
Efficient Online Learning for Large-Scale
Sparse Kernel Logistic Regression

Lijun Zhang
zljzju@zju.edu.cn

Zhejiang Provincial Key Laboratory of Service Robot
College of Computer Science

Zhejiang University, Hangzhou 310027, China

Rong Jin
rongjin@cse.msu.edu

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA

Chun Chen and Jiajun Bu
{chenc,bjj}@zju.edu.cn

Zhejiang Provincial Key Laboratory of Service Robot
College of Computer Science

Zhejiang University, Hangzhou 310027, China

Xiaofei He
xiaofeihe@cad.zju.edu.cn

State Key Lab of CAD&CG
College of Computer Science

Zhejiang University, Hangzhou 310058, China

Abstract

In this paper, we study the problem of large-scale Kernel
Logistic Regression (KLR). A straightforward approach is
to apply stochastic approximation to KLR. We refer to this
approach as non-conservative online learning algorithm be-
cause it updates the kernel classifier after every received train-
ing example, leading to a dense classifier. To improve the
sparsity of the KLR classifier, we propose two conserva-
tive online learning algorithms that update the classifier in
a stochastic manner and generate sparse solutions. With ap-
propriately designed updating strategies, our analysis shows
that the two conservative algorithms enjoy similar theoretical
guarantee as that of the non-conservative algorithm. Empir-
ical studies on several benchmark data sets demonstrate that
compared to batch-mode algorithms for KLR, the proposed
conservative online learning algorithms are able to produce
sparse KLR classifiers, and achieve similar classification ac-
curacy but with significantly shorter training time. Further-
more, both the sparsity and classification accuracy of our
methods are comparable to those of the online kernel SVM.

Introduction
Compared to other kernel methods, such as kernel Support
Vector Machine (SVM) (Burges 1998), Kernel Logistic Re-
gression(KLR) (Jaakkola and Haussler 1999; Roth 2001) is
advantageous in that it outputs posterior probabilities in ad-
dition to the classification decision, and it is able to handle
multi-class problems naturally. In the past, KLR has been
successfully applied to several domains, such as cancer diag-
nosis (Koo et al. 2006) and speaker identification (Yamada,
Sugiyama, and Matsui 2010).

Due to the data explosion in recent years, there has been
an increasing demand of applying logistic regression to large
data sets (Keerthi et al. 2005). The key challenge in devel-
oping efficient algorithms for large-scale KLR is that since
negative log-likelihood is used as the loss function in KLR,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the resulting kernel classifier is inherently non-sparse, lead-
ing to high computational cost in both training and testing.
Although several methods have been proposed for large-
scale KLR (Jaakkola and Haussler 1999; Keerthi et al. 2005;
Shalev-Shwartz, Singer, and Srebro 2007), none of them ad-
dresses this challenge. To the best of our knowledge, (Zhu
and Hastie 2001) was the only effort that aims to obtain
sparse KLR. It proposed an algorithm, named Import Vector
Machine (IVM), that constructs the kernel classifier using a
fraction of training examples. However, since it is compu-
tationally expensive to identify the import vectors, IVM is
generally impractical for large data sets.

In this paper, we address the challenge of large-scale
sparse KLR by developing conservative online learning al-
gorithms. Unlike a non-conservative online learning algo-
rithm (Crammer and Singer 2003) that updates the classi-
fier for every received training example, the conservative
approaches will update the classifier only for a subset of
training examples, leading to sparse kernel classifiers and
consequently high computational efficiency for both training
and testing. Specifically, for each received training example,
we introduce a Bernoulli random variable to decide whether
the current classifier should be updated. By appropriately
choosing the probability distribution of the Bernoulli ran-
dom variable, the conservative algorithms tend to update the
classifier only when the loss is large. Our analysis shows that
despite the stochastic updating, the conservative algorithms
enjoy similar theoretical guarantee as the non-conservative
algorithm. Empirical studies also confirm both the efficiency
and effectiveness of the proposed methods for sparse KLR.

Related Work
We will first review the related work on kernel logistic re-
gression, and then the developments in online learning.

Kernel Logistic Regression (KLR)
Let Hκ be a reproducing kernel Hilbert space (RKHS) en-
dowed with kernel function κ(·, ·) : Rd × Rd 7→ R. KLR

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1219

aims to learn a function f ∈ Hκ such that the posterior prob-
ability for any x ∈ Rd to take the class y ∈ {1,−1}, is
computed as

p(y|f(x)) = 1/
(
1 + exp(−yf(x))

)
.

Let {(x1, y1), . . ., (xn, yn)} be the set of training data. The
regularized optimization problem of KLR is given by:

min
f∈Hκ

λ

2
|f |2Hκ

+
1

n

n∑
i=1

`(yif(xi)), (1)

where `(z) = ln(1 + e−z) measures the negative log-
likelihood of a data point. Besides the primal problem
in Eq. (1), several studies (Jaakkola and Haussler 1999;
Keerthi et al. 2005) consider the dual problem of KLR.

The key challenge of learning a KLR model is that it uses
the negative of log-likelihood as the loss function, which
inadvertently leads to non-sparse kernel classifiers regard-
less of the optimization methods. Import Vector Machine
(IVM) (Zhu and Hastie 2001) aims to reduce the complexity
of the kernel classifier by selecting part of training examples
as the import vectors to construct the classifier. However, the
computational cost of selecting q import vectors isO(n2q2),
making it impractical for large data sets.

Online Learning

Since the invention of Perceptron (Agmon 1954; Rosenblatt
1958; Novikoff 1962), tremendous progress has been made
in online learning. Early studies focused on the linear classi-
fication model, and were later extended to nonlinear classi-
fier by using the kernel trick (Freund and Schapire 1999;
Kivinen, Smola, and Williamson 2004). Inspired by the
success of maximum margin classifiers, various algorithms
have been proposed to incorporate classification margin into
online learning (Gentile 2001; Li and Long 2002; Crammer
and Singer 2003). Many recent studies explored the opti-
mization theory for online learning (Kivinen and Warmuth
1997; Zinkevich 2003; Shalev-Shwartz and Singer 2006).
More detailed discussion can be found in (Cesa-Bianchi and
Lugosi 2006).

Our work is closely related to budget online learning
(Cavallanti, Cesa-Bianchi, and Gentile 2007; Dekel, Shalev-
Shwartz, and Singer 2008; Orabona, Keshet, and Caputo
2008) that aims to build a kernel classifier with a constrained
number of support vectors. Unlike these studies that focus
on the hinge loss, we focus on the negative of log-likelihood
and kernel logistic regression. In addition, we apply stochas-
tic updating to improve the sparsity of kernel classifiers
while most of the budget online learning algorithms deploy
deterministic strategies for updating. Finally, we distinguish
our work from sparse online learning. Although sparse on-
line learning (Langford, Li, and Zhang 2009) also aim to
produce sparse classifiers, they focus on linear classification
and sparse regularizers such as the `1 regularizer are used to
select features not training examples.

Online Learning for KLR
In this study, we consider the constrained KLR

min
f∈Ω

1

n

n∑
i=1

`(yif(xi)), (2)

where `(z) = ln(1 + e−z) is the logit loss, Ω =
{f ∈ Hκ : |f |Hκ ≤ R} and R specifies the maximum func-
tion norm for the classifier f . Throughout the paper, we
assume κ(x,x) ≤ 1 for any x ∈ Rd.

Non-conservative Online Learning for KLR (NC)
As a starting point, we apply the stochastic gradient de-
scent approach (Kivinen, Smola, and Williamson 2004) to
the problem in Eq. (2). At each iteration of gradient descent,
given a training example (xt, yt), we update the current clas-
sifier ft(x) by

ft+1(x) = ft(x)− η∇f `(ytft(xt)), (3)

where η is the step size. ∇f denotes the gradient with re-
spect to function f and is given by

∇f `(ytft(xt)) = yt`
′(ytft(xt))κ(xt, ·), (4)

where `′(ytft(xt)) = p(yt|ft(xt))− 1.
Algorithm 1 shows the detailed procedure. We follow

(Crammer and Singer 2003) and call it non-conservative on-
line learning algorithm for KLR, or NC for short. At step 7
of Algorithm 1, we use the notation πΩ(f) to represent the
projection of f into the domain Ω, which is calculated as
f ′ = πΩ(f) = R

max(R,|f |Hκ)f . One of the key disadvan-
tages of Algorithm 1 is that it updates the classifier f(·) after
receiving every example, leading to a very dense classifier.

Define the generalization error `(f) for a kernel classifier
f as

`(f) = E(x,y)[`(yf(x))],

where E(x,y)[·] takes the expectation over the unknown dis-
tribution P (x, y). We denote by f∗ the optimal solution
within domain Ω that minimizes the generalization error,
i.e.,

f∗ = min
f∈Ω

`(f).

Theorem 1. After running Algorithm 1 over a sequence of
iid sampled training examples {(xt, yt), t = 1, . . . , T}, we
have the the following bound for f̂

ET [`(f̂)] ≤ `(f∗) +
R2

2ηT
+
η

2
,

where ET [·] takes expectation over the sequence of examples
{(xt, yt), t = 1, . . . , T}. By choosing η = R/

√
T , we have

ET [`(f̂)] ≤ `(f∗) +
R√
T
.

We skip the proof because it follows the standard analysis
and can be found in (Cesa-Bianchi and Lugosi 2006).

The above theorem shows that the difference in prediction
between the learned classifier f̂ and the optimal classifier f∗

1220

Algorithm 1 A non-conservative online learning algorithm
for large-scale KLR (NC)

1: Input: the step size η > 0
2: Initialization: f1(x) = 0
3: for t = 1, 2, . . . , T do
4: Receive an example (xt, yt)
5: `′(ytft(xt)) = p(yt|ft(xt))− 1
6: f ′t+1(x) = ft(x)− ηyt`′(ytft(xt))κ(xt,x)
7: ft+1 = πΩ(f ′t+1)
8: end for
9: Output: f̂(x) =

∑T
t=1 ft(x)/T

decreases at the rate of O(1/
√
T). The next theorem shows

that the difference in prediction could decrease at the rate
of O(1/T), but at the price that we will compare `(f̂) to
2/(2 − η)`(f∗), instead of `(f∗). This result indicates that
the generalization error may be reduced fast when the corre-
sponding classification model is easy to learn, i.e., `(f∗) is
small.
Theorem 2. Repeat the conditions of Theorem 1. We have

ET [`(f̂)] ≤ 2

2− η
`(f∗) +

R2

η(2− η)T
.

Proof. First, according to (Cesa-Bianchi and Lugosi 2006),
we have

`(ytft(xt))− `(ytf(xt))

≤
|f − ft|2Hκ

− |f − ft+1|2Hκ

2η
+
η(1− p(yt|ft(xt))2

2
.

Since

`(ytft(xt)) = − ln p(yt|ft(xt))
≥ 1− p(yt|ft(xt)) ≥ (1− p(yt|ft(xt))2,

we have

`(ytft(xt))

≤2`(ytf(xt))

2− η
+

1

η(2− η)

(
|f − ft|2Hκ

− |f − ft+1|2Hκ

)
.

We complete the proof by following the standard analysis of
online learning.

Conservative Online Learning for KLR
To overcome the drawback of Algorithm 1, we devel-
oped online learning algorithms with conservative updating
strategies that aims to improve the sparsity of kernel clas-
sifier. The simplest approach is to update f(x) only when
it misclassifies a training example, a common strategy em-
ployed by many online learning algorithms (Cesa-Bianchi
and Lugosi 2006). We note that in most previous studies,
this simple strategy is used to derive mistake bound, not the
generalization error bound.

Instead of having a deterministic procedure, we propose a
stochastic procedure to decide if the classifier should be up-
dated for a given example. In particular, after receiving the

Algorithm 2 A classification margin based conservative al-
gorithm for large-scale KLR (Margin)

1: Input: the step size η > 0
2: Initialization: f1(x) = 0
3: for t = 1, 2, . . . , T do
4: Receive an example (xt, yt)
5: Compute probability pt in Eq. (5)
6: Sample Zt from a Bernoulli distribution with proba-

bility pt being 1
7: if Zt = 1 then
8: `′(ytft(xt)) = p(yt|ft(xt))− 1
9: f ′t+1(x) = ft(x)− ηyt`′(ytft(xt))κ(xt,x)

10: ft+1(x) = πΩ(f ′t+1)
11: else
12: ft+1 = ft
13: end if
14: end for
15: Output: f̂(x) =

∑T
t=1 ft(x)/T

training example (xt, yt), we introduce a Bernoulli random
variable Zt with probability pt being 1; the classifier will
be updated only when Zt = 1. Below, we introduce two
types of approaches for stochastic updates, one based on the
classification margin and the other based on the auxiliary
function.

Classification margin based approach In this approach,
we introduce the following sampling probability pt for
stochastically updating ft(x)

pt =
2− η

2− η + ηp(yt|ft(xt))
. (5)

It is obvious that pt is monotonically decreasing in
p(yt|ft(xt)), i.e., the larger the chance to classify the train-
ing example correctly, the smaller the sampling probabil-
ity is, which is clearly consistent with our intuition. Since
the p(yt|ft(xt)) is determined by the classification margin
ytft(xt) of xt, we refer to this algorithm as classification
margin based approach, and the details are given in Algo-
rithm 2. It is interesting to see, although we introduce a
sampling probability to decide if the classifier should be up-
dated, the generalization error bound for Algorithm 2 re-
mains the same as Theorem 2, as stated below.

Theorem 3. After running Algorithm 2 over a sequence of
iid sampled training examples {(xt, yt), t = 1, . . . , T}, we
have the the following bound

ET [`(f̂)] ≤ 2

2− η
`(f∗) +

R2

η(2− η)T
.

Proof. Following the same analysis of Theorem 2, we have

Zt[`(ytft(xt))− `(ytf(xt))]−
|f − ft|2Hκ

−|f − ft+1|2Hκ

2η

≤ ηZt
2
`(ytft(xt))(1− p(yt|ft(xt))),

1221

and therefore

Zt`(ytft(xt))
(

1− η

2
(1− p(yt|ft(xt)))

)
≤Zt`(ytf(xt)) +

1

2η

(
|f − ft|2Hκ

− |f − ft+1|2Hκ

)
.

By taking the expectation over Zt, we obtain

`(ytft(xt))−
2`(ytf(xt))

2− η

≤ 1

η(2− η)

(
|f − ft|2Hκ

− |f − ft+1|2Hκ

)
.

We complete the proof by using the standard analysis of on-
line learning.

Auxiliary function based approach One drawback with
the stochastic approach stated above is that the sampling
probability pt is associated with the step size η. When η is
small, it will result in a sampling probability close to 1, lead-
ing to a small reduction in the number of updates. To over-
come this limitation, we introduce an auxiliary function h(z)
that is (i) convex in z and (ii) h(z) ≥ `(z) for any z. Define
the maximum gradient of h(z) as M(h) = max

z
|h′(z)|.

Given the auxiliary function, we update the classifier f(x)
based on the gradient of the auxiliary function h(z), not the
gradient of the loss function `(z). We define the sampling
probability pt as

pt =
`(ytft(xt))

h(ytft(xt))
. (6)

It is easy to verify the following theorem regarding the gen-
eralization error of the classifier found by Algorithm 3.

Theorem 4. After running Algorithm 3 over a sequence of
iid sampled training examples {(xt, yt), t = 1, . . . , T}, we
have

ET [`(f̂)] ≤ min
f∈Ω(f)

E(x,y)[h(yf(x))] +
RM(h)√

T
.

In the following, we list several possible types of auxiliary
functions:

• h(z) = ln(γ + e−z), with γ ≥ 1. The corresponding
sampling probability pt is computed as

pt =
ln(1 + exp(−ytft(xt)))
ln(γ + exp(−ytft(xt)))

.

It is clear that pt is monotonically decreasing in ytft(xt),
and approaches zero when ytft(xt)→ +∞.

• h(z) = ln(1 + γe−z), with γ ≥ 1. And the sampling
probability pt becomes

pt =
ln(1 + exp(−ytft(xt)))

ln(1 + γ exp(−ytft(xt)))
.

This auxiliary function is similar to the above one.

Algorithm 3 An auxiliary function based conservative algo-
rithm for large-scale KLR (Auxiliary)

1: Input: the step size η > 0 and the auxiliary function
h(z)

2: Initialization: f1(x) = 0
3: for t = 1, 2, . . . , T do
4: Receive an example (xt, yt)
5: Compute probability pt in Eq. (6)
6: Sample Zt from a Bernoulli distribution with proba-

bility pt being 1
7: if Zt = 1 then
8: Compute the gradient h′(ytft(xt))
9: f ′t+1(x) = ft(x)− ηyth′(ytft(xt))κ(xt,x)

10: ft+1 = πΩ(f ′t+1)
11: else
12: ft+1 = ft.
13: end if
14: end for
15: Output: f̂(x) =

∑T
t=1 ft(x)/T

Table 1: Data statistics
Data Sets # of Examples # of Features

mushrooms 8,124 112
a9a 32,561 123

ijcnn1 141,691 22
rcv1.binary 697,641 47,236

• h(z) = max(`(z), `(δ)). If `(ytft(xt)) ≥ `(δ) (i.e.,
ytft(xt) ≤ δ), the sampling probability pt = 1, and the
gradient h′(ytft(xt)) = `′(ytft(xt)). Otherwise,

pt =
ln(1 + exp(−ytft(xt)))

ln(1 + exp(−δ))
.

and the gradient h′(ytft(xt)) = 0. Thus, using this func-
tion, our method becomes a hard cut-off algorithm, which
updates the classifier only when the margin ytft(xt) is
smaller than δ.

One advantage of the auxiliary function based approach is
that it allows us to control the sparsity of the classifier. For
the above auxiliary functions, the sparsity can be turned by
varying the value of γ or δ.

Experiments
Data Sets
Four benchmark data sets (mushrooms, a9a , ijcnn1, and
rcv1.binary) from LIBSVM (Chang and Lin 2011) are used
in this evaluation. Table 1 summarizes the statistics of them.

Experiments on medium-size data sets
In this section, we perform classification experiments on
the first three data sets to evaluate our methods compre-
hensively. We choose the Gaussian kernel κ(xi,xj) =
exp(‖xi − xj‖2/(2σ2)), and set the kernel width σ to the
5-th percentile of the pairwise distances (Mallapragada, Jin,

1222

(a) The mushrooms data set. (b) The a9a data set. (c) The ijcnn1 data set.

Figure 1: Classification accuracy of the non-conservative online learning algorithm (NC) using different η.

(a) The mushrooms data set. (b) The a9a data set. (c) The ijcnn1 data set.

Figure 2: Classification accuracy of the classification margin based conservative algorithm (Margin) using different η.

(a) The mushrooms data set. (b) The a9a data set. (c) The ijcnn1 data set.

Figure 3: Classification accuracy of the auxiliary function based conservative algorithm (Auxiliary) using different γ.

and Jain 2010). The parametersR in Eq. (2) and λ in Eq. (1)
are determined by Cross Validation (CV), and searched in
the range of {1, 1e1, . . . , 1e5} and {1e−5, 1e−4, . . . , 1},
respectively. We perform 5-fold CV on each data set, and
report the average classification accuracy.

Experimental Results for the Non-conservative Online
Learning Method (NC) We evaluate the performance of
NC for KLR with η = {R/

√
T , 1e−2, 1e−1, 1}, where T

is the number of training examples. Fig. 1 shows the av-
erage classification accuracy versus the number of received
training examples on the three data sets. We observe that
the performance of the non-conservative method improves
rapidly when the number of training examples is small, and
the performance levels off after receiving enough training
examples. Besides, the step size η = R/

√
T yields good

classification accuracy for all the data sets.

Experimental Results for Conservative online learning
Methods For conservative methods, we refer to as support
vectors the training examples used to update the classifier.

Fig. 2 shows the average classification accuracy of the

classification margin based conservative algorithm (Margin)
versus the number of support vectors. Compared to Fig. 1,
we observe that the final classification accuracy of Margin is
almost the same as that of NC, which is consistent with the
generalization error bound in Theorem 3. Note that since the
sampling probability defined in Eq. (5) is valid only when
η < 2, there is no curve for η = 3 in Fig. 2(c). We also
observe that the overall reduction in the number of support
vectors is not very significant. In most cases, less than 50%
of support vectors are removed by Margin.

For the auxiliary function based approach (Auxiliary), we
set h(z) = ln(γ + e−z). Fig. 3 shows the average classifi-
cation accuracy of this approach with different γ, where we
use the best η found from Fig. 1. Note that NC is equiva-
lent to the case of γ = 1. We observe that by choosing an
appropriate γ, we can reduce the number of support vectors
dramatically without sacrificing the performance. For ex-
ample, for the mushrooms and ijcnn1 data sets, with γ = 2,
Auxiliary is able to achieve the same performance as the
non-conservative approach but with 20% of the training data
as support vectors. On the other hand, the gains of this ap-

1223

(a) The mushrooms data set. (b) The a9a data set. (c) The ijcnn1 data set.

Figure 4: The sparsity and relative accuracy of the final classifier obtained by Auxiliary versus γ − 1.

(a) The mushrooms data set. (b) The a9a data set. (c) The ijcnn1 data set.

Figure 5: Comparison between online learning methods and batch-model methods.
Table 2: Comparison between Auxiliary and Pegasos on the rcv1.binary data set

Method Auxiliary (h(z) = ln(γ + e−z) Pegasos
γ = 1.01 γ = 2 γ = 101 λ = 1e−5 λ = 1e−7 λ = 1e−9

of Support Vectors 24,654 23,894 23,753 47,150 24,381 24,034
Sparsity 0.9636 0.9647 0.9649 0.9304 0.9640 0.9645

Accuracy 0.9794 0.9783 0.9792 0.9778 0.9746 0.9653
Training Time (s) 20,779 20,060 19,974 34,098 20,214 19,980

proach on the a9a data set is less obvious. This may be at-
tributed to the fact that this data set is more difficult to be
classified and therefore has a higher sampling probability.

To further show the tradeoff between the sparsity and the
performance, Fig. 4 plots the sparsity and relative accuracy
of the final classifier obtained by Auxiliary versus γ − 1.
The sparsity is defined as the ratio between the number of
non-support vectors and the number of received training ex-
amples, and the relative accuracy is computed by comparing
to that of the non-conservative approach. We observe that
for all the data sets, there is a large range of γ which can be
used to produce a sparse and competitive classifier.

Comparison with Batch-model Methods Since there are
no off-the-shelf packages available for KLR, we develop two
batch-model methods based on the coordinate descent algo-
rithms described in (Keerthi et al. 2005).
• PCD: the coordinate descent method for solving the pri-

mal problem of KLR.
• DCD: the coordinate descent method for solving the dual

problem of KLR.
The best step size is used for the three online learning meth-
ods, and γ is set to 2 for the auxiliary function based ap-
proach. Fig. 5 shows the classification accuracy versus the
training time for all the algorithms. We observe that the three
online learning algorithms are considerably more efficient
than the two batch-model algorithms (PCD and DCD). For

example, Auxiliary is about 10 times faster than PCD on the
ijcnn1 data set.

Experiments on one large data set
In this section, we compare our methods with Pega-
sos (Shalev-Shwartz, Singer, and Srebro 2007), which is
the state-of-the-art online kernel SVM algorithm, on the
rcv1.binary data set. Using the split provided by (Chang
and Lin 2011), 677,399 samples are used for training and
the rest are used for testing. We choose the polynomial ker-
nel κ(xi,xj) = (xTi xj + 1)2, which is commonly used for
text corpus (Joachims 1998). Since Auxiliary gives the best
result in terms of sparsity among the three proposed algo-
rithms, in this study, we only report the result of Auxil-
iary with h(z) = ln(γ + e−z). For this large data set, it
is time consuming to apply CV to determine the best pa-
rameters. As an alternative, we empirically set R = 1e5
and η = R/

√
T for Auxiliary, and then vary the value

of γ to make the tradeoff between the sparsity and accu-
racy. For Pegasos, its parameter λ is varied in the range of
{1e−10, . . . , 1e−1}.

Table 2 shows the sparsity and the testing accuracy of the
kernel classifier learned from the entire set of training ex-
amples, as well as the training time. For brevity, we just
show the partial results around the best parameters for each
method. As can be seen, with suitable parameters, both the
sparsity and the accuracy of Auxiliary is comparable to those

1224

of the Pegasos method. This is consistent with the observa-
tion made by (Keerthi et al. 2005), in which KLR and kernel
SVM yield similar classification performance. Besides clas-
sification accuracy, we observe that both Pegasos and the
proposed algorithm learn the kernel classifier with similar
sparsity. In particular, for this data set, less than 4% of the
training examples are used as the support vectors for con-
structing the kernel classifier. Since the sparsity is similar,
the training time of the two methods is similar too.

Conclusions
In this paper, we present conservative online learning algo-
rithms for large-scale sparse KLR. The key idea is to adopt
stochastic procedures for updating the classifiers. Compared
to the non-conservative approach that requires updating the
classifier for every received training example, we show that
the conservative algorithms enjoy similar theoretical guar-
antee, which is further confirmed by our empirical studies.

Acknowledgments
This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No: 61125203, 90920303,
61173186), National Basic Research Program of China
(973 Program) under Grant No. 2009CB320801, National
Science Foundation (IIS-0643494), Office of Naval Re-
search (ONR N00014-09-1-0663), Fundamental Research
Funds for the Central Universities, Program for New Cen-
tury Excellent Talents in University (NCET-09-0685), Zhe-
jiang Provincial Natural Science Foundation under Grant
No. Y1101043, and Scholarship Award for Excellent Doc-
toral Student granted by Ministry of Education.

References
Agmon, S. 1954. The relaxation method for linear inequalities.
Canadian Journal of Mathematics 6(3):382–392.
Burges, C. J. C. 1998. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge Discovery
2(2):121–167.
Cavallanti, G.; Cesa-Bianchi, N.; and Gentile, C. 2007. Track-
ing the best hyperplane with a simple budget perceptron. Ma-
chine Learning 69(2-3):143–167.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, Learning,
and Games. New York, NY, USA: Cambridge University Press.
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent Systems
and Technology 2(3):27:1–27:27.
Crammer, K., and Singer, Y. 2003. Ultraconservative online al-
gorithms for multiclass problems. Journal of Machine Learning
Research 3:951–991.
Dekel, O.; Shalev-Shwartz, S.; and Singer, Y. 2008. The for-
getron: A kernel-based perceptron on a budget. SIAM Journal
on Computing 37(5):1342–1372.
Freund, Y., and Schapire, R. E. 1999. Large margin clas-
sification using the perceptron algorithm. Machine Learning
37(3):277–296.
Gentile, C. 2001. A new approximate maximal margin clas-
sification algorithm. Journal of Machine Learning Research
2:213–242.

Jaakkola, T. S., and Haussler, D. 1999. Probabilistic kernel re-
gression models. In Proceedings of the 7th International Work-
shop on Artificial Intelligence and Statistics.
Joachims, T. 1998. Text categorization with support vector ma-
chines: Learning with many relevant features. In Proceedings
of the 10th European Conference on Machine Learning, 137–
142.
Keerthi, S.; Duan, K.; Shevade, S.; and Poo, A. 2005. A fast
dual algorithm for kernel logistic regression. Machine Learning
61(1-3):151–165.
Kivinen, J., and Warmuth, M. K. 1997. Exponentiated gradient
versus gradient descent for linear predictors. Information and
Computation 132(1):1–63.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2004. Online
learning with kernels. IEEE Transactions on Signal Processing
52(8):2165–2176.
Koo, J.-Y.; Sohn, I.; Kim, S.; and Lee, J. W. 2006. Structured
polychotomous machine diagnosis of multiple cancer types us-
ing gene expression. Bioinformatics 22(8):950–958.
Langford, J.; Li, L.; and Zhang, T. 2009. Sparse online learning
via truncated gradient. Journal of Machine Learning Research
10:777–801.
Li, Y., and Long, P. M. 2002. The relaxed online maximum
margin algorithm. Machine Learning 46(1-3):361–387.
Mallapragada, P.; Jin, R.; and Jain, A. 2010. Non-parametric
mixture models for clustering. In Proceedings of the 2010 Joint
IAPR International Conference on Structural, Syntactic, and
Statistical Pattern Recognition, 334–343.
Novikoff, A. 1962. On convergence proofs on perceptrons. In
Proceedings of the Symposium on the Mathematical Theory of
Automata, volume XII, 615–622.
Orabona, F.; Keshet, J.; and Caputo, B. 2008. The projectron:
a bounded kernel-based perceptron. In Proceedings of the 25th
International Conference on Machine Learning, 720–727.
Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychologi-
cal Review 65:386–407.
Roth, V. 2001. Probabilistic discriminative kernel classifiers
for multi-class problems. In Proceedings of the 23rd DAGM-
Symposium on Pattern Recognition, 246–253.
Shalev-Shwartz, S., and Singer, Y. 2006. Online learning meets
optimization in the dual. In Proceedings of the 19th Annual
Conference on Learning Theory, 423–437.
Shalev-Shwartz, S.; Singer, Y.; and Srebro, N. 2007. Pegasos:
primal estimated sub-gradient solver for SVM. In Proceed-
ings of the 24th International Conference on Machine Learn-
ing, 807–814.
Yamada, M.; Sugiyama, M.; and Matsui, T. 2010. Semi-
supervised speaker identification under covariate shift. Signal
Processing 90(8):2353–2361.
Zhu, J., and Hastie, T. 2001. Kernel logistic regression and
the import vector machine. In Advances in Neural Information
Processing Systems 13, 1081–1088.
Zinkevich, M. 2003. Online convex programming and gener-
alized infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning, 928–936.

1225

