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Proof of Proposition 1

The proof is similar to that of Lemma 4 in (Zhang, Yi, and
Jin 2014). First, we have
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function of ais, so its expectation with respect to cvo must be
0. Thus, we have
Zc
' B,y [— L } =0.
vill2
Then, it is easy to prove Proposition 1 by contradiction.

Proof of Theorem 3

The following lemma extends Lemma 2 to the general case
when each u; is a different vector.

Lemma 4. We have
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The rest proof is the same as that for Theorem 1.
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Proof of Lemma 4
When ¢ = 1, it is clear that
@)

f(x{uy) — ||£3|121 f(x"uy) < 2B.

In the following, we discuss the case when ¢ > 2. Notice
that in this setting, (4) becomes
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and the vector-valued martingale-difference sequence is
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Following the same analysis for Lemma 2, we have
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According to the procedure in Algorithm 1, we have
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Following a simple geometric argument, we have
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Proof of (7)

We provide the proof because our definition of u; is slightly
different from the one in (Hazan and Kale 2010).
First, we have
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where the first inequality is due to the property of convexity
and the second inequality comes from our assumption that
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Combining (19) with (20), we have
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According to (Cesa-Bianchi and Lugosi 2006, Lemma 3.1),
we have
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We complete the proof by combining (21) with (22).

Multiplicative Chernoff Bound

Theorem 5. (Angluin and Valiant 1979) Let Xj,
Xo, ..., X, be independent binary random variables with
Pr[X; = 1] = p;. Denote S = " | X; and p = E[S] =
S, pi- We have
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