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Proof of Theorem 1

The proof is similar to that of Proposition 1 in (Rakhlin, Shamir, and Sridharan 2012), which shows the O(1/T') rate of SGD.
The differences are (i) we need to consider the effect of the non-smooth regularizer || Z||., and (ii) we use a different step size
which leads to a dramatic simplification of the analysis involving martingales.

First, we present one lemma that bounds the difference between Z;; and K by the difference between Z; and K.
Lemma 1 Define

0 = <§t - K, Z; — [?> , and S* = max || Z; — &||%.
te[T)
We have N R
1Zeer — K3 < 25?4+ 28, + 20X (1 Zells — 1 Zeall) + (1= 200) 12 — K3
The above lemma is proved by exploiting the optimality of Z; ;.
Based on Lemma 1, we obtain the following upper bound for || Z141 — K || 7 by choosing an appropriate step size.
Lemma 2 Define v = {2% 1 Z¢||«. By setting n, = 2/t, we have

. 4(5% 4+ \y) 2 d r .
Zri1 — K|} < 2) (t—1)0— Y (t—=1|Z — K|}
1211 = Rl < =375 + gy 2206~ D= 2= llZc— Rl
Note that by taking expectation over both sides, we immediately get an O(1/7") upper bound that holds in expectation. Since our
goal is to prove a stronger high probability bound, we proceed by developing an upper bound for the summation of martingale
difference sequence ZtT:Q(t —1)4;.

Lemma 3 Assume

¢ — K||r < G, and | Z, — K||p < D, ¥t > 2.
With a probability at least 1 — 0, we have
d 1« ~ 2
> (=15 < 3 > (t=D2Z - K3 +2G* (T — 1) + 3GD(T = 1)r+ GD(T - 1)
t=2 t=2
where T = log mloéiﬂ.

The above lemma is built up the Bernstein’s inequality for martingales (Cesa-Bianchi and Lugosi 2006) and the peeling tech-
nique (Bartlett, Bousquet, and Mendelson 2005).
Combining Lemmas 2 and 3, with a probability at least 1 — §, we have

. 4 2
| Zr11 — K|% < 7 (52+M+2G27+ 3GDT+GD>. 4)

As can be seen, there is a nice cancellation of Z?:z(t -1 Z: — IAszF which is due to the special setting 7, = 2/t.
Then, we provide upper bounds for the constants .S, 7, GG, and D in the above inequality.

Lemma 4 Assume ||&||p < C. By setting n; = 2/t, we have
5% <1002, 4 < QCm%ﬁ, G =2C, and D = 3C
te

where 14 is the rank of Z;.
We complete the proof by substituting those upper bounds into (4).



Proof of Lemma 1

To simplify notations, we define

1 1
F(2) = 3E[1Z - €3] and fu(2) = 5112 - &3

From the property of strongly convex, i.e., (2) of (Hazan and Kale 2011), the updating rule implies

1
§||Zt+1 = Zi|F + el Zisr — Zo, Vi (Z) + meM| Zesn ||

&)
1, = ~ o~ 1. ~
§§||K* Zil% + (K — Zo, Vfi(Zy)) + M| K — §||K* Zyi |3
Since F(Z) is 1-strongly convex, we also have
1 ~
§||Zt—K||?m
SF(Z1) 4+ M Zil|« — F(K) = M| K|«
~ 1 ~ ~
§<ZrK,VF(Zt)>*gllzﬁKH%Jr)\lIZtH**/\IIKII*
~ ~ 1 ~
=(Zt — K,V fi(Z;)) — M| K[| — QTHHZt - K%
1 =~ 1 ~ ~
+)‘||Zt||*7§||Zt*K||%‘+%”Zt7K||%7+<VF(Zt)7vft(Zt)>Zt*K>
t
22— 21,V FAZ)) — |2 Lz -zl - 1z K|
<~ Zea V(L)) = M Zuls = 5V = Zealh = 52 — R+ ©

1/1 ~ ~
Mz + 5 (5~ 1) 120~ R+ (VF() - V542020~ B)
t

1 1 ~
< W,V f — W2 2
max << ;Vii(Z)) 20 | ||F> A Zes [« 20 [ Zt41 — K+

1/1 ~ ~
FNZ+ 5 ( = 1) 12~ R + (V20 - V542020~ R)
t

U 1/1 ~ 1 N
=2V Z)F + M Zells — MZesall« + = ( - 1) 12 — K% — =1 Zes1 — K%
2 2 nt 27]t

+(VF(Z) = V%), Z — K).
We complete the proof by noticing

5% = max IV fe(Z) |3, and (VF(Z,) = V fi(Z,), Z — K) = (& — K, Z, — K).

Proof of Lemma 2
From Lemma 1 and the definition of 7;, we have
12041 — K|
452 4\ 4 ~ 464
< R0z~ 1zl + (1-F) 120~ R+

482 4\ t—2 = 2 =
==+ = 124l = 1 Zenall) + 12— RIF + 5 (20— 12— BII}) -

Following the strategy in (Rakhlin, Shamir, and Sridharan 2012), we unwind the above recursive inequality from ¢ = T till



t = 2 and obtain

| Z741 _[?H%
§4Ti22 + % (1 Zrll« = 1 Z741ll5) + % (25T —I2r - f(”%)
T; 2 [(T4521)2 N T4i\1 (1 Z-1lls — 1Z2]l.) + % (26T_1 | Zr—1 — [A(||%’):|
22z - RIG

<452 Z

W Zell« = 1Ze4all)
i=t+1 t=2 i=t41

(zat ~ 112 - z?u%)

= 1=t+1
Since HiT:t+1 i_i2 TtEtT 11)), we have
il ﬁ Z—Q_il Ht—1) _ 1
12 - w) — > 7o
e L g eTr-1) T
T T .
1 1 —2
> 5 — (1Ze)+ = 1 Ze1 1)
t=2 i=t+1
- T
= t—1)(|Z Z Z
T ) ;( ) (12l = 1 Zesa ) ZH il <
T 5 -2 T
- , 25—2—1?2) (25—2 f(?)

We complete the proof by substituting the above inequalities into (7).

Proof of Lemma 3
We need the Bernstein’s inequality for martingales (Cesa-Bianchi and Lugosi 2006), which is stated below.

Theorem 2 Let X1,..., X, be a bounded martingale difference sequence with respect to the filtration F =

with | X;| < K. Let

oy,
j=1

be the associated martingale. Denote the sum of the conditional variances by

Sr =Y E[X7|F].
t=1
Then for all constants t, v > 0,

2
2 <yl < —_
Pr[l_rrllz?%nS > tand ¥, 1/] exp( 2(V—|—Kt/3)>’

and therefore,

2
Pr [__rrllax S; > V2t + gKt and E?L < l/:| <e 7t

)

(]:i)lgz'gn and



From the assumption about the random matrix, it is easy to check that b, = (¢ — 1)d;, ¢ = 2,...,T is a martingale difference
sequence. Furthermore,

b < (¢ = D& — K|l Z: - Kllr < GD(T - 1).
Define the martingale By = Z;T:Q b:. Define the conditional variance X2 as

T T
S5 =Y B [0] < (T-1G*D (¢t 1)]|Z - K[
t=2

t=2

Ar

where E;_1[-] denotes the expectation conditioned on all the randomness up to the ¢ — 1-th iteration.
In the following, we consider two different scenarios: Ay < D? and Ay > D?.

Ap < D? Inthis case, we have

T T
:Z <GY (t-1D|z—-K|r<G thlx/AT<GD —1). (8)
t=2 t=2

Ar > D? Since Ar in the upper bound for ¥% is a random variable, we cannot apply Bernstein’s inequality directly. To
address this issue, we make use of the peeling process described in (Bartlett, Bousquet, and Mendelson 2005). Notice that we
have both a lower bound and an upper bound for A7, i.e.,

2 < Ap <T?D2.

We have
Pr|Br > 2/(T = 1)G2 A7 + §GD(T —1)r
Br > 20/(T — 1)G2ArT + %GD(T 1)1, D? < Ap < T2D2]

BT > 2\/(T — 1)G2Ar7 + %GD(T — )7, X2 < (T -1)G*Ap,D* < Ap < T2D2}
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where m = [2log, T'|, and the last step follows from Theorem 2. By setting

T = log m,
0
with a probability at least 1 — J, we have

Br <2/ (T — 1)G2AT7’ + gGD(T — 1)7’. 9

Combining (8) and (9), with a probability at least 1 — §, we have

Br <2/(T — 1)G2 Az + §GD(T —1)7r+GD(T —1)

1
<5Ar+ 2G2T(T — 1) + ;GD(T — )7+ GD(T —1).



Proof of Lemma 4
We first prove || Z;||p < 2C, ¥t > 1 by induction. Since || Z;||r = 0, we have

1227 = [Pyux [261]l1p < (26117 < 2C.
Suppose || Z:||r < 2C for some ¢ > 2. We will show that it leads to || Z;+1||r < 2C. To see this, we have
[ Zes1llr = Dyer [(1 = 0e) Ze + me&elll 2 < (1 =) Ze + m&el|
<N =m0 Zlle + Imlle = 2120 + 2l s < 2C.
Then, for the constant S in Lemma 1, we have

5% < max2||Z||% + 2/|&]/% < 10C2.
te(T]
For the constant v in Lemma 2, we have
= max || Z:||, < max/r¢||Z < 2C max+/r
7 = max [ Z:l < maxy/ il Ze|lF < max VT

where r; is the rank of Z;. Since

16— Kllr < [l&lr + |1 K]|F < &llr + B F] < 2C,
1Z: — K||r < | Zi]|r + | K||lr <2C + || K||r < 3C,

we can set G and D in Lemma 3 as
G =2C, and D = 3C.



