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Abstract

This paper aims to provide a sharp excess risk guarantee for
learning a sparse linear model without any assumptions about
the strong convexity of the expected loss and the sparsity of
the optimal solution in hindsight. Given a target level ε for
the excess risk, an interesting question to ask is how many
examples and how large the support set of the solution are
enough for learning a good model with the target excess risk.
To answer these questions, we present a two-stage algorithm
that (i) in the first stage an epoch based stochastic optimiza-
tion algorithm is exploited with an established O(1/ε) bound
on the sample complexity; and (ii) in the second stage a distri-
bution dependent randomized sparsification is presented with
an O(1/ε) bound on the sparsity (referred to as support com-
plexity) of the resulting model. Compared to previous works,
our contributions lie at (i) we reduce the order of the sample
complexity from O(1/ε2) to O(1/ε) without the strong con-
vexity assumption; and (ii) we reduce the constant in O(1/ε)
for the sparsity by exploring the distribution dependent sam-
pling.

Sparse learning is a fundamental problem in machine learn-
ing and statistics for high dimensional data analysis. Most
previous studies, including literature on LASSO (Tibshirani
1996; Zhao and Yu 2006)and compressed sensing (Candès
and Wakin 2008; Donoho 2006; Candés and Romberg
2007), have been devoted to the recovery analysis that pro-
vide theoretical guarantees on the recovery error of the
learned model with respect to the underlying true sparse
model under certain assumptions or conditions (e.g., Gaus-
sian noise model, RIP conditions, coherence, etc). In all of
these studies, they assume the underlying model is a sparse
vector and try to recover the sparse model from limited mea-
surements. In this paper, we are interested in the excess risk
of learning a sparse model without assuming the optimal so-
lution is sparse. This problem has a variety of applications
in practice. A sparse model is preferred when computational
resources are limited and features are expensive to obtain
(e.g., in medical diagnostic). In particular, if we let x ∈ R

d

and y ∈ R denote an input and output pair that follow an
unknown distribution P , and let w ∈ R

d denote a linear
model, we define the following excess risk of w:

ER(w,w∗) = EP [(w�x− y)2]− EP [(w�
∗ x− y)2]
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where w∗ is an optimal model that minimizes the expected
error in the domain D = {w : ‖w‖1 ≤ B}, i.e.,

w∗ = arg min
‖w‖1≤B

1

2
EP [(w�x− y)2] (1)

The parameter B is usually determined by cross-validation.
As a result, although there is an �1 norm constraint in the
above problem, the optimal solution w∗ is not necessarily
sparse. Our goal is to learn a sparse model to achieve a small
excess risk ER(w,w∗) ≤ ε. The question then boils down to
(i) How to learn such a sparse model? (ii) What is the sam-
ple complexity in order to guarantee a small excess risk?
and (iii) What is the support complexity of w to suffice for
an ε excess risk? In this paper, we answer these questions
in the affirmative. It is notable that our work differentiates
from previous work on sparse learning in that we do not as-
sume the optimal model is a sparse model, which has several
implications on the theoretical guarantee as we discuss later.

We develop our algorithms based on an approach pre-
sented in (Shalev-Shwartz, Srebro, and Zhang 2010), which
studied a similar problem in a pure optimization context. In
particular, they established the optimization error of an opti-
mization problem versus the sparsity of the resulting model.
They presented and analyzed two approaches: (i) the first
approach is a two-stage approach that in the first stage mini-
mizes the objective function under �1 constraint and the sec-
ond stage uses a randomized sparsification approach to find
a sparse model; (ii) the second approach is a direct optimiza-
tion approach based on the forward greedy selection. We no-
tice that 1 the two-stage approach combined with empirical
risk minimization (ERM) or stochastic optimization for min-
imizing EP [(w�x − y)2] can potentially resolve our prob-
lem. By existing theory of excess risk for ERM or stochastic
optimization (Hazan and Kale 2011; Nemirovski et al. 2009;
Sridharan, Shalev-Shwartz, and Srebro 2008; Srebro, Srid-
haran, and Tewari 2010), we can obtain an O(1/ε2) sample
complexity without strong convexity and an O(1/ε) sample
complexity with strong convexity. Considering the objective
function in (1):

L(w) =
1

2
w�EP [xx�]w −w�EP [yx] +

1

2
EP [y2]

1The second approach is not appropriate here since it assumes
the objective function can be evaluated exactly.
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it could be non-strongly convex since E[xx�] could have
a zero eigen-value unless under some special cases (e.g.,
features are independent and second moments of individual
features are positive). Therefore, existing analysis without
the strong convexity assumption only yields O(1/ε2) sam-
ple complexity 2.

In this paper, we present an improved analysis of the
excess risk for the two-stage approach without the strong
convexity assumption. In particular, we show that (i) the
sample complexity of a modified stochastic optimization al-
gorithm can be made O(1/ε) by exploiting a property of
the optimization problem similar to the error bound con-
dition (Luo and Tseng 1993); and (ii) the constant in the
support complexity O(1/ε) of the resulting model from ran-
domized sparsification can be reduced by exploiting a dis-
tribution dependent sampling. To the best of our knowledge,
this is the first work that considers the complexities of the
samples and the support of the solution for excess risk anal-
ysis. The empirical studies on real datasets demonstrate the
two improvements and also exhibit that the two-stage ap-
proach is much better than the single stage approach that
imposes a small �1 constraint on the solution in terms of
both sparsity and performance.

Related Work

In this section, we review some other closely related work.
Previous studies on sparse learning focus on deriving the or-
acle inequalities of the learned solution, i.e., ‖w−w∗‖when
the optimal solution w∗ is a (nearly) sparse vector. Most of
them assume a design matrix X and a set of measurements
of the target model w∗ by y = Xw∗ + ε. The analysis is
centered around the question of under what conditions one
can exactly or accurately recover the target model w∗. Dif-
ferent from these works, we study the prediction problem.
We do not assume the optimal model that has the best gener-
alization performance is a sparse model, but we aim to learn
a sparse model with a good generalization performance. To
this end, we use the excess risk to calibrate the learned model
and impose a target excess risk on the learned model for
analysis.

The most related work to the present paper in terms of
learning a sparse model is presented in (Shalev-Shwartz,
Srebro, and Zhang 2010) as we discussed before. However,
the authors either assume that the expected loss minimiza-
tion problem has been solved exactly (in their first approach)
or assume that the objective function and its gradient can
be evaluated exactly (in their second approach), which ren-
ders them inadequate for solving the problem considered in
this work. Recently, (Agarwal, Negahban, and Wainwright
2014) considered the problem of learning a sparse model by
minimizing an expected loss. The differences from our work
are (i) their algorithm hinges on the assumption that the ex-
pected loss is strongly convex, and (ii) their analysis also fo-
cuses on the oracle inequalities ‖w−w∗‖ not the excess risk.

2Although adding a strongly convex regularizer can make the
objective function strongly convex, it only ensures O(1/n) conver-
gence for the objective function not the expected loss (Sridharan,
Shalev-Shwartz, and Srebro 2008).

They obtained a fast convergence rate of O(s log(d)/T ),
where T is the number of samples and s is the sparsity of
the optimal model w∗. However, when the optimal model is
not sparse, their algorithm only enjoys O(log(d)/

√
T ) con-

vergence rate.
Our work on reducing the sample complexity of min-

imizing a non-strongly expected loss aligns with several
pieces of recent work on improving the convergence of opti-
mizing non-strongly convex functions. (Bach and Moulines
2013) presented the first work for minimizing the expected
square loss and logistic loss without the strong convex-
ity assumption that achieves an O(1/T ) convergence rate.
(Wang and Lin 2014) studied the feasible descent approach
for minimizing a family of non-strongly objective func-
tions by exploiting the global error bound, an extension of
the local error bound (Luo and Tseng 1993). They showed
that for certain problems (e.g., the dual problem of SVM),
one can achieve a linear convergence rate even without the
strong convexity assumption. Recently, there emerge sev-
eral works (So, 2013; Hou et al., 2013; Zhou, Zhang, and
So, 2015; Gong and Ye, 2014) that leverage the error bound
conditions for achieving fast convergence of other regular-
ized/constrained empirical loss minimization problems. The
similarities and differences between these works and our
work are summarized below:
• Similarities. Both (Bach and Moulines 2013) and this

work consider minimizing the expected loss and estab-
lishing the excess risk bound. We also explore a similar
condition to the global error bound for a non-strongly con-
vex function (Wang and Lin 2014).

• Differences. Different from (Bach and Moulines 2013)
that only considers the non-constrained problems, we
consider the �1 constrained problem. We put an empha-
sis on the expected loss minimization instead of regular-
ized/constrained empirical loss minimization as consid-
ered in (Wang and Lin, 2014; So, 2013; Hou et al., 2013;
Zhou, Zhang, and So, 2015; Gong and Ye, 2014). There-
fore the algorithms proposed there are not applicable to
our problem.

Learning a Sparse Model with Sharp Excess

Risk Analysis

Without loss of generality, we assume x ∈ [−1, 1]d and
|y| ≤ B and denote EP [·] by E[·] for short. We will first
present and analyze a stochastic optimization algorithm that
aims to solve

min
w∈D

[
L(w) =

1

2
E[(w�x− y)2]

]
(2)

where D = {w ∈ R
d : ‖w‖1 ≤ B}. In the sequel, we let

ΠΩ[ŵ] denote the projection into a domain Ω, i.e.,

ΠΩ[ŵ] = arg min
w∈Ω

‖w − ŵ‖22.

Let �(w · x, y) = 1
2 (w · x − y)2 denote the square loss

function.
Since the objective function is not necessarily strongly

convex, therefore the optimal solution might not be unique.
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Algorithm 1 Stochastic Optimization for Sparse Learning
1: Input: the total number of iterations T and η1, ρ1, T1.
2: Initialization: w1

1 = 0 and k = 1.
3: while

∑m
i=1 Ti ≤ T do

4: for t = 1, . . . , Tk do
5: Obtain a sample denoted by (xk

t , y
k
t )

6: Compute wk
t+1 = Π‖w‖1≤B,‖w−wk

1‖2≤ρk
[wk

t −
ηk∇�(wk

t · xk
t , y

k
t )]

7: end for
8: Update Tk+1 = 2Tk, ηk+1 = ηk/2, ρk+1 = ρk/

√
2

and wk+1
1 =

∑Tk

t=1 w
k
t /Tk

9: Set k = k + 1
10: end while
11: Output: ŵ = wm+1

1

To this end, we let Ω∗ denote the set of optimal solutions.
For any w ∈ R

d, we denote by w+ the closest optimal so-
lution to w, i.e.,

w+ = ΠΩ∗ [w] (3)

We denote the optimal expected loss by L∗, i.e., L∗ =
L(w∗), ∀w∗ ∈ Ω∗. Then the excess risk of w is 2(L(w) −
L∗). The key to our analysis is the following lemma that
lower bounds the excess risk of w by the scaled distance
from w to w+, which is independent of the optimization al-
gorithm.
Lemma 1. For any w ∈ D, there exists a κ > 0 such that

2(L(w)− L∗) ≥ 1

κ
‖w −w+‖22

Remark: The proof is presented in the appendix. The
value of κ depends on the optimization problem, in par-
ticular the distribution of the data, which is unfortunately
unknown to us. The above inequality can be easily recov-
ered for a strongly convex function L(w) with w+ being the
unique optimal solution and 1/κ being the strong convexity
parameter of L(w).

In the remainder of this section, we first present a stochas-
tic optimization together with its sample complexity guaran-
tee for solving the �1 constrained problem (2) in the imme-
diate following subsection. After that, we present a distri-
bution dependent randomized sparsificiation algorithm for
obtaining a sparse model with excess risk guarantee. In the
final subsection, we discuss the implementation issues.

Stochastic Optimization

We are now ready to present the stochastic optimization al-
gorithm and its excess risk guarantee. The algorithm pre-
sented in Algorithm 1 is based on the epoch gradient de-
scent (Hazan and Kale 2011), which is originally proposed
and analyzed for only strongly convex optimization. The
values of η1, ρ1, T1 are specified differently to handle the
unknown value of κ. The following theorem establishes the
excess risk guarantee of Algorithm 1.
Theorem 1. Assume ‖x‖22 ≤ R2. By running Algo-
rithm 1 with ρ1 = B, η1 = 1/(2R

√
T1), T1 ≥ (8cR +

Algorithm 2 Randomized Sparsification
1: Input: ŵ = (ŵ1, . . . , ŵd) and probabilities p1, . . . , pd

such that
∑d

j=1 pj = 1

2: Initialization: w̃0 = 0.
3: for k = 1, . . . ,K do
4: sample ik ∈ [d] according to the distribution Pr(ik =

j) = pj

5: Compute [w̃k]ik = [w̃k−1]ik +
ŵik

pik

6: end for
7: Output: w̃ = w̃K

K

64R

√
2 log(1/δ̃))2. In order to have ER(ŵ,w∗) ≤ ε with a

high probability 1− δ over {(xk
t , y

k
t )}, it suffice to have

T =
cB2T1

ε

where δ̃ = δ
m , m = 	log2(cB2/(2ε) + 1)
 and c =

max(κ, 1).

Remark 1 (No strong convexity assumption): The
sample complexity of Algorithm 1 is O(1/ε) for achieving
an ε excess risk. Compared to previous work without the
strong convexity assumption, this order is improved upon
O(1/ε2).

Remark 2 (No sparsity assumption): Another is-
sue is the dependence on the dimensionality. The
sample complexity in Theorem 1 has a linear de-
pendence on d due to R ≤ √

d. Several previous
work (Agarwal, Negahban, and Wainwright 2014;
Shalev-Shwartz and Tewari 2011) can exploit the spar-
sity of the optimal solution w∗ and obtain a logarithmic
dependence on the dimensionality. For example, (Agarwal,
Negahban, and Wainwright 2014) exploited both the strong
convexity of the expected loss and the sparsity of the
optimal solution and achieved an O(s log(d)/ε) sample
complexity, where s is the sparsity of w∗. However, when
the optimal solution is not sparse they can only obtain
O(log(d)/ε2) even with the strong convexity assumption.
In contrast, our result is the first that establishes O(d/ε)
sample complexity without strong convexity and sparsity
assumptions.

Distribution Dependent Randomized Sparsification

Although Theorem 1 provides a guarantee on the excess risk
of ŵ found by Algorithm 1, it has no guarantee on the spar-
sity of ŵ. Previous studies have found that minimizing the
�1 constrained problem does not necessarily lead to a sparse
solution. A naive heuristic to make the solution sparse is to
choose the coordinates according to the magnitude of ele-
ments in ŵ. Alternatively, one can choose the coordinates in
a randomized way using the randomized sparsification pro-
cedure given in Algorithm 2. (Shalev-Shwartz, Srebro, and
Zhang 2010) used pj =

|ŵj |
‖w‖1

to define the sampling prob-
abilities and established the following result for the number
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of steps K. Since supp(w̃) ≤ K, therefore the theorem be-
low also provides an upper bound for the sparsity of w̃.

Theorem 2. (Shalev-Shwartz, Srebro, and Zhang
2010) Given the samples in Algorithm 1, let
pj =

|ŵj |
‖ŵ‖1

, j ∈ [d] in Algorithm 2. In order to have
ER(w̃,w∗) ≤ ER(ŵ,w∗) + ε with a probability 1 − δ, it
suffice to have

K =

⌈‖ŵ‖21
εδ

⌉
Next, we describe a distribution dependent randomized

sparsification algorithm that provides guarantee on the spar-
sity of the resulting model for achieving an ε excess risk,
which is better than Theorem 2 by a distribution dependent
constant factor. The intuition is that since we are ultimately
interested in the prediction performance made by w̃�x, thus
the probabilities of selecting the coordinates should be de-
pendent on the magnitude of ŵixi, i ∈ [d]. This is formally
stated in the following theorem.

Theorem 3. Given the samples in Algorithm 1, let pj =√
ŵ2

jE[x2
j ]∑d

j=1

√
ŵ2

jE[x2
j ]
, j ∈ [d] in Algorithm 2. In order to have

ER(w̃,w∗) ≤ ER(ŵ,w∗) + ε with a probability 1− δ over
i1, . . . , iK , it suffice to have

K =

⎡⎢⎢⎢⎢
(∑d

i=1

√
ŵ2

jE[x
2
j ]
)2

εδ

⎤⎥⎥⎥⎥
Remark: The value of K in Theorem 3 is always less than

that in Theorem 2, because
(∑d

i=1

√
ŵ2

jE[x
2
j ]
)2

≤ ‖ŵ‖21.
The equality holds only when the second moments of indi-
vidual features are equal. For small values of ε and δ, the
improvement could be significant. In practice, the second
order moments may not be know aprior. We can calculate
empirical estimations using the samples from the first stage.

Implementation

It is notable that Algorithm 1 requires a projection into the
intersection of an �1 ball and an �2 ball. The problem is

min
‖w‖1≤B

1

2
‖w − ŵ‖22 (4)

s.t. ‖w − c‖22 ≤ r2

First, it should be noticed that the above problem always
has a feasible solution and the optimal solution is unique.
This is because c is a feasible solution due to c = wk

1 and
‖wk

1‖1 ≤ B, and the uniquness is due to that the objective
function is a strongly convex function.

By the Lagrangian theory, the above problem is inequiva-
lent to

max
η≥0

min
‖w‖1≤B

1

2
‖w − ŵ‖22 +

η

2
(‖w − c‖22 − r2)︸ ︷︷ ︸

g(η)

To solve this, we present an efficient bisection search algo-
rithm. Let α = 1

1+η ∈ [0, 1] and wα = αŵ + (1 − α)c

and w∗
α = Π‖w‖1≤B [wα]. The g(η) function is a concave

function of η. Given an η (or equivalently α), we can com-
pute the gradient of g(η). If∇g(η) < 0, we should decrease
η (i.e., increase α); otherwise we should increase η (i.e., de-
crease α). To compute the gradient of g(η), we need to find
w∗

α the optimal solution to the inner minimization problem
w.r.t w, i.e.,

w∗
α = arg min

‖w‖1≤B

1

2

∥∥∥∥w − ŵ + ηc

1 + η

∥∥∥∥2
2

(5)

Then the gradient of g(η) can be computed by ∇g(η) =
1
2 (‖w∗

α − c‖22 − r2).
We can start from α = 1, i.e., η = 0, if ‖w∗

1 − c‖2 ≤ r
then w∗

1 is the optimal solution; otherwise we set α = 1/2
and compute w∗

1/2. If ‖w∗
1/2 − c‖2 < r we need to increase

α, otherwise we decrease α. Since every iteration we cut the
search space by half, in order to find an εs accurate solution
(i.e., the distance to the optimal solution is less than εs), we
only need

⌈
log2

(
‖ŵ−c‖2

εs

)⌉
iterations. To see this, we let

wαk
and w∗

αk
denote the generated sequences and let wα∗

and ŵα∗ denote the corresponding vectors to the optimal
η∗. By the non-expansive property of projection (Bertsekas
1999), we have

‖w∗
αk
−w∗

α∗‖2 ≤ ‖wαk
−wα∗‖2 ≤

‖ŵ − c‖2
2k

≤ εs.

Finally, for solving the projection into the �1 ball in (5),
we can use the linear time algorithm proposed in (Duchi et
al. 2008). Thus, the total time complexity for solving (4) is
O(d log(‖ŵ−c‖2/εs)). We present the detailed steps of bi-
section search in Algorithm 3, where the exiting condition is
determined by the magnitude of |‖w∗

α − c‖2 − r|. Note that

|‖w∗
αk
− c‖2 − r| = |‖w∗

αk
− c‖2 − ‖w∗

α∗ − c‖2|
≤ ‖w∗

αk
−w∗

α∗‖2
Therefore, we need at most

⌈
log2

(
‖ŵ−c‖2

εs

)⌉
iterations.

Main Analysis

Proof of Theorem 1

The proof builds upon the following lemma, which is proved
in the appendix.
Lemma 2. Let D be an upper bound on ‖w1 −
w+

1 ‖2. Applying T iterations of the update wt+1 =
Π‖w‖1≤B,‖w−w1‖2≤ρ[wt − ηĝt], where ĝt is an unbiased
estimator for the subgradient of L(w) at wt satisfying
‖ĝt‖2 ≤ G. Then for any δ ∈ (0, 1), with a probability
at least 1− δ we have

L

(
1

T

T∑
t=1

wt

)
− L∗ ≤ ηG2

2
+
‖w1 −w+

1 ‖22
2ηT

+
2G(ρ+D)

√
2 log(1/δ)√

T
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Algorithm 3 Bisection search for solving the projection into
the intersection of an �1 ball and an �2 ball

1: Input: ŵ, c, r, B and precision εs ≥ 0
2: Initialization: αmin = 0, αmax = 1
3: solve for w∗

1 .
4: if ‖w∗

1 − c‖2 ≤ r then
5: return w∗

1
6: end if
7: while ‖w∗

α − c‖2 > r or |‖w∗
α − c‖2 − r| > εs do

8: set α = (αmin + αmax)/2
9: solve for w∗

α
10: if ‖w∗

α − c‖2 < r then
11: αmin = α
12: else
13: αmax = α
14: end if
15: end while
16: return w∗

α

We apply the above lemma to each epoch of Algorithm 1.
We prove the Theorem 1 by induction. Let c = max(κ, 1).
We assume

‖wk
1 −wk,+

1 ‖22 ≤
c2B2

2k−1
, L(wk

1)− L∗ ≤ cB2

2k

It is true for k = 1 since ‖w1,+
1 ‖2 ≤ ‖w1,+

1 ‖1 ≤ B and
L(w1

1) ≤ B2

2 . Let Dk = cB√
2k−1

, ρk = B√
2k−1

and ηk =
1

2kR
√
T1

. Then we prove

‖wk+1
1 −wk+1,+

1 ‖22 ≤
c2B2

2k
, L(wk+1

1 )− L∗ ≤ cB2

2k+1

We note that ĝt = ∇�(wk
t ·xk

t , y
k
t ) = xt(w

k
t ·xt−yt). Thus

‖ĝt‖2 ≤ 2RB. Then we have

L
(
wk

T

)
− L∗ ≤ ηk4B

2R2

2
+

‖wk
1 −wk,+

1 ‖22
2ηkTk

+
8BR(ρk +Dk)

√
2 log(1/δ)√

Tk

≤ ηk4B
2R2

2
+

B2c2

2k−12ηkTk
+

8BRB(c+ 1)
√

2 log(1/δ)√
2k−1

√
Tk

≤ B2R(c2 + 1)

2k−1
√
T1

+
8B2R(c+ 1)

√
2 log(1/δ)

2k−1
√
T1

≤ B2c

2k+1

(
8cR+ 64R

√
2 log(1/δ)√

T1

)

where we use the fact c ≥ 1. If we choose T1 such that
T1 = (8cR+ 64R

√
2 log(1/δ))2, then

L(wk
T )− L∗ ≤ cB2

2k+1

and

‖wk+1
1 −wk+1,+

1 ‖22 ≤ 2κ(L(wk+1
1 )− L∗) ≤ c2B2

2k

Note that T = T1 + · · ·+ Tm = T1(2
m − 1). Therefore

L(wm
T )− L∗ ≤ cB2T1

2T

When T =
cB2T1

ε
, we have

2(L(ŵ)− L∗) ≤ ε

Proof of Theorem 3

First, it is easy to verify that w̃ = ŵ ◦ ξ, where ξi =
mi

Kpi
and mi, i = 1 . . . , d follow a multinomial distribution

Mult(p1, . . . , pd;K). It is straightforward to see Eξ[w̃] =
ŵ. By the quadratic form of L(w), we have

L(w̃)− L(ŵ) ≤ ∇L(ŵ)�(w̃ − ŵ)

+
1

2
Ex[(w̃ − ŵ)�xx�(w̃ − ŵ)]

Taking expectation over the randomness over w̃, we have

Eξ[L(w̃)− L(ŵ)] ≤ 1

2
Ex,ξ[(w̃ − ŵ)�xx�(w̃ − ŵ)]

where we use Eξ[w̃] = ŵ. Since Eξ[w̃
�] = ŵ�, therefore

Eξ[(w̃ − ŵ)�xx�(w̃ − ŵ)]

= Eξ[x
�(w̃ − ŵ)(w̃ − ŵ)�x]

= x�cov(ŵ ◦ ξ)x

=
1

K

d∑
i=1

ŵ2
i x

2
i

pi
− 1

K
(ŵ�x)2

Therefore

Eξ[L(w̃)− L(ŵ)] ≤ 1

2

[
1

K

d∑
i=1

ŵ2
iE[x

2
i ]

pi
− 1

K
E[(ŵ�x)2]

]
By minimizing the upper bound, we have

pi =

√
ŵ2

iE[x
2
i ]∑d

j=1

√
E[ŵ2

jx
2
j ]

and

Eξ[L(w̃)− L(ŵ)] ≤ 1

2K

⎡⎣( d∑
i=1

√
ŵ2

jE[x
2
j ]

)2

− E[(ŵ�x)2]

⎤⎦
≤ 1

2K

(
d∑

i=1

√
ŵ2

jE[x
2
j ]

)2

By Markov inequality, we complete the proof.

Experiments

In this section, we present some experimental results on
two real datasets: E2006-tfidf and E2006-log1p3, which both
have 16, 087 training examples and 3, 308 test examples.

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
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Figure 1: Comparison of RMSE between SGD and Epoch-SGD in the first stage (left two) and between MG-Sparsification and
DD-Sparsification in the second stage (right two).

E2006-log1p includes 4, 272, 227 features while E2006-tfidf
contains 150, 360 features. The two datasets are for text
regression with different types of features. We first con-
duct experiments to validate each of the two stages sepa-
rately. We use the root mean square error (RMSE) on the
test data as a measure of generalization performance. For
the first stage, we compare the presented stochastic opti-
mization algorithm (referred to Epoch-SGD) to the stan-
dard stochastic gradient descent (SGD). The step size pa-
rameter in SGD and the initial step size in Epoch-SGD are
tuned in [0.1 0.05 0.01 0.005 0.001 0.0005 0.0001] by a
cross-validation approach, and so as the number of itera-
tions T1 of the first epoch in Epoch-SGD. The value of B
is set to the maximum absolute value of y in the training
data. For the second stage, we compare two different sparsi-
fication strategies, namely the sampling based on the mag-
nitude of entries in ŵ learned in the first stage (referred to
as MG-Sparsification) and the proposed distribution depen-
dent sampling (referred to as DD-Sparsification).

The left two figures in Figure 1 compare RMSE of Epoch-
SGD and SGD in the first stage. We run both algorithms for
a number of epochs so that they pass through all examples in
training dataset once. The x-axis represents the epoch num-
ber k as in Epoch-SGD. It can be observed that Epoch-SGD
can reduce RMSE faster than SGD on both data sets. In Fig-
ure 1, we also plot RMSE (averaged over 100 random trials)
versus K for MG-Sparsification and DD-Sparsification al-
gorithms in the second stage. We also report the performance
of the full model that is learned in the first stage by Epoch-
SGD. The results demonstrate that (i) RMSE of the sparsi-
fied model decreases gradually as we include more coordi-
nates, which is expected; (ii) DD-sparsification achieves bet-
ter performance for the same value of K, which verifies The-
orem 3; and (iii) the performance of DD-sparsification with
K = 500 on E2006-tfidf and with K = 5000 on E2006-
log1p (almost) match the performance of the full model on
the two datasets, respectively.

Finally, we compare the proposed two-stage approach for
learning a sparse model to a traditional single stage approach
that tries to learn a sparse model by SGD with a small value
of B for the �1 norm constraint. To achieve different sparsity
of the resulting solution for the single stage approach, we
vary the value of B and plot RMSE versus the sparsity of the
solution (i.e., ratio of the number of non-zero entries to the
total dimension). The results are plotted in Figure 2, where
the green bar is result of the proposed two-stage approach

and other bars are the results of the single stage approach
with different values of B. It clearly shows that the two-
stage approach can achieve much better performance with a
much sparser solution than the single stage approach.

Figure 2: RMSE versus sparsity of models learned by the
single stage approach for sparse learning (SpS) with differ-
ent values of B and by the two-stage approach for sparse
learning (SpT).

Conclusions

In this paper, we have considered the problem of learning a
sparse model with excess risk guarantee. For the first time,
we show that in order to achieve an ε excess risk, the sample
complexity can be O(1/ε) without any assumptions on the
strong convexity and the sparsity of the optimal solution. We
also exploit a distribution dependent sampling to generate a
sparse model with O(1/ε) sparsity for achieving an ε excess
risk. Compared with the previous approach, we improve the
bound by a distribution dependent constant order. Empiri-
cal studies on real datasets verify the improvements and ef-
fectiveness of the proposed algorithm in learning a sparse
model with a good generalization performance in compari-
son with traditional approaches by imposing a small �1 con-
straint. An open problem that remains is whether we can ob-
tain a logarithmic dependence on the dimensionality for the
sample complexity by exploiting the sparsity of the optimal
solution but still maintain O(1/ε) order without the strong
convexity assumption.
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