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Abstract
Document summarization is of great value to many
real world applications, such as snippets generation for
search results and news headlines generation. Tradition-
ally, document summarization is implemented by ex-
tracting sentences that cover the main topics of a doc-
ument with a minimum redundancy. In this paper, we
take a different perspective from data reconstruction and
propose a novel framework named Document Summa-
rization based on Data Reconstruction (DSDR). Specif-
ically, our approach generates a summary which consist
of those sentences that can best reconstruct the original
document. To model the relationship among sentences,
we introduce two objective functions: (1) linear recon-
struction, which approximates the document by linear
combinations of the selected sentences; (2) nonnega-
tive linear reconstruction, which allows only additive,
not subtractive, linear combinations. In this framework,
the reconstruction error becomes a natural criterion for
measuring the quality of the summary. For each objec-
tive function, we develop an efficient algorithm to solve
the corresponding optimization problem. Extensive ex-
periments on summarization benchmark data sets DUC
2006 and DUC 2007 demonstrate the effectiveness of
our proposed approach.

Introduction
With the explosive growth of the Internet, people are over-
whelmed by a large number of accessible documents. Sum-
marization can represent the document with a short piece
of text covering the main topics, and help users sift through
the Internet, catch the most relevant document, and filter out
redundant information. So document summarization has be-
come one of the most important research topics in the natural
language processing and information retrieval communities.

In recent years, automatic summarization has been ap-
plied broadly in varied domains. For example, search en-
gines can provide users with snippets as the previews of
the document contents (Turpin et al. 2007; Huang, Liu, and
Chen 2008; Cai et al. 2004; He et al. 2007). News sites usu-
ally describe hot news topics in concise headlines to facili-
tate browsing. Both the snippets and headlines are specific
forms of document summary in practical applications.
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Most of the existing generic summarization approaches
use a ranking model to select sentences from a candidate set
(Brin and Page 1998; Kleinberg 1999; Wan and Yang 2007).
These methods suffer from a severe problem that top ranked
sentences usually share much redundant information. Al-
though there are some methods (Conroy and O’leary 2001;
Park et al. 2007; Shen et al. 2007) trying to reduce the redun-
dancy, selecting sentences which have both good coverage
and minimum redundancy is a non-trivial task.

In this paper, we propose a novel summarization method
from the perspective of data reconstruction. As far as we
know, our approach is the first to treat the document sum-
marization as a data reconstruction problem. We argue that
a good summary should consist of those sentences that can
best reconstruct the original document. Therefore, the re-
construction error becomes a natural criterion for measur-
ing the quality of summary. We propose a novel framework
called Document Summarization based on Data Reconstruc-
tion (DSDR) which finds the summary sentences by mini-
mizing the reconstruction error. DSDR firstly learns a recon-
struction function for each candidate sentence of an input
document and then obtains the error formula by that func-
tion. Finally it obtains an optimal summary by minimizing
the reconstruction error. From the geometric interpretation,
DSDR tends to select sentences that span the intrinsic sub-
space of candidate sentence space so that it is able to cover
the core information of the document.

To model the relationship among sentences, we discuss
two kinds of reconstruction. The first one is linear recon-
struction, which approximates the document by linear com-
binations of the selected sentences. Optimizing the corre-
sponding objective function is achieved through a greedy
method which extracts sentences sequentially. The second
one is non-negative linear reconstruction, which allows only
additive, not subtractive, combinations among the selected
sentences. Previous studies have shown that there is psycho-
logical and physiological evidence for parts-based represen-
tation in the human brain (Palmer 1977; Wachsmuth, Oram,
and Perrett 1994; Cai et al. 2011). Naturally, a document
summary should consist of the parts of sentences. With the
nonnegative constraints, our method leads to parts-based re-
construction so that no redundant information needs to be
subtracted from the combination. We formulate the nonneg-
ative linear reconstruction as a convex optimization problem
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and design a multiplicative updating algorithm which guar-
antees converging monotonically to a global minima.

Extensive experiments on summarization benchmark data
sets DUC 2006 and DUC 2007 demonstrate the effective-
ness of our proposed approach.

Related work
Recently, lots of extractive document summarization meth-
ods have been proposed. Most of them involve assigning
salient scores to sentences of the original document and
composing the result summary of the top sentences with the
highest scores. The computation rules of salient scores can
be categorized into three groups (Hu, Sun, and Lim 2008):
feature based measurements, lexical chain based measure-
ments and graph based measurements. In (Wang et al. 2008),
the semantic relations of terms in the same semantic role
are discovered by using the WordNet (Miller 1995). A tree
pattern expression for extracting information from syntac-
tically parsed text is proposed in (Choi 2011). Algorithms
like PageRank (Brin and Page 1998) and HITS (Kleinberg
1999) are used in the sentence score propagation based on
the graph constructed based on the similarity between sen-
tences. Wan and Yang (2007) show that graph based mea-
surements can also improve the single-document summa-
rization by integrating multiple documents of the same topic.

Most of these scoring-based methods have to incorporate
with the adjustment of word weights which is one of the
most important factors that influence the summarization per-
formance (Nenkova, Vanderwende, and McKeown 2006).
So much work has been studied on how to extract sentences
without saliency scores. Inspired by the latent semantic in-
dexing (LSA), the singular value decomposition (SVD) is
used to select highly ranked sentences for generic document
summarization (Gong and Liu 2001). Harabagiu and Laca-
tusu (2005) analyze five different topic representations and
propose a novel topic representation based on topic themes.
Wang et al. (2008) use the symmetric non-negative matrix
factorization (SNMF) to cluster sentences into groups and
select sentences from each group for summarization.

The Proposed Framework
Most of the existing summarization methods aim to obtain
the summary which covers the core information of the docu-
ment. In this paper, we study the summarization from a data
reconstruction perspective. We believe that a good summary
should contain those sentences that can be used to recon-
struct the document as well as possible, namely, minimizing
the reconstruction error.

In this section, we describe the details of our proposed
framework Document Summarization based on Data Recon-
struction (DSDR) which minimizes the reconstruction error
for summarization. The algorithm procedure of DSDR is as
follows:

• After stemming and stop-word elimination, we decom-
pose the document into individual sentences and create
a weighted term-frequency vector for every sentence. All
the sentences form the candidate set.

• For any sentence in the document, DSDR selects the re-
lated sentences from the candidate set to reconstruct the
given sentence by learning a reconstruction function for
the sentence.

• For the entire document (or, a set of documents), DSDR
aims to find an optimal set of representative sentences
to approximate the entire document (or, the set of doc-
uments), by minimizing the reconstruction error.

We denote the candidate sentence set as V =
[v1,v2, . . . ,vn]

T where vi ∈ Rd is a weighted term-
frequency vector for sentence i. Here notice that, we use V
to represent both the matrix and the candidate set {vi}. Sup-
pose there are totally d terms and n sentences in the docu-
ment, we will have a matrix V in the size of n × d. We
denote the summary sentence set as X = [x1,x2, . . . ,xm]T

with m < n and X ⊂ V .
Given a sentence vi ∈ V , DSDR attempts to represent it

with a reconstruction function fi(X) given the selected sen-
tence set X . Denoting the parameters of fi as ai, we obtain
the reconstruction error of vi as:

L(vi, fi(X;ai)) = ‖vi − fi(X;ai)‖2, (1)

where ‖ · ‖ is the L2-norm.
By minimizing the sum of reconstruction errors over all

the sentences in the document, DSDR picks the optimal set
of representative sentences. The objective function of DSDR
can be formally defined as:

min
X,ai

n∑
i=1

‖vi − fi(X;ai)‖2. (2)

In the following, we will discuss two types of the recon-
struction function fi(X;ai), namely, linear reconstruction
and nonnegative linear reconstruction.

Linear Reconstruction
First we define the reconstruction functions fi(X) as a linear
function:

fi(X;ai) =
m∑
j=1

xjaij , X = [x1,x2, . . . ,xm]T . (3)

Then a candidate sentence vi can be approximately repre-
sented as:

vi ≈
m∑
j=1

xjaij , 1 ≤ i ≤ n.

Now, the reconstruction error of the document can be ob-
tained as:

n∑
i=1

‖vi −XTai‖2

The solution from minimizing the above equation often ex-
hibits high variance and results in high generalization error
especially when the dimension of sentence vectors is smaller
than the number of sentences. The variance can be reduced
by shrinking the coefficients ai, if we impose a penalty on its
size. Inspired by ridge regression (Hoerl and Kennard 1970),
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we penalize the coefficients of linear reconstruction error in
DSDR as follows:

min
X,A

∑n
i=1 ‖vi −XTai‖2 + λ‖ai‖2

s.t. X ⊂ V, |X| = m
A = [a1,a2, . . . ,an]

T ∈ Rn×m.
(4)

The set {xi} includes the selected representative sentences
from the original candidate sentence set V and will be used
as the document summary finally. λ is the regularization pa-
rameter controlling the amount of shrinkage.

The optimization problem in Eq. (4) faces two combinato-
rial challenges: (1) Evaluating the best reconstruction error
of one candidate sentence vi, we would find the optimal X
with size of m out of exponentially many options. (2) The
optimal set for vi is usually not optimal for vj . So to recon-
struct all the candidate sentences, we would have to search
over an exponential number of possible sets to determine
the unique optimal X . Actually, a similar problem that se-
lects m < n basic vectors from n candidates to approximate
a single vector in the least squares criterion has been proved
to be NP hard (Natarajan 1995).

The optimization problem in Eq. (4) is equivalent to the
following problem (Yu, Bi, and Tresp 2006):

min
X

J = Tr[V (XTX + λI)−1V T ]

s.t. X ⊂ V, |X| = m
(5)

where V is the candidate sentence set,X is the selected sen-
tence set, I is the identity matrix, and Tr[·] is the matrix
trace calculation. Please see (Yu, Bi, and Tresp 2006) for the
detailed derivation from Eq. (4) to Eq. (5).

For the optimization problem (5), we use a greedy algo-
rithm to find the approximate solution. Given the previously
selected sentence set X1, DSDR selects the next new sen-
tence xi ∈ V as follows:

min
xi

J(xi) = Tr[V (XTX + λI)−1V T ]

s.t. X = X1 ∪ xi,xi ∈ V.
(6)

Denoting P = XT
1 X1 + λI , Eq. (6) can be rewritten as:

J(xi) = Tr[V (XTX + λI)−1V T ]

= Tr[V (P + xix
T
i )

−1V T ]

= Tr
[
V P−1V T − V P−1xix

T
i P

−1V T

1 + xTi P
−1xi

]
, (7)

where the Woodbury matrix identity (Riedel 1992) is applied
in the second step.

Fixing the candidate sentence set V and the selected sen-
tence set X1, Tr[V P−1V T ] is a constant, so the objective
function is the same as maximizing the second part in the
trace:

max
xi

Tr
[V P−1xix

T
i P

−1V T

1 + xTi P
−1xi

]
=
‖V P−1xi‖2

1 + xTi P
−1xi

. (8)

To simplify the computation, we introduce a matrix B =
V P−1V T . Then the index of the new sentence xi can be
obtained by:

i = argmax
i

‖B∗i‖2

1 +Bii
, (9)

Algorithm 1 DSDR with linear reconstruction
Input:
• The candidate data set: V = [v1,v2, . . . ,vn]

T

• The number of sentences to be selected: m
• The trade off parameter: λ

Output:
• The set of m summary sentences: X =
[x1,x2, . . . ,xm]T ⊆ V

1: initialize X ← ∅;
2: B0 ← V V T /λ;
3: for t = 1 to m do
4: for i = 1 to n do
5: score(xi)← ‖Bt−1

∗i ‖2/(1 +Bt−1
ii )

6: end for
7: xi ← argmax

xi

score(xi)

8: X ← X ∪ xi
9: Bt ← Bt−1 −Bt−1

∗i [Bt−1
∗i ]T /(1 +Bt−1

ii )
10: end for
11: return X;

where i is the index of the new sentence xi in the candidate
sentence set V , B∗i and Bii are the ith column and diagonal
entry of matrix B.

Once we find the new sentence xi, we add it into X1 and
update the matrix B as follows:

Bt = V P−1
t V T

= V (Pt−1 + xixi
T )−1V T

= Bt−1 −
V P−1

t−1xixi
TP−1

t−1V
T

1 + xi
TP−1

t−1xi

= Bt−1 − Bt−1
∗i [Bt−1

∗i ]T

1 +Bt−1
ii

. (10)

where the matrixBt−1 denotes the matrixB at the step t−1.
Initially the previously selected sentence set X1 is empty.

So the matrix P is initialized as:

P0 = λI. (11)

Then the initialization of the matrix B can be written as:

B0 = V P−1
0 V T =

1

λ
V V T . (12)

We describe our sequential method for linear reconstruc-
tion in Algorithm 1. Given a document with n sentences,
Algorithm 1 generates a summary with m sentences with
the complexity as follows:

• O(n2d) to calculate the initialization B0 according to
Step (2).

• O(n2m) for the Step (3) to Step (10).

– O(n) to calculate score(xi) in Step (5)
– O(n2) to update the matrix B in Step (9).

The overall cost for Algorithm 1 is O(n2(d+m)).
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Nonnegative Linear Reconstruction
The linear reconstruction optimization problem Eq. (4) in
the previous section might come up with aij’s with nega-
tive values, which means redundant information needs to be
removed from the summary sentence set X . To minimize
the redundant information, in this section, we use the non-
negative linear reconstruction which adds nonnegative con-
straints on the coefficients.

Nonnegative constraints on data representation has re-
ceived considerable attention due to its psychological and
physiological interpretation of naturally occurring data
whose representation may be parts-based in the human brain
(Palmer 1977; Wachsmuth, Oram, and Perrett 1994; Cai
et al. 2011). Our nonnegative linear reconstruction method
leads to parts-based reconstruction because it allows only
additive, not subtractive, combinations of the sentences.

For the sake of efficient optimization, following (Yu et al.
2008; Cai and He 2012),we formulate the objective function
of nonnegative DSDR as follows:

min
ai,β

J =
n∑
i=1

{
‖vi − V Tai‖2 +

n∑
j=1

a2ij
βj

}
+ γ‖β‖1

s.t. βj ≥ 0, aij ≥ 0 and ai ∈ Rn,
(13)

where β = [β1, . . . , βn]
T is an auxiliary variable to control

the candidate sentences selection. Similar to LASSO (Tib-
shirani 1996), the L1 norm of β will enforce some elements
to be zeros. If βj = 0, then all a1j , . . . , anj must be 0 which
means the j-th candidate sentence is not selected. The new
formulation in Eq. (13) is a convex problem and can guaran-
tee a global optimal solution.

By fixing ai’s and setting the derivative of J with respect
to β to be zero, we can obtain the minimum solution of β:

βj =

√√√√√ n∑
i=1

a2ij

γ
. (14)

Once the β is obtained, the minimization under the
nonnegative constraints can be solved using the Lagrange
method. Let αij be the Lagrange multiplier for constraint
aij ≥ 0 and A = [aij ], the Lagrange L is:

L = J +Tr[αAT ], α = [αij ].

The derivative of L with respect to A is:
∂L

∂A
= −2V V T + 2AV V T + 2Adiag(β)−1 + α.

Setting the above derivative to be zero, α can be represented
as:

α = 2V V T + 2AV V T − 2Adiag(β)−1,

where diag(β) is a matrix with diagonal entries of
β1, . . . , βn. Using the Kuhn-Tucker condition αijaij = 0,
we get:

(V V T )ijaij − (AV V T )ijaij − (Adiag(β))ijaij = 0.

This leads to the following updating formula:

aij ←
aij(V V

T )ij
[AV V T +Adiag(β)]ij

. (15)

Algorithm 2 DSDR with nonnegative linear reconstruction
Input:
• The candidate sentence set: V = [v1,v2, . . . ,vn]

T

• The trade off parameter: γ > 0
Output:
• The set of the summary sentences: X ⊆ V

Procedure:
1: initialize aij , βj ;
2: initialize X ← ∅;
3: repeat

4: βj =

√
n∑

i=1
a2
ij

γ ;
5: repeat
6: aij ← aij(V V

T )ij
[AV V T+Adiag(β)]ij

;
7: until converge;
8: until converge;
9: X ← {vi|vi ⊂ V, βj 6= 0};

10: return X;

The Eq. (14) and Eq. (15) are iteratively performed until
convergence. For the convergence of this updating formula,
we have the following Theorem 1.
Theorem 1. Under the iterative updating rule as Eq. (15),
the objective function J is non-increasing with fixed β, and
that the convergence of the iteration is guaranteed.

Proof. To prove Theorem 1, we introduce an auxiliary func-
tion as:

G(u,ai) =
n∑
j=1

{
(Pai)j
aij

u2j − 2(V V T )ijuj

}
, (16)

where P = V V T + diag(β), and u = [u1, . . . , un]
T is a

positive vector. G(u,ai) can also be identified as the sum of
singular-variable functions:

G(u,ai) =
n∑
j=1

Gj(uj). (17)

Let F (ai) = aTi Pai − 2(V V T )i∗ai, Sha et al. (2007) have
proved that if aij updates as:

aij ← argmin
uj

Gj(uj), (18)

G(u,ai) converges monotonically to the global minimum of
F (ai).

Taking the derivation of Gj(uj) with respect to uj and
setting it to be zero, we obtain the updating formulation as:

aij ←
aij(V V

T )ij
[AV V T +Adiag(β)]ij

, (19)

which agrees with Eq. (15).
We can rewrite the objective function J as:

J =
n∑
i=1

F (ai) + Tr[V V T ] + γ‖β‖1. (20)
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Fixing β, we can obtain the minimizer of J by minimiz-
ing each F (ai) separately. Since the objective function J is
the sum of all the individual terms F (ai) plus a term inde-
pendent of ai, we have shown that J is non-increasing with
fixed β under the updating rule as Eq. ( 15).

Algorithm 2 describes the DSDR with nonnegative linear
reconstruction. Suppose the maximum number of iterations
for Step (4) and Step (6) are t1 and t2 respectively, the total
computational cost for Algorithm 2 is O(t1(n+ t2(n

3))).

Experiments
In this study, we use the standard summarization benchmark
data sets DUC 2006 and DUC 2007 for the evaluation. DUC
2006 and DUC 2007 contain 50 and 45 document sets re-
spectively, with 25 news articles in each set. The sentences
in each article have been separated by NIST 1. And every
sentence is either used in its entirety or not at all for con-
structing a summary. The length of a result summary is lim-
ited by 250 tokens (whitespace delimited).

Evaluation Metric
We use the ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) toolkit (Lin 2004) which has been widely
adopted by DUC for automatic summarization evaluation.
ROUGE measures summary quality by counting overlap-
ping units such as the n-gram, word sequences and word
pairs between the peer summary (produced by algorithms)
and the model summary (produced by humans). We choose
two automatic evaluation methods ROUGE-N and ROUGE-
L in our experiment. Formally, ROUGE-N is an n-gram re-
call between a candidate summary and a set of reference
summaries and ROUGE-L uses the longest common sub-
sequence (LCS) matric. ROUGE-N is computed as follows:

ROUGE −N =

∑
S∈Ref

∑
gramn∈S

Countmatch(gramn)∑
S∈Ref

∑
gramn∈S

Count(gramn)

where n stands for the length of the n-gram, Ref is
the set of reference summaries. Countmatch(gramn) is
the maximum number of n-grams co-occurring in a can-
didate summary and a set of reference summaries, and
Count(gramn) is the number of n-grams in the reference
summaries. ROUGE toolkit reports separate scores for 1,
2, 3 and 4-gram, and also for the longest common subse-
quence. Among these different scores, the unigram-based
ROUGE score (ROUGE-1) has been shown to agree with
human judgment most (Lin and Hovy 2003). Due to limited
space, more information can be referred to the toolkit pack-
age.

Compared Methods
We compare our DSDR with several state-of-the-art summa-
rization approaches described briefly as follows:
• Random: selects sentences randomly for each document

set.
1http://www.nist.gov/index.html

Table 1: Average F-measure performance on DUC 2006.
”DSDR-lin” and ”DSDR-non” denote DSDR with the linear
reconstruction and DSDR with the nonnegative reconstruc-
tion respectively.

Algorithm Rouge-1 Rouge-2 Rouge-3 Rouge-L

Random 0.28507 0.04291 0.01023 0.25926
Lead 0.27449 0.04721 0.01181 0.23225
LSA 0.25782 0.03707 0.00867 0.23264
ClusterHITS 0.28752 0.05167 0.01282 0.25715
SNMF 0.25453 0.03815 0.00815 0.22530
DSDR-lin 0.30941 0.05427 0.01300 0.27576
DSDR-non 0.33168 0.06047 0.01482 0.29850

Table 2: Average F-measure performance on DUC 2007.
”DSDR-lin” and ”DSDR-non” denote DSDR with the linear
reconstruction and DSDR with the nonnegative reconstruc-
tion respectively.

Algorithm Rouge-1 Rouge-2 Rouge-3 Rouge-L

Random 0.32028 0.05432 0.01310 0.29127
Lead 0.31446 0.06151 0.01830 0.26575
LSA 0.25947 0.03641 0.00854 0.22751
ClusterHITS 0.32873 0.06625 0.01927 0.29578
SNMF 0.28651 0.04232 0.00890 0.25502
DSDR-lin 0.36055 0.07163 0.02124 0.32369
DSDR-non 0.39573 0.07439 0.01965 0.35335

• Lead (Wasson 1998): for each document set, orders the
documents chronologically and takes the leading sen-
tences one by one.

• LSA (Gong and Liu 2001): applies the singular value de-
composition (SVD) on the terms by sentences matrix to
select highest ranked sentences.

• ClusterHITS (Wan and Yang 2008): considers the topic
clusters as hubs and the sentences as authorities, then
ranks the sentences with the authorities scores. Finally,
the highest ranked sentences are chosen to constitute the
summary.

• SNMF (Wang et al. 2008): uses symmetric non-negative
matrix factorization(SNMF) to cluster sentences into
groups and select sentences from each group for summa-
rization.

It is important to note that our algorithm is unsupervised.
Thus we do not compare with any supervised methods
(Toutanova et al. 2007; Haghighi and Vanderwende 2009;
Celikyilmaz and Hakkani-Tur 2010; Lin and Bilmes 2011).

Experimental Results
Overall Performance Comparison ROUGE can gener-
ate three types of scores: recall, precision and F-measure.
We get similar experimental results using the three types
with DSDR taking the lead. In this study, we use F-measure
to compare different approaches. The F-measure of four
ROUGE metrics are shown in our experimental results:
ROUGE-1, ROUGE-2, ROUGE-3 and ROUGE-L. Table 1
and Table 2 show the ROUGE evaluation results on DUC
2006 and DUC 2007 data sets respectively. ”DSDR-lin” and
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(a) ROUGE scores on DUC
2006.

(b) ROUGE scores on DUC
2006.

(c) ROUGE scores on DUC
2007.

(d) ROUGE scores on DUC
2007.

Figure 1: The scores of all algorithms on each document set of DUC 2006 and DUC 2007, the black stars denote our pro-
posed methods are best while the red circles denote otherwise. ”DSDR-lin” and ”DSDR-non” denote DSDR with the linear
reconstruction and DSDR with the nonnegative reconstruction respectively.

Table 3: The associated p-values of the paired t-test on DUC 2006.
Random Lead LSA ClusterHITS SNMF

DSDR-lin 4.6 ∗ 10−14 7.1 ∗ 10−6 9.2 ∗ 10−14 4.0 ∗ 10−9 9.3 ∗ 10−8

DSDR-non 2.6 ∗ 10−25 6.7 ∗ 10−17 2.3 ∗ 10−30 6.0 ∗ 10−23 1.8 ∗ 10−25

Table 4: The associated p-values of the paired t-test on DUC 2007.
Random Lead LSA ClusterHITS SNMF

DSDR-lin 5.2 ∗ 10−14 1.7 ∗ 10−8 5.6 ∗ 10−12 3.4 ∗ 10−10 1.9 ∗ 10−9

DSDR-non 2.5 ∗ 10−17 8.0 ∗ 10−13 1.4 ∗ 10−14 7.9 ∗ 10−15 1.1 ∗ 10−14

”DSDR-non” denote DSDR with the linear reconstruction
and DSDR with the nonnegative reconstruction respectively.

As shown by the highest ROUGE scores in bold type
from the two tables, it is obvious that DSDR takes the lead
followed by ClusterHITS. ClusterHITS considers topics as
hubs and sentences as authorities where hubs and author-
ities can interact with each other. So that the correlations
between topics and sentences can improve the quality of
summary. Besides, selecting sentences randomly is a little
better than just selecting the leading sentences. Among all
the seven summarization algorithms, LSA and SNMF show
the poorest performance on both data sets. Directly applying
SVD on the terms by sentences matrix, summarization by
LSA chooses those sentences with the largest indexes along
the orthogonal latent semantic directions. Although SNMF
relaxes the orthogonality, it relies on the sentence pairwise
similarity. Whereas, our DSDR selects sentences which span
the intrinsic subspace of the candidate sentence space. Such
sentences are contributive to reconstruct the original docu-
ment, and so are contributive to improve the summary qual-
ity. Under the DSDR framework, the sequential method of
linear reconstruction is suboptimal, so DSDR-non outper-
forms DSDR-lin.

Evaluations on Different Document Sets In Figure 1, we
illustrate the ROUGE-1 scores for each document set from
DUC 2006 and DUC 2007 respectively. In each panel, the
vertical axis describes the scores of the DSDR approach and
the horizontal axis contains the best scores of other methods.
The black stars indicate that DSDR gets the best scores on
the corresponding document sets while the red circles sug-
gest the best scores are obtained from other methods. It can
be obviously observed that both the proposed reconstruction

methods are better than others, since the number of black
stars are much more than that of red circles in each panel.

To check whether the difference between DSDR and other
approaches is significant, we perform the paired t-test be-
tween the ROUGE scores of DSDR and that of other ap-
proaches on both data sets. Table 3 and Table 4 show the
associated p-values on DUC 2006 and DUC 2007 data sets
respectively. The test at the 99% confidence interval demon-
strates that our proposed framework can obtain very encour-
aging and promising results compared to the others.

Conclusion
In this paper, we propose a novel summarization frame-
work called Document Summarization based on Data Re-
construction (DSDR) which selects the most representa-
tive sentences that can best reconstruct the entire document.
We introduce two types of reconstruction (linear and non-
negative) and develop efficient optimization methods for
them. The linear reconstruction problem is solved using a
greedy strategy and the nonnegative reconstruction problem
is solved using a multiplicative updating. The experimen-
tal results show that out DSDR (with both reconstruction
types) can outperform other state-of-the-art summarization
approaches. DSDR with linear reconstruction is more effi-
cient while DSDR with nonnegative reconstruction has bet-
ter performance (by generating less redundant sentences). It
would be of great interests to develop more efficient solution
for DSDR with nonnegative reconstruction.
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