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Background

Perceptron
[Rosenblatt, 1958]

Prediction with
Expert Advice
[Littlestone and Warmuth, 1989]

Online Convex
Optimization
[Zinkevich, 2003]

https://localiq.com/blog/what-happens-in-an-internet-minute-2021/
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

Zhang Smoothed Online Learning



Online Learning Smoothed Online Learning Conclusion Regret Dynamic Regret

Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do

4: end for
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Learner Adversary

A classifier

+

+

An example , × ±1

A loss ( ) = max 1 , 0
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Online Learning [Shalev-Shwartz, 2011]

Online learning is the process of answering a sequence of
questions given (maybe partial) knowledge of answers
to previous questions and possibly additional information.

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers loss ft(wt) and updates wt

4: end for

Cumulative Loss

Cumulative Loss=
T∑

t=1

ft(wt)
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Regret

Cumulative Loss

Cumulative Loss=
T∑

t=1

ft(wt)

Regret

Regret =

T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Offline Learner
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Regret

Cumulative Loss

Cumulative Loss=
T∑

t=1

ft(wt)

Regret

Regret =

T∑

t=1

ft(wt)

︸ ︷︷ ︸

Cumulative Loss of Online Learner

− min
w∈W

T∑

t=1

ft(w)

︸ ︷︷ ︸

Minimal Loss of Offline Learner

Hannan Consistent
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) = o(T ), with probability1
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Online Convex Optimization

Convex Functions [Zinkevich, 2003]

Online Gradient Descent (OGD)

Regret(T ) = O
(√

T
)

Strongly Convex Functions [Hazan et al., 2007]

Online Gradient Descent (OGD)

Regret(T ) = O (logT )

Exponentially Concave Functions [Hazan et al., 2007]

Online Newton Step (ONS)

Regret(T ) = O (d logT )
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W
∑T

t=1 ft(w)

One of the decision is reasonably good during T rounds
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Learning in Changing Environments

Regret → Static Regret

Regret(T ) =
T∑

t=1

ft(wt)− min
w∈W

T∑

t=1

ft(w) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(w∗)

where w∗ ∈ argminw∈W
∑T

t=1 ft(w)

One of the decision is reasonably good during T rounds

Changing Environments

Different decisions will be good in different periods

Recommendation: the interests of a user could change

Stock market: the best stock changes over time
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T · (1 + PT )
)

where PT =
∑T

t=1 ‖ut+1 − ut‖2
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Dynamic Regret

D-Regret(u1, . . . ,uT ) =

T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

Online Gradient Descent (OGD) [Zinkevich, 2003]

D-Regret(u1, . . . ,uT ) = O
(√

T · (1 + PT )
)

where PT =
∑T

t=1 ‖ut+1 − ut‖2

The First Lower Bound [Zhang et al., 2018]

D-Regret(u1, . . . ,uT ) = Ω
(√

T ·
√

1 + PT

)

An Optimal Algorithm—Ader [Zhang et al., 2018]

D-Regret(u1, . . . ,uT ) = O
(√

T ·
√

1 + PT

)
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching costm(wt ,wt−1)

4: end for
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching costm(wt ,wt−1)

4: end for

Applications

Stock market: the transaction fee

Data center: the wear-and-tear cost

Store relocation: the decoration cost
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Learner picks a decision wt ∈ W

Adversary chooses a function ft(·)
3: Learner suffers a hitting cost ft(wt),

and a switching costm(wt ,wt−1)

4: end for

Cumulative Loss (Hitting Cost + Switching Cost)

Cumulative Loss=
T∑

t=1

ft(wt) + m(wt ,wt−1)
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Smoothed Online Learning

The Learning Procedure

1: for t = 1, 2, . . . ,T do
2: Adversary chooses a function ft(·),

then Learner picks a decision wt ∈ W
3: Learner suffers a hitting cost ft(wt),

and a switching costm(wt ,wt−1)

4: end for

The Lookahead Setting

The problem is nontrivial even when the learner can observe
ft(·) before deciding wt .
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X
∑T

t=1

(
ft(ut) + m(ut ,ut−1)

)
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X
∑T

t=1

(
ft(ut) + m(ut ,ut−1)

)

Convex Body Chasing (CBC)

Select one point from convex bodies W1, . . . ,WT ⊆ R
d

Minimize the total movement
∑ ‖wt − wt−1‖
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X
∑T

t=1

(
ft(ut) + m(ut ,ut−1)

)

Convex Body Chasing (CBC)

Select one point from convex bodies W1, . . . ,WT ⊆ R
d

Minimize the total movement
∑ ‖wt − wt−1‖

Lower bound: Ω(
√

d) [Friedman and Linial, 1993]

Upper bound: O(min(d ,
√

d logT ))
[Argue et al., 2020, Sellke, 2020]
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Competitive Ratio
∑T

t=1

(
ft(wt) + m(wt ,wt−1)

)

minu0,u1,...,uT∈X
∑T

t=1

(
ft(ut) + m(ut ,ut−1)

)

Research on Competitive Ratio

Identify sufficient conditions and develop algorithms for

dimension-free competitive ratio in lookahead setting

Polyhedral functions [Chen et al., 2018, Lin et al., 2020]

Quadratic growth functions [Goel et al., 2019, Lin et al., 2020]

Strongly convex functions [Goel et al., 2019]

The function can not be too flat.
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Polyhedral Functions

Definition

A function f (·) : W 7→ R with minimizer v is α-polyhedral if

f (w)− f (v) ≥ α‖w − v‖, ∀w ∈ W.

-2 -1 0 1 2
0

1

2

3

4

Could be non-convex

Stochastic Network Optimization [Huang and Neely, 2011]

Geographical Load Balancing [Lin et al., 2012]
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State-of-the-Art
α-polyhedral and convex functions [Chen et al., 2018]

Online balanced descent: balancing the two costs by
iteratively projections
Competitive ratio: 3 + 8

α
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State-of-the-Art
α-polyhedral and convex functions [Chen et al., 2018]

Online balanced descent: balancing the two costs by
iteratively projections
Competitive ratio: 3 + 8

α

α-polyhedral functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: 1 + 2
α
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State-of-the-Art
α-polyhedral and convex functions [Chen et al., 2018]

Online balanced descent: balancing the two costs by
iteratively projections
Competitive ratio: 3 + 8

α

α-polyhedral functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: 1 + 2
α

α-polyhedral functions [Zhang et al., 2021]

Competitive ratio: max(1, 2
α
) for the naive approach
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State-of-the-Art
α-polyhedral and convex functions [Chen et al., 2018]

Online balanced descent: balancing the two costs by
iteratively projections
Competitive ratio: 3 + 8

α

α-polyhedral functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: 1 + 2
α

α-polyhedral functions [Zhang et al., 2021]

Competitive ratio: max(1, 2
α
) for the naive approach

A counterintuitive fact

It seems safe to ignore the switching cost.
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Quadratic Growth Functions

Definition

A function f (·) : W 7→ R with minimizer v is λ-quadratic growth if

f (w)− f (v) ≥ λ

2
‖w − v‖2, ∀w ∈ W.

-2 -1 0 1 2
0

1

2

3

4

Could be non-convex

A sufficient condition for linear convergence
[Drusvyatskiy and Lewis, 2018, Necoara et al., 2019]
Weaker than strong convexity [Hazan and Kale, 2011]
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State-of-the-Art
λ-quadratic growth functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: max(1 + 6
λ
, 4)
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State-of-the-Art
λ-quadratic growth functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: max(1 + 6
λ
, 4)

λ-quadratic growth functions [Zhang et al., 2021]

Competitive ratio: 1 + 4
λ

for the naive approach

The order is optimal [Goel et al., 2019]
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State-of-the-Art
λ-quadratic growth functions [Lin et al., 2020]

The naive approach which ignores the switching cost

wt = argmin
w∈W

ft(w)

Competitive ratio: max(1 + 6
λ
, 4)

λ-quadratic growth functions [Zhang et al., 2021]

Competitive ratio: 1 + 4
λ

for the naive approach

The order is optimal [Goel et al., 2019]

Discussions

It is also unclear how to utilize the switching cost.

But if convexity is also present, the switching cost plays an
important role.
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State-of-the-Art

λ-quadratic growth and quasiconvex functions [Goel et al., 2019]
Greedy Online Balanced
Descent (OBD)

Competitive ratio: O( 1√
λ
)

as λ → 0

xt−1

x′
t

vt

x∗
t

xt

(h1, h2 + l, 0, · · · , 0)

(h1, h2, 0, · · · , 0)

(h1(1−
√
m), h2(1−

√
m), 0, · · · , 0)(x, h2 − y, a3, · · · , ad)

D1

D2
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State-of-the-Art

λ-quadratic growth and quasiconvex functions [Goel et al., 2019]
Greedy Online Balanced
Descent (OBD)

Competitive ratio: O( 1√
λ
)

as λ → 0

xt−1

x′
t

vt

x∗
t

xt

(h1, h2 + l, 0, · · · , 0)

(h1, h2, 0, · · · , 0)

(h1(1−
√
m), h2(1−

√
m), 0, · · · , 0)(x, h2 − y, a3, · · · , ad)

D1

D2

λ-quadratic growth and convex functions [Zhang et al., 2021]

The greedy approach which minimizes the weighted sum

wt = argmin
w∈W

(

ft(w) +
γ

2
‖w − wt−1‖2

)

Competitive ratio: 1 + 2√
λ

The order is optimal [Goel et al., 2019]
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Dynamic Regret with Switching Cost

T∑

t=1

(
ft(wt) + m(wt ,wt−1)

)
−

T∑

t=1

(
ft(ut) + m(ut ,ut−1)

)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

The standard setting

The lookahead setting
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Dynamic Regret with Switching Cost

T∑

t=1

(
ft(wt) + m(wt ,wt−1)

)
−

T∑

t=1

(
ft(ut) + m(ut ,ut−1)

)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence

The standard setting

The lookahead setting

Dynamic Regret

D-Regret(u1, . . . ,uT ) =
T∑

t=1

ft(wt)−
T∑

t=1

ft(ut)

where u1, . . . ,uT ∈ W is an arbitrary comparator sequence
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D
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The Standard Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Smoothed Ader (SAder) [Zhang et al., 2021]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖2

Optimal according to the lower bound of dynamic regret
[Zhang et al., 2018]

The switching cost does not make the problem much
harder, although we need to modify the algorithm
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Lookahead SAder [Zhang et al., 2021]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖2
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Lookahead SAder [Zhang et al., 2021]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖2

The first Ω(
√

T ·
√

1 + PT ) lower bound for lookahead setting
[Zhang et al., 2021]

Our lookahead SAder is optimal
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The Lookahead Setting

Assumptions

1 All the functions ft ’s are convex over their domain W
2 The gradients of all functions are bounded by G
3 The diameter of the domain W is bounded by D

Lookahead SAder [Zhang et al., 2021]
T∑

t=1

(

ft(wt) + ‖wt − wt−1‖
)

−
T∑

t=1

ft(ut) = O
(√

T ·
√

1 + PT

)

where PT =
∑T

t=1 ‖ut+1 − ut‖2

An O(
√

T · (1 + PT )) Upper bound [Chen et al., 2018]

Suboptimal
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Conclusion and Future Work

Smoothed Online Learning

Minimize the sum of hitting cost and switching cost

Competitive ratio and dynamic regret with switching cost
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Conclusion and Future Work

Smoothed Online Learning

Minimize the sum of hitting cost and switching cost

Competitive ratio and dynamic regret with switching cost

Future Work

Lower bounds for Competitive ratio

Improve dynamic regret with switching cost

Minimize the two measures simultaneously

The relation with continual learning
T∑

t=1

ft(wt)
︸ ︷︷ ︸

Perform well on each task

+ ‖wt − wt−1‖
︸ ︷︷ ︸

Avoid catastrophic forgetting
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