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Statistical Machine Learning

Risk Minimization

Examples

SVM

Linear Regression
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Optimization Approaches I

I.  Sample Average Approximation (SAA)
I.  Empirical Risk Minimization (ERM)

Deterministic Optimization 
Gradient Descent, Mirror Descent, Newton's method

Stochastic Optimization
Stochastic Gradient Descent, Stochastic Mirror Descent
Variance Reduction (Johnson and Zhang, 2013; Zhang et al., 2013)
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Optimization Approaches II

II. Stochastic Approximation (SA)

Stochastic Gradient Descent (SGD)

The stochastic gradient is unbiased

At least in theory, we cannot reuse samples!
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Optimization Approaches II

II. Stochastic Approximation (SA)

Stochastic Gradient Descent (SGD)

Stochastic Mirror Descent (SMD) (Nemirovski et al., 2009)

SMD becomes SGD when 𝑣𝑣 𝐰𝐰 = 𝐰𝐰 2/2
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Statistical Machine Learning

Theoretical Guarantee
SAA and SA

Limitations

Lack robustness when 
distribution shifts

https://www.nannyml.com/blog/6-ways-to-address-data-distribution-shift
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Distributionally Robust Optimization (DRO)

 Formulation of DRO

A Vast Amount of Literature
Robust optimization (Scarf, 1958; Ben-Tal et al., 2009)
Asymptotic properties (Duchi and Namkoong, 2021)
Constructions of the neighborhood (Delage and Ye, 2010; 

Ben-Tal et al., 2013; Esfahani and Kuhn, 2018)
Optimization techniques (Namkoong and Duchi, 2016; Levy 

et al., 2020; Qi et al., 2021; Rafique et al., 2022)
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Group DRO (Sagawa et al. 2020)

 Formulation: Minimax Risk Optimization

A new way for learning from multiple distributions

Advantage: More Robust
A naïve approach
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Application: Fairness

Gender Classification (Buolamwini and Gebru 2018) 

Solution

High accuracy for 
lighter-skinned males, 
but worse accuracy for 
darker-skinned females

Optimizing performance 
across all groups

https://stanford-cs221.github.io/autumn2022-extra/modules/machine-
learning/group-dro.pdf
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Application: Federated Learning

A Single Model facing Multiple Distributions 

https://en.wikipedia.org/wiki/Federated_learning

Two Choices



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Outline

 Introduction
Related Work
 Stochastic Approximation of GDRO
Stochastic Mirror Descent

Non-oblivious Online Learning

GDRO with Imbalanced Data
Stochastic Mirror Descent with Non-uniform Sampling

Stochastic Mirror-Prox Algorithm with Mini-batches

Conclusion



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Related Work I

The Seminal Work of Sagawa et al. (ICLR 2020)

Introduce the problem of Group DRO
Apply stochastic mirror descent (SMD)

A suboptimal 𝑂𝑂(𝑚𝑚2 (log𝑚𝑚) /𝜖𝜖2) sample complexity
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Related Work II

The Work of Haghtalab et al. (NeurIPS 2022)

Try to improve the sample complexity by reusing samples

However, reusing samples introduces a dependence issue, 
making the analysis invalid.
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Related Work III

The Work of Soma et al. (2022)

Utilize online learning to reduce the sample complexity

Establish a nearly optimal 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2) complexity
Suffer a dependence issue, but can be fixed

Online Convex Optimization

Multi-armed Bandits (MAB)
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Minimax Risk Optimization

 Stochastic Convex-Concave Optimization

Apply stochastic mirror descent (Nemirovski et al., 2009) 

Equivalent

Our Result I (Zhang et al. NeurIPS 2023)
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Performance Measure

 Stochastic Convex-Concave Optimization

Optimization Error of

Meaningful for Group DRO
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Stochastic Mirror Descent (SMD)

 Stochastic Convex-Concave Optimization

Recall that

Stochastic Gradients at (𝐰𝐰𝑡𝑡,𝐪𝐪𝑡𝑡)

Draw 𝑚𝑚 samples 
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Stochastic Mirror Descent (SMD)

Update by mirror descent

where

Special cases:   
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Theoretical Guarantee

It requires 𝑚𝑚 samples per iteration 
The total sample complexity is 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
Lower bound Ω(𝑚𝑚/𝜖𝜖2) (Soma et al. 2022)

Credit to Nemirovski et al. (2009, §3.2)
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Our Result II (Zhang et al. NeurIPS 2023)

The algorithm of Sagawa et al. (ICLR 2020)
Apply stochastic mirror descent with 1 sample pe iteration

Converge slowly, and have an 𝑂𝑂(𝑚𝑚2 (log𝑚𝑚) /𝜖𝜖2) complexiy

Is it possible to reduce the number of samples
per iteration from 𝑚𝑚 to 1?

They are unbiased, but have very large variances.
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Two-player Games

 Stochastic Convex-Concave Optimization

Two-player Games (Rakhlin and Sridharan, 2013)
The 1st player minimizes convex functions

The 2nd player maximizes linear functions
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Non-oblivious Online Learning

The 1st player minimizes convex functions

Non-oblivious online convex optimization (OCO) with 
stochastic gradients

• We only have stochastic gradients of 
each online function ∑𝑖𝑖=1𝑚𝑚 𝑞𝑞𝑡𝑡,𝑖𝑖 𝑅𝑅𝑖𝑖(⋅)

Stochastic 
gradients

• The function ∑𝑖𝑖=1𝑚𝑚 𝑞𝑞𝑡𝑡,𝑖𝑖 𝑅𝑅𝑖𝑖(⋅) depends 
on previous solutions 𝐰𝐰1, … ,𝐰𝐰𝑡𝑡−1

Non-oblivious
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Non-oblivious Online Learning

The 1st player minimizes convex functions

Non-oblivious online convex optimization (OCO) with 
stochastic gradients

Apply Stochastic Mirror Descent

Small variance
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Non-oblivious Online Learning

The 2nd player maximizes linear functions

Non-oblivious multi-armed bandits (MAB) with stochastic 
rewards

http://www.apsipa.org/proceedings/2021/pdfs/0001899.pdf
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Non-oblivious Online Learning

The 2nd player maximizes linear functions

Non-oblivious multi-armed bandits (MAB) with stochastic 
rewards

Apply Exp3-IX for non-oblivious MAB (Neu, 2015)

Bias-Variance 
tradeoff
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Theoretical Guarantee

It requires 1 samples per iteration 
The total sample complexity is 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
Lower bound Ω(𝑚𝑚/𝜖𝜖2) (Soma et al. 2022)
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Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups

 SMD(1), 

(Sagawa et al. ICLR 2020)

 SMD(𝑚𝑚),

Our Alg. 1

 Online(1),

Our Alg. 2
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Experiments: Sample Complexity

Adult dataset, Logistic loss, 6 Groups

 SMD(1), 

(Sagawa et al. ICLR 2020)

 SMD(𝑚𝑚),

Our Alg. 1

 Online(1),

Our Alg. 2
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Imbalanced datasets

 iNaturalist dataset, consisting of 859,000 images from 
over 5,000 different species (Horn et al, 2018)

Distribution of training images per species
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Stochastic Mirror Descent (SMD)

 Stochastic Convex-Concave Optimization

Recall that

Stochastic Gradients at (𝐰𝐰𝑡𝑡,𝐪𝐪𝑡𝑡)

Draw 𝑚𝑚 samples 

It draws the
same number
of samples
from every
distribution.
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GDRO Under Imbalanced Setting 

𝑛𝑛𝑖𝑖 be the number of samples can be drawn from 𝒫𝒫𝑖𝑖

A naive baseline: running SMD for 𝑛𝑛𝑚𝑚 rounds

𝑛𝑛𝑚𝑚
rounds
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Limitations of Baseline

1. The optimization error is determined by 𝑛𝑛𝑚𝑚
According to Theorem 1, we have

2. A large amount of samples are wasted 
For distribution 𝒫𝒫1,     𝑛𝑛1 − 𝑛𝑛𝑚𝑚 samples are wasted
For distribution 𝒫𝒫2,     𝑛𝑛2 − 𝑛𝑛𝑚𝑚 samples are wasted

For distribution 𝒫𝒫𝑚𝑚−1, 𝑛𝑛𝑚𝑚−1 − 𝑛𝑛𝑚𝑚 samples are wasted

……

Barrel Effect
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Applying Non-uniform Sampling
Run 𝑛𝑛1 iterations, and draw a sample from 𝒫𝒫𝑖𝑖 with probability 
𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑛𝑛1

Updating according to SMD
Construct stochastic gradients

𝐶𝐶𝑡𝑡 is the set of indexes of selected distributions

Our Result III (Zhang et al. NeurIPS 2023)

It yields very slow
convergence due
to the large
variance caused by
1/𝑝𝑝𝑚𝑚 = 𝑛𝑛1/𝑛𝑛𝑚𝑚.
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Applying Non-uniform Sampling
Run 𝑛𝑛1 iterations, and draw a sample from 𝒫𝒫𝑖𝑖 with probability 
𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑛𝑛1

Updating according to SMD
Construct stochastic gradients

𝐶𝐶𝑡𝑡 is the set of indexes of selected distributions

Our Result III (Zhang et al. NeurIPS 2023)
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A Weighted GDRO Problem

The more the number of samples, the larger the weights
Updating according to SMD
Construct stochastic gradients

𝐶𝐶𝑡𝑡 is the set of indexes of selected distributions

Our Result III (Zhang et al. NeurIPS 2023)
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Advantages of Weighted GDRO 

A Weighted GDRO Problem

Optimization Error of 

Risk of Each Distribution

More  
Samples

Larger 
Weights Faster Rates 
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Theoretical Guarantee

The 𝑂𝑂 𝑛𝑛1 log 𝑚𝑚
𝑛𝑛𝑖𝑖

rate is better than Baseline’s 𝑂𝑂 log𝑚𝑚
𝑛𝑛𝑚𝑚

rate 

when 𝑛𝑛𝑖𝑖 ≥ 𝑛𝑛1𝑛𝑛𝑚𝑚

For distributions 𝒫𝒫1, the rate 𝑂𝑂 log𝑚𝑚
𝑛𝑛1

is nearly optimal

Distribution-
dependent
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Our Result IV (Zhang et al. NeurIPS 2023)

Applying Mini-batches
Run 𝑛𝑛𝑚𝑚 iterations, and draw 𝑛𝑛𝑖𝑖/𝑛𝑛𝑚𝑚 sample from 𝒫𝒫𝑖𝑖

 Stochastic Gradients with Elements Having Small 
Variance
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Two Challenges

1. The performance of SMD does not depend on variance
 Stochastic Mirror-Prox Algorithm (SMPA) (Juditsky et 

al., 2011)
Basically, it performs SMD twice in each iteration
The convergence rate depends on the variance

2. The whole gradient still have a large variance
A Weighted GDRO Problem

Set larger weights for distributions with smaller variance 
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Advantages of Weighted GDRO 

A Weighted GDRO Problem

Optimization Error of 

Risk of Each Distribution

More  
Samples

Smaller
Variances

Larger 
Weights Faster Rates 
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Theoretical Guarantee

A fast 𝑂𝑂 log 𝑚𝑚
𝑛𝑛𝑖𝑖

rate for distributions 𝒫𝒫𝑖𝑖 such that 𝑛𝑛𝑖𝑖 ≤ 𝑛𝑛𝑚𝑚2

In contrast, the rate of Baseline is 𝑂𝑂 log 𝑚𝑚
𝑛𝑛𝑚𝑚

A fast 𝑂𝑂 log 𝑚𝑚
𝑛𝑛𝑚𝑚

rate for distributions 𝒫𝒫𝑖𝑖 such that 𝑛𝑛𝑖𝑖 ≥ 𝑛𝑛𝑚𝑚2

There exists a performance limit

Distribution
-dependent
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Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups
 # of Samples: 26656, 11518, 1780, 1720, 998, and 364

𝒫𝒫1 SMD(𝑚𝑚), 

Our Alg. 1

 SMDr ,

Our Alg. 3

 SMPAm ,

Our Alg. 4
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Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups
 # of Samples: 26656, 11518, 1780, 1720, 998, and 364

𝒫𝒫2 SMD(𝑚𝑚), 

Our Alg. 1

 SMDr ,

Our Alg. 3

 SMPAm ,

Our Alg. 4



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups
 # of Samples: 26656, 11518, 1780, 1720, 998, and 364

 SMD(𝑚𝑚), 

Our Alg. 1

 SMDr ,

Our Alg. 3

 SMPAm ,

Our Alg. 4

𝒫𝒫5
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Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups
 # of Samples: 26656, 11518, 1780, 1720, 998, and 364

𝒫𝒫6 SMD(𝑚𝑚), 

Our Alg. 1

 SMDr ,

Our Alg. 3

 SMPAm ,

Our Alg. 4
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Conclusion

GDRO——Minimax Risk Optimization

1. Stochastic Mirror Descent, 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
2. Non-oblivious Online Learning, 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)

GDRO with Imbalanced Data

1. Stochastic Mirror Descent with Non-uniform Sampling
2. Stochastic Mirror-Prox Algorithm with Mini-batches
Distribution-dependent Convergence Rates
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Future Work

More Investigations of the Imbalanced Scenario
Understand the red terms below

Minimax Excess Risk Optimization (MERO) (Agarwal 
and Zhang, 2022)

Subtracting the intrinsic difficulty of each distribution
Efficient stochastic algorithms (Zhang et al. 2023)



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Reference I

 Lijun Zhang, Peng Zhao, Zhen-Hua Zhuang, Tianbao Yang, and Zhi-Hua Zhou. Stochastic 
Approximation Approaches to Group Distributionally Robust Optimization. In In Advances 
in Neural Information Processing Systems 36 (NeurIPS), 2023.

 Lijun Zhang and Wei-Wei Tu. Efficient Stochastic Approximation of Minimax Excess Risk 
Optimization. ArXiv e-prints, arXiv:2306.00026, 2023.

 Herbert Scarf. A min-max solution of an inventory problem. Studies in the Mathematical 
Theory of Inventory and Production, pages 201–209, 1958.

 Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization. 
Princeton University Press, 2009.

 A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation 
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 
2009.

 Erick Delage and Yinyu Ye. Distributionally robust optimization under moment uncertainty 
with application to data-driven problems. Operations Research, 58(3):595–612, 2010.

 Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust 
optimization using the Wasserstein metric: performance guarantees and tractable 
reformulations. Mathematical Programming, 171:115–166, 2018.



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Reference II

 Daniel Levy, Yair Carmon, John C. Duchi, and Aaron Sidford. Large-scale methods for 
distributionally robust optimization. In Advances in Neural Information Processing 
Systems 33 (NeurIPS), pages 8847–8860, 2020.

 John C. Duchi and Hongseok Namkoong. Learning models with uniform performance 
via distributionally robust optimization. The Annals of Statistics, 49(3):1378 – 1406, 
2021.

 Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities 
in Commercial Gender Classification. In Proceedings of the 1st Conference on Fairness, 
Accountability and Transparency, pages 77 – 91, 2018.

 Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, and Tianbao Yang. An online method for a class 
of distributionally robust optimization with non-convex objectives. In Advances in 
Neural Information Processing Systems 34 (NeurIPS), pages 10067–10080, 2021.

 Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex-concave 
min-max optimization: Provable algorithms and applications in machine learning. 
Optimization Methods and Software, 37(3):1087–1121, 2022.

 Tasuku Soma, Khashayar Gatmiry, and Stefanie Jegelka. Optimal algorithms for group 
distributionally robust optimization and beyond. ArXiv e-prints, arXiv:2212.13669, 2022.



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Reference III

 Nika Haghtalab, Michael I. Jordan, and Eric Zhao. On-demand sampling: Learning 
optimally from multiple distributions. In Advances in Neural Information Processing 
Systems 35 (NeurIPS), pages 406–419, 2022.

 Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs 
Rennen. Robust solutions of optimization problems affected by uncertain probabilities. 
Management Science, 59(2):341–357, 2013.

 Hongseok Namkoong and John C. Duchi. Stochastic gradient methods for 
distributionally robust optimization with 𝑓𝑓-divergences. In Advances in Neural 
Information Processing Systems 29 (NIPS), pages 2216–2224, 2016.

 Gergely Neu. Explore no more: Improved high-probability regret bounds for non-
stochastic bandits. In Advances in Neural Information Processing Systems 28 (NIPS), 
pages 3168–3176, 2015.

 Alekh Agarwal and Tong Zhang. Minimax regret optimization for robust machine 
learning under distribution shift. In Proceedings of 35th Conference on Learning Theory 
(COLT), pages 2704–2729, 2022.

 Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities 
with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

Reference IV

 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. 
Distributionally robust neural networks for group shifts: On the importance of 
regularization for worst-case generalization. In International Conference on Learning 
Representations (ICLR), 2020.

 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive 
variance reduction. In Advances in Neural Information Processing Systems 26 (NIPS), 
pages 315–323, 2013.

 Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition 
number independent access of full gradients. In Advance in Neural Information 
Processing Systems 26 (NIPS), pages 980–988, 2013.

 Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with 
predictable sequences. In Advances in Neural Information Processing Systems 26 (NIPS), 
pages 3066–3074, 2013.

 Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig 
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and 
detection dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 8769–8778, 2018


	Group Distributionally Robust Optimization
	Outline
	Statistical Machine Learning
	Optimization Approaches I
	Optimization Approaches II
	Optimization Approaches II
	Statistical Machine Learning
	Distributionally Robust Optimization (DRO)
	Group DRO (Sagawa et al. 2020)
	Application: Fairness
	Application: Federated Learning
	Outline
	Related Work I
	Related Work II
	Related Work III
	Outline
	Our Result I (Zhang et al. NeurIPS 2023)
	Performance Measure
	Stochastic Mirror Descent (SMD)
	Stochastic Mirror Descent (SMD)
	Theoretical Guarantee
	Outline
	Our Result II (Zhang et al. NeurIPS 2023)
	Two-player Games
	Non-oblivious Online Learning
	Non-oblivious Online Learning
	Non-oblivious Online Learning
	Non-oblivious Online Learning
	Theoretical Guarantee
	Experiments: Convergence Rate
	Experiments: Sample Complexity
	Outline
	Imbalanced datasets
	Stochastic Mirror Descent (SMD)
	GDRO Under Imbalanced Setting 
	Limitations of Baseline
	Outline
	Our Result III (Zhang et al. NeurIPS 2023)
	Our Result III (Zhang et al. NeurIPS 2023)
	Our Result III (Zhang et al. NeurIPS 2023)
	Advantages of Weighted GDRO 
	Theoretical Guarantee
	Outline
	Our Result IV (Zhang et al. NeurIPS 2023)
	Two Challenges
	Advantages of Weighted GDRO 
	Theoretical Guarantee
	Experiments: Convergence Rate
	Experiments: Convergence Rate
	Experiments: Convergence Rate
	Experiments: Convergence Rate
	Outline
	Conclusion
	Future Work
	Reference I
	Reference II
	Reference III
	Reference IV

