=1

ft(w) · log
s∑

t=r

ft(w)




A Universal Algorithm–UMA [Zhang et al., 2019b]

Regret
(
[r , s]

)
=





O
(√

(s − r) log s
)
, Convex

O (log(s − r) logT )) , Strongly Convex

O (d log(s − r) logT )) , Exponentially Concave
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UMA [Zhang et al., 2019b]

Two Types of Experts
Eη
J

: ONS for exp-concave surrogate loss:

ℓηt (w) = −η〈∇ft(wt),wt − w〉+ η2〈∇ft(wt),wt − w〉2

Êη
J

: OGD for strongly convex surrogate loss:

ℓ̂ηt (w) = −η〈∇ft(wt),wt − w〉+ η2G2‖wt − w‖2
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UMA [Zhang et al., 2019b]

Two Types of Experts
Eη
J

: ONS for exp-concave surrogate loss:

ℓηt (w) = −η〈∇ft(wt),wt − w〉+ η2〈∇ft(wt),wt − w〉2

Êη
J

: OGD for strongly convex surrogate loss:

ℓ̂ηt (w) = −η〈∇ft(wt),wt − w〉+ η2G2‖wt − w‖2

A Set of Intervals: GC intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 8 9 10 11 · · ·
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] [ ] [ ] · · ·
I2 [ ] [ ] · · ·
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UMA [Zhang et al., 2019b]

Two Types of Experts
Eη
J

: ONS for exp-concave surrogate loss:

ℓηt (w) = −η〈∇ft(wt),wt − w〉+ η2〈∇ft(wt),wt − w〉2

Êη
J

: OGD for strongly convex surrogate loss:

ℓ̂ηt (w) = −η〈∇ft(wt),wt − w〉+ η2G2‖wt − w‖2

A Set of Intervals: GC intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 8 9 10 11 · · ·
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] [ ] [ ] · · ·
I2 [ ] [ J ] · · ·

{
Eη

J
, η ∈ S(|J |)

Êη

J
, η ∈ S(|J |)

S(τ) =
{

2−i

5DG

∣∣ i = 0,1, . . . ,
⌈

1
2 log2 τ

⌉}
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UMA [Zhang et al., 2019b]

Two Types of Experts
Eη
J

: ONS for exp-concave surrogate loss:

ℓηt (w) = −η〈∇ft(wt),wt − w〉+ η2〈∇ft(wt),wt − w〉2

Êη
J

: OGD for strongly convex surrogate loss:

ℓ̂ηt (w) = −η〈∇ft(wt),wt − w〉+ η2G2‖wt − w‖2

A Set of Intervals: GC intervals [Daniely et al., 2015]
t 1 2 3 4 5 6 7 8 9 10 11 · · ·
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] [ ] [ ] · · ·
I2 [ ] [ J ] · · ·

{
Eη

J
, η ∈ S(|J |)

Êη

J
, η ∈ S(|J |)

S(τ) =
{

2−i

5DG

∣∣ i = 0,1, . . . ,
⌈

1
2 log2 τ

⌉}

A Meta-algorithm
TWEA [van Erven and Koolen, 2016] with sleeping experts
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Outline

1 Introduction

2 Dynamic Regret

3 Adaptive Regret
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The Relationship between Two Metrics [Zhang et al., 2018b]

An Upper Bound of the Worst-case Dynamic Regret

D-Regret(w∗
1, . . . ,w

∗
T ) ≤ min

1≤τ≤T

(
SA-Regret(T , τ)T

τ
+ 2τFT

)

where
FT =

T∑

t=1

sup
w∈W

|ft+1(w)− ft(w)|
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The Relationship between Two Metrics [Zhang et al., 2018b]

An Upper Bound of the Worst-case Dynamic Regret

D-Regret(w∗
1, . . . ,w

∗
T ) ≤ min

1≤τ≤T

(
SA-Regret(T , τ)T

τ
+ 2τFT

)

where
FT =

T∑

t=1

sup
w∈W

|ft+1(w)− ft(w)|

Dynamic Regret of Strongly Adaptive Methods

D-Regret(w∗
1, . . . ,w

∗
T )

=





O
(
max

{√
T logT ,T 2/3F 1/3

T log1/3 T
})

, Convex

O
(
max

{
logT ,

√
TFT logT

})
, Strongly Convex

O
(

d ·max
{
logT ,

√
TFT logT

})
, Exponentially Concave

Do not need any prior knowledge of the functional variation
FT
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Minimizing Two Metrics Simultaneously [Zhang et al., 2020]

State-of-the-art Results
Dynamic Regret [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

Adaptive Regret [Jun et al., 2017a]

SA-Regret(T , τ) = O
(√

τ logT
)
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Minimizing Two Metrics Simultaneously [Zhang et al., 2020]

State-of-the-art Results
Dynamic Regret [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

Adaptive Regret [Jun et al., 2017a]

SA-Regret(T , τ) = O
(√

τ logT
)

Adaptive Online learning with Dynamic regret (AOD)

D-Regret(u1, . . . ,uT ) =O
(√

T (1 + PT ) logT
)

SA-Regret(T , τ) =O
(√

τ logT
)
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Minimizing Two Metrics Simultaneously [Zhang et al., 2020]

State-of-the-art Results
Dynamic Regret [Zhang et al., 2018a]

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)

Adaptive Regret [Jun et al., 2017a]

SA-Regret(T , τ) = O
(√

τ logT
)

Adaptive Online learning with Dynamic regret (AOD)

D-Regret(u1, . . . ,uT ) =O
(√

T (1 + PT ) logT
)

SA-Regret(T , τ) =O
(√

τ logT
)

Adaptive Online learning based on Ader (AOA)

D-Regret(u1, . . . ,uT ) =O(
√

T (logT + PT ))

SA-Regret(T , τ) =O
(√

τ logT
)

In fact, AOA can minimize the dynamic regret over any interval.
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Conclusion and Future Work

Conclusion

Dynamic Regret [Yang et al., 2016, Zhang et al., 2017,
Zhang et al., 2018a, Zhao et al., 2020, Zhang et al., 2020]

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

Adaptive Regret [Zhang et al., 2018b, Wang et al., 2018,
Zhang et al., 2019a, Zhang et al., 2019b]

SA-Regret(T , τ) = max
[r ,r+τ−1]⊆[T ]

(
r+τ−1∑

t=r

ft(wt)− min
w∈W

r+τ−1∑

t=r

ft(w)

)
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Conclusion and Future Work

Conclusion

Dynamic Regret [Yang et al., 2016, Zhang et al., 2017,
Zhang et al., 2018a, Zhao et al., 2020, Zhang et al., 2020]

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

Adaptive Regret [Zhang et al., 2018b, Wang et al., 2018,
Zhang et al., 2019a, Zhang et al., 2019b]

SA-Regret(T , τ) = max
[r ,r+τ−1]⊆[T ]

(
r+τ−1∑

t=r

ft(wt)− min
w∈W

r+τ−1∑

t=r

ft(w)

)

Future Work

General dynamic regret of strongly convex functions

General dynamic regret of exponentially concave functions

Adaptive Regret v.s. Dynamic Regret
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