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Statistical Machine Learning

Risk Minimization

Examples

SVM

Linear Regression
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Optimization Approaches I

I.  Sample Average Approximation (SAA)
I.  Empirical Risk Minimization (ERM)

Deterministic Optimization 
Gradient Descent, Mirror Descent, Newton's method

Stochastic Optimization
Stochastic Gradient Descent, Stochastic Mirror Descent
Variance Reduction (Johnson and Zhang, 2013; Zhang et al., 2013)
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Optimization Approaches II

II. Stochastic Approximation (SA)

Stochastic Gradient Descent (SGD)

The stochastic gradient is unbiased

At least in theory, we cannot reuse samples!
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Optimization Approaches II

II. Stochastic Approximation (SA)

Stochastic Gradient Descent (SGD)

Stochastic Mirror Descent (SMD) (Nemirovski et al., 2009)

SMD becomes SGD when 𝑣𝑣 𝐰𝐰 = 𝐰𝐰 2/2
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Statistical Machine Learning

Theoretical Guarantee
SAA and SA

Limitations

Lack robustness when 
distribution shifts

https://www.nannyml.com/blog/6-ways-to-address-data-distribution-shift
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Distributionally Robust Optimization (DRO)

 Formulation of DRO

A Large Amount of Literature
Robust optimization (Scarf, 1958; Ben-Tal et al., 2009)
Asymptotic properties (Duchi and Namkoong, 2021)
Constructions of the neighborhood (Delage and Ye, 2010; 

Ben-Tal et al., 2013; Esfahani and Kuhn, 2018)
Optimization techniques (Namkoong and Duchi, 2016; Levy 

et al., 2020; Qi et al., 2021; Rafique et al., 2022)
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Group DRO (Sagawa et al. 2020)

 Formulation: Minimax Risk Optimization

A new way for learning from multiple distributions

Advantage: More Robust
A naïve approach
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Application: Fairness

Gender Classification (Buolamwini and Gebru 2018) 

Solution

High accuracy for 
lighter-skinned males, 
but worse accuracy for 
darker-skinned females

Optimizing performance 
across all groups

https://stanford-cs221.github.io/autumn2022-extra/modules/machine-
learning/group-dro.pdf
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Related Work I

The Seminal Work of Sagawa et al. (ICLR 2020)

Introduce the problem of Group DRO
Apply stochastic mirror descent (SMD)

A suboptimal 𝑂𝑂(𝑚𝑚2 (log𝑚𝑚) /𝜖𝜖2) sample complexity
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Related Work II

The Work of Haghtalab et al. (NeurIPS 2022)

Try to improve the sample complexity by reusing samples

However, reusing samples introduces a dependence issue, 
making the analysis invalid.
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Related Work III

The Work of Soma et al. (2022)

Utilize online learning to reduce the sample complexity

Establish a nearly optimal 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2) complexity
Suffer a dependence issue, but can be fixed

Online Convex Optimization

Multi-armed Bandits (MAB)
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Minimax Risk Optimization

 Stochastic Convex-Concave Optimization

Apply stochastic mirror descent (Nemirovski et al., 2009) 

Equivalent

Our Result I (Zhang et al. NeurIPS 2023)
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Performance Measure

 Stochastic Convex-Concave Optimization

Optimization Error of

Meaningful for Group DRO
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Stochastic Mirror Descent (SMD)

 Stochastic Convex-Concave Optimization

Recall that

Stochastic Gradients at (𝐰𝐰𝑡𝑡,𝐪𝐪𝑡𝑡)

Draw 𝑚𝑚 samples 
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Stochastic Mirror Descent (SMD)

Update by mirror descent

where

Special cases:   

SGD:

Hedge:
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Theoretical Guarantee

It requires 𝑚𝑚 samples per iteration 
The total sample complexity is 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
Lower bound Ω(𝑚𝑚/𝜖𝜖2) (Soma et al. 2022)

Credit to Nemirovski et al. (2009, §3.2)
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Our Result II (Zhang et al. NeurIPS 2023)

The algorithm of Sagawa et al. (ICLR 2020)
Apply stochastic mirror descent with 1 sample pe iteration

Converge slowly, and have an 𝑂𝑂(𝑚𝑚2 (log𝑚𝑚) /𝜖𝜖2) complexiy

Is it possible to reduce the number of samples
per iteration from 𝑚𝑚 to 1?

They are unbiased, but have very large variances.
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Two-player Games

 Stochastic Convex-Concave Optimization

Two-player Games (Rakhlin and Sridharan, 2013)
The 1st player minimizes convex functions

The 2nd player maximizes linear functions
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Non-oblivious Online Learning

The 1st player minimizes convex functions

Non-oblivious online convex optimization (OCO) with 
stochastic gradients

Distinguish our method from that of Soma et al. (2022)

• We only have stochastic gradients of 
each online function ∑𝑖𝑖=1𝑚𝑚 𝑞𝑞𝑡𝑡,𝑖𝑖 𝑅𝑅𝑖𝑖(⋅)

Stochastic 
gradients

• The function ∑𝑖𝑖=1𝑚𝑚 𝑞𝑞𝑡𝑡,𝑖𝑖 𝑅𝑅𝑖𝑖(⋅) depends 
on previous solutions 𝐰𝐰1, … ,𝐰𝐰𝑡𝑡−1

Non-oblivious
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Non-oblivious Online Learning

The 1st player minimizes convex functions

Non-oblivious online convex optimization (OCO) with 
stochastic gradients

Apply Stochastic Mirror Descent

Small variance

The analysis is significantly different from the traditional SMD
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Non-oblivious Online Learning

The 2nd player maximizes linear functions

Non-oblivious multi-armed bandits (MAB) with stochastic 
rewards

http://www.apsipa.org/proceedings/2021/pdfs/0001899.pdf
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Non-oblivious Online Learning

The 2nd player maximizes linear functions

Non-oblivious multi-armed bandits (MAB) with stochastic 
rewards

Apply Exp3-IX for non-oblivious MAB (Neu, 2015)

Bias-Variance 
tradeoff
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Theoretical Guarantee

It requires 1 samples per iteration 
The total sample complexity is 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
Lower bound Ω(𝑚𝑚/𝜖𝜖2) (Soma et al. 2022)
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Experiments: Convergence Rate

Adult dataset, Logistic loss, 6 Groups

 SMD(1), 

(Sagawa et al. ICLR 2020)

 SMD(𝑚𝑚),

Our Alg. 1

 Online(1),

Our Alg. 2
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Experiments: Sample Complexity

Adult dataset, Logistic loss, 6 Groups

 SMD(1), 

(Sagawa et al. ICLR 2020)

 SMD(𝑚𝑚),

Our Alg. 1

 Online(1),

Our Alg. 2
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One limitation of GDRO

Group DRO —— Minimax Risk Optimization

A Potential Issue of GDRO
The max operator is sensitive to outliers
The maximal risk can be easily dominated by 1 distribution 

Suppose distribution 𝒫𝒫1 contains high levels of noise

The remaining 𝑚𝑚− 1 distributions are essentially ignored
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A Variant of GDRO——MERO

Group DRO —— Minimax Risk Optimization

Minimax Excess Risk Optimization (MERO) (Agarwal 
and Zhang, 2022)

Subtract the intrinsic difficulty of each distribution
Suppress the effect of heterogeneous noise 



http://lamda.nju.edu.cn

https://cs.nju.edu.cn/zlj

The Optimization of MERO

Minimax Excess Risk Optimization (MERO)

Only exist an inefficient algorithm for empirical MERO 
(Agarwal and Zhang, 2022)

 Stochastic Convex-Concave Optimization

But 𝑅𝑅𝑖𝑖∗ is unknown
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Our Result I (Zhang et al. ICML 2024)

A Multi-Stage Stochastic Approximation Approach
We first estimate the value of 𝑅𝑅𝑖𝑖∗, and then solve an 

approximate problem by replacing 𝑅𝑅𝑖𝑖∗ with its estimation

Stage 1: Minimizing each risk 𝑅𝑅𝑖𝑖(⋅)

Runing SMD for 𝑇𝑇 iterations
A solution �𝐰𝐰(𝑖𝑖) such that with probability 1 − 𝛿𝛿

By union bound, 
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Our Result I (Zhang et al. ICML 2024)

Stage 2: Estimating the value of 𝑅𝑅𝑖𝑖(�𝐰𝐰(𝑖𝑖))
Draw 𝑇𝑇 samples 𝐳𝐳1

(𝑖𝑖), … , 𝐳𝐳𝑇𝑇
(𝑖𝑖) from distribution 𝒫𝒫𝑖𝑖

Calculate the sample average

By concentration inequalities and union bound

As a result
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Our Result I (Zhang et al. ICML 2024)

Stage 3: Optimizing an approximate problem

SMD can be directly applied for 𝑇𝑇 iterations

Theoretical Guarantee

The total sample complexity is 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
It is not an anytime algorithm, because 𝑇𝑇 must be given
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Our Result II (Zhang et al. ICML 2024)

 Stochastic Convex-Concave Optimization

An Anytime Stochastic Approximation Approach
Alternate between estimating 𝑅𝑅𝑖𝑖∗ and optimizing the minimax
1. Minimizing each risk 𝑅𝑅𝑖𝑖(⋅) by SMD for one step
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 Stochastic Convex-Concave Optimization

An Anytime Stochastic Approximation Approach
Alternates between estimating 𝑅𝑅𝑖𝑖∗ and optimizing the minimax
2. Minimizing the problem below by SMD for one step

The difference between 𝑅𝑅𝑖𝑖∗ and 𝑅𝑅𝑖𝑖(�𝐰𝐰𝑡𝑡
(𝑖𝑖)) is under-control

Our Result II (Zhang et al. ICML 2024)
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Updating 𝐰𝐰𝑡𝑡 (the same as before)

Updating 𝐪𝐪𝑡𝑡 (different with before)

 It is a biased gradient for the original MERO problem

Our Result II (Zhang et al. ICML 2024)
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Theoretical Guarantee

The convergence rate is almost the same as GDRO
In the analysis, we need to deal with the biased gradient.
It can return a solution at any round

 Previous two SA approaches for GDRO 
Can be easily modified to be anytime
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Experiments: GDRO v.s. MERO

 Synthetic dataset, 6 distributions with different noise

GDRO performs better on distributions with higher noise

𝒫𝒫1 𝒫𝒫2 𝒫𝒫3

𝒫𝒫4 𝒫𝒫5 𝒫𝒫6
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Conclusion

GDRO——Minimax Risk Optimization

1. Stochastic Mirror Descent, 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
2. Non-oblivious Online Learning, 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)

MERO—— Minimax Excess Risk Optimization

1. A Multi-Stage SA Approach, 𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
2. An Anytime SA Approach , �𝑂𝑂(𝑚𝑚 (log𝑚𝑚) /𝜖𝜖2)
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Future Work

 Investigate the Imbalanced setting
Number of samples from different distributions are different
Weighted GDRO/MERO (Zhang et al. NeurIPS 2023, ICML

2024)

 Investigate the Empirical GDRO/MERO (Yu et al. ICML
2024)

Apply to real-world problems (e.g., training big model)
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