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Abstract

Although distance metric learning has been successfully ap-
plied to many real-world applications, learning a distance
metric from large-scale and high-dimensional data remains
a challenging problem. Due to the PSD constraint, the com-
putational complexity of previous algorithms per iteration is
at least O(d2) where d is the dimensionality of the data. In
this paper, we develop an efficient stochastic algorithm for a
class of distance metric learning problems with nuclear norm
regularization, referred to as low-rank DML. By utilizing the
low-rank structure of the intermediate solutions and stochas-
tic gradients, the complexity of our algorithm has a linear de-
pendence on the dimensionality d. The key idea is to main-
tain all the iterates in factorized representations and construct
stochastic gradients that are low-rank. In this way, the pro-
jection onto the PSD cone can be implemented efficiently by
incremental SVD. Experimental results on several data sets
validate the effectiveness and efficiency of our method.

Introduction

Distance metric learning (DML) aims to learn a distance
metric for the input space of data from a given set of train-
ing examples (Yang and Jin 2006). A well-learned dis-
tance metric can reflect domain-specific connections and re-
lationships, and significantly improve the performance of
distance-based learning algorithms such as K-means clus-
tering (Xing et al. 2002) and nearest neighbor classifica-
tion (Weinberger and Saul 2009). In the past decades, a
large number of DML methods have been proposed like
Pseudo-metric Online Learning Algorithm (POLA) (Shalev-
Shwartz, Singer, and Ng 2004), Maximally Collapsing
Metric Learning (MCML) (Globerson and Roweis 2005),
Information-Theoretic Metric Learning (ITML) (Davis et
al. 2007), Large Margin Nearest Neighbor (LMNN) (Wein-
berger and Saul 2009) and Riemannian Similarity Learning
(RSL) (Cheng 2013). These methods have been successfully
applied to many real-world applications, such as image re-
trieval and classification (Kulis 2013; Frome et al. 2007),
bioinformatics (Kato and Nagano 2010), text analysis (Davis
and Dhillon 2008), and Automated Program Debugging (Ha
et al. 2007).
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Although DML has achieved great success in prac-
tice, learning a distance metric from large-scale and high-
dimensional data remains a big challenge, due to the high
computational complexity. Generally speaking, the opti-
mization problem of DML is formulated as a convex op-
timization problem over the positive semi-definite (PSD)
cone, which can be solved by gradient-based methods (Nes-
terov 2004). The computational challenge is mainly caused
by two factors: (i) the evaluation of the gradient is expen-
sive when there is a large number of training examples, and
(ii) the projection onto the PSD cone is also costly when the
dimensionality is high. While the first issue can be easily ad-
dressed by stochastic methods (Shalev-Shwartz et al. 2009),
such as stochastic gradient descent (SGD) which only sam-
ples a subset of training examples to calculate the gradient,
the second one is much more tricky. Let d be the dimension-
ality of the data. The projection onto the PSD cone needs to
eigen decompose a matrix of size d× d, and thus has O(d3)
time complexity.

To reduce the computational cost of projections, the most
straightforward way is to learn the distance metric after
performing dimensionality reduction (Weinberger and Saul
2009; Tsagkatakis and Savakis 2010; Qian et al. 2015b).
However, due to the subspace removed by dimension re-
duction methods, this kind of methods always lead to sub-
optimal solutions. Another way to reduce the computational
cost is to utilize more advanced optimization techniques that
avoid the projection step, such as the Frank-Wolfe technique
(Hazan and Kale 2012), and the convex-concave formulation
(Mahdavi et al. 2012). Although the computational cost per
iteration can be reduced from O(d3) to O(d2), it is still pro-
hibitive for high dimensional problems. A recent work has
shown that by constructing a low-rank stochastic gradient, it
is also possible to reduce the computational cost of SGD per
iteration to O(d2) (Chen, Yang, and Zhu 2014).

In this paper, we focus on the problem of low-rank dis-
tance metric learning (Davis and Dhillon 2008; Liu et al.
2015), in which a nuclear norm regularizer is introduced to
promote low-rankness of the distance metric. The advantage
of low-rank DML is that it can reduce effects of noise and
prevent model overfitting as well. Similar to previous stud-
ies (Chen, Yang, and Zhu 2014), we construct a low-rank
stochastic gradient in each round and apply SGD to update
the intermediate solution. However, our algorithm goes one
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step further by exploiting the fact that both the intermediate
solution and the stochastic gradient are low-rank to accel-
erate the projection operation. Specifically, we maintain all
the iterates and stochastic gradients in factorized represen-
tations and the projection operation can be implemented in
O(dr2) time by incremental SVD (Brand 2006), where r is
the rank of the intermediate solution. The main advantages
of the proposed algorithm are summarized as follows.
• By utilizing the low-rank structure of intermediate solu-

tions and stochastic gradients, the time complexity per it-
eration is O(dr2), which depends on d linearly.

• The proposed algorithm always maintains low-rank fac-
torizations of iterates and gradients, and the space com-
plexity is O(dr), in contrast to the O(d2) space complex-
ity of previous methods.

• Since the proposed algorithm is a SGD-based approach,
existing theoretical guarantees for SGD also hold for our
algorithm. In particular, the convergence rate of our algo-
rithm is O(log T/

√
T ) and O(log T/T ) for general con-

vex functions and strongly convex functions, respectively.

Related Work

Distance metric learning (DML) is a main research field
in machine learning and has been extensively studied in
the past decades. In this section, we mainly describe tech-
niques for reducing the computational cost of DML. For
other aspects of DML, please refer to (Yang and Jin 2006;
Bellet, Habrard, and Sebban 2013; Kulis 2013).

A majority of DML methods concentrated on learning a
Mahalanobis distance

dW (x,y) = (x− y)�W (x− y)

where x,y ∈ R
d are two data points, and W ∈ R

d×d is a
symmetric PSD matrix. The optimization problem of DML
is generally formulated as

min
W∈Rd×d

f(W )

s. t. W ∈ S+

(1)

where S+ is the set of symmetric positive semi-definite ma-
trices, and referred to as the PSD cone in optimization (Boyd
and Vandenberghe 2004). Here, f(·) is the loss function that
is algorithm-dependent. The standard algorithm for optimiz-
ing (1) is the gradient descent (GD) (Nesterov 2004)

Wt+1 = ΠS+ [Wt − ηt∇f(Wt)]

where Wt is the solution in the t-th round, ηt > 0 is the step
size, and ΠS+ [·] denotes the projection onto the PSD cone
S+. The complexity of calculating the gradient ∇f(Wt) de-
pends on the number of training examples and the dimen-
sionality d, and the complexity of the projection is O(d3).
To make DML methods practical for large-scale and high-
dimensional problems, three main techniques are applied.

The first strategy performs certain preprocessing to the
data before learning the distance metric. In the literatures,
many methods choose to employ dimensionality reduc-
tion methods like Principal Component Analysis (PCA)

(Weinberger and Saul 2009), and random projection (RP)
(Tsagkatakis and Savakis 2010). However, because of the
subspace removed by dimensionality reduction, these meth-
ods always result in suboptimal solutions. To alleviate this
limitation, Qi et al. present a dual random projection frame-
work for DML (Qian et al. 2015b). Though they can recover
the optimal solution with a small error, their formulation es-
sentially drops the PSD constraint. For low-rank DML, Liu
et al. propose to apply Singular Value Decomposition (SVD)
first and then use the linearized modification of ADMM
to learn a low-dimensional metric (Liu et al. 2015). Their
method works fine when the number of data is small but is
not feasible when the number of data is very large.

The second strategy resorts to making assumptions on the
structure of the distance metric to be learned. For example,
the authors of (Schultz and Joachims 2003) suppose the dis-
tance metric is diagonal, and the authors of (Lim, Lanck-
riet, and McFee 2013; Qi et al. 2009) enforce the distance
metric to be sparse. However, strong assumptions of the dis-
tance metric may limit their applications. In (Weinberger
and Saul 2009) and (Kedem et al. 2012), the authors assume
that W = LL� where L is low-rank. Though these methods
allow us to remove the PSD constraint on W and the com-
putation of gradients is also easier, they can only find local
optima because of their non-convex formulations.

The third strategy is based on more advanced optimization
methods. Perhaps the most well-known one is the stochastic
gradient descent (SGD)

Wt+1 = ΠS+ [Wt − ηtg(Wt)]

where g(Wt) is a stochastic gradient such that E[g(Wt)] =
∇f(Wt). Because the stochastic gradient is easy to calcu-
late, the complexity of SGD is cheaper than GD per itera-
tion. However, the projection step remains there, and may
become the bottleneck when the dimensionality is high. Al-
though mini-batches can be incorporated into SGD to reduce
the number of projections to some extent (Qian et al. 2015a),
the number of projections is still very large if we want to
find a high-precision solution (Cotter et al. 2011). In (Chen,
Yang, and Zhu 2014), the authors describe an efficient SGD
algorithm that takes advantage of the low-rank structure of
the stochastic gradient.

There are also some optimization techniques that do not
need the projection step. For example, in (Hazan and Kale
2012), the authors develop a projection-free SGD algorithm
based on the Frank-Wolfe technique, which involves solv-
ing constrained linear programming problems. In (Mah-
davi et al. 2012), the authors propose a convex-concave
formulation that moves the domain constraint into the ob-
jective function, and thus avoid the projection. The algo-
rithms in (Hazan and Kale 2012; Mahdavi et al. 2012;
Chen, Yang, and Zhu 2014) are efficient in the sense that
the computational cost per iteration is reduced from O(d3)
to O(d2), but it is still a heavy burden for large d. Further-
more, their space complexity is also O(d2) since they need
to store a d× d matrix in memory.

Compared to (Hazan and Kale 2012; Mahdavi et al. 2012;
Chen, Yang, and Zhu 2014), the time complexity of the algo-
rithm in this paper only has a linear dependence on d instead
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Algorithm 1 Efficient SGD for low-rank DML
Input: The number of trials T

1: Initialize W1 = 0
2: for t = 1, 2, . . . , T do
3: Construct a low-rank stochastic gradient g(Wt) =

AtA
�
t of f(·) at Wt

4: Calculate Wt+1 according to (3) {The implementa-
tion is based on Incremental SVD}

5: end for
6: return WT+1

of a quadratic dependence. Furthermore, the space complex-
ity of our algorithm is also linear in d.

Algorithm

In this section, we present an efficient SGD method for
low-rank DML (Davis and Dhillon 2008; Liu et al. 2015).

The Overall Procedure

To promote low-rank distance metrics, we introduce a nu-
clear norm regularizer into (1). Since W is a PSD matrix,
we have

‖W‖∗ = tr(W )

where ‖ · ‖∗ is the nuclear norm and tr(·) is the trace opera-
tion. As a result, the optimization problem of low-rank DML
can be written as

min
W∈Rd×d

f(W ) + λ tr(W )

s. t. W ∈ S+

(2)

where λ > 0 is a trade-off parameter. As can be seen, due
to the PSD constraint, the non-smooth nuclear norm ‖ · ‖∗
is replaced with a linear function tr(·), which simplifies the
development of optimization algorithms. Based on SGD, we
will update Wt according to

Wt+1 = ΠS+ [Wt − ηtg(Wt)− ηtλI] (3)

where g(Wt) is a stochastic gradient of f(·) evaluated at Wt.
A remarkable property of (3) is that if Wt is low-rank, Wt+1

also tends to be low-rank due to the minus of ηtλI and the
projection operation.

Following (Avron et al. 2012; Zhang et al. 2016), we will
enforce the following two requirements:

1. Wt is symmetric and represented in the form of eigen
decomposition. 1 Let the rank of Wt be rt. We have
Wt = UtΣtU

�
t , where Ut ∈ R

d×rt and Σt ∈ R
rt×rt .

2. g(Wt) is a low-rank and symmetric matrix, and is repre-
sented as g(Wt) = AtA

�
t , where At ∈ R

d×ct .
When the above two conditions are satisfied, the updating
rule in (2) can be solved efficiently by the incremental SVD
(Brand 2006). The initial solution W1 is set to the zero ma-
trix, and we return the last iterate WT+1 as the final solution.
The overall procedure is described in Algorithm 1.

1By default, we will use “compact” eigen decomposition, which
only keeps the nonzero eigenvalues.

The application of incremental SVD to (2) is inspired by
the previous stochastic algorithms for nuclear norm regular-
ization (Avron et al. 2012; Zhang et al. 2016), so the overall
frameworks are similar. However, there also exists some dif-
ferences, as stated below.
• Both our algorithm and that in (Avron et al. 2012) are

based on SGD, but we study the problem of distance met-
ric learning and have an additional PSD constraint. Fur-
thermore, in our algorithm, we simply take the last iterate
of SGD as the final solution. In contrast, the algorithm in
(Avron et al. 2012) needs to find the iterate that minimizes
the objective function, which incurs additional computa-
tions.

• While our algorithm is a SGD-type algorithm, the algo-
rithm in (Zhang et al. 2016) is based on stochastic prox-
imal gradient descent (SPGD). Moreover, the authors in
(Zhang et al. 2016) only consider the square loss and there
is no PSD constraint.

In the following, we will discuss how to construct a low-rank
stochastic gradient and how to solve (2) efficiently.

Constructing a Low-rank Stochastic Gradient

In the literature, we can find various ways to construct a
low-rank stochastic gradient of f(·) (Avron et al. 2012;
Chen, Yang, and Zhu 2014). In the following, we will pro-
vide one approach by taking the loss of Large Margin Near-
est Neighbor (LMNN) (Weinberger and Saul 2009) as an
example.

In LMNN, the loss function is given by
f(W )

=
c

n

∑
i,j,k

ρij(1− yij)�
(
1 + ||xi − xj ||2W − ||xi − xk||2W , 0

)

+
1

m

∑
i,j

ρij ||xi − xj ||2W

where ρij ∈ {1, 0} indicates if xj is a target neighbor of
xi, yij ∈ {1, 0} represents whether xi and xj shares the
same class label, �(x, 0) = max(x, 0) is the hinge loss, and
n,m, c respectively denotes the number of active triplets, the
number of pairs and a balancing parameter of the two terms.

The low-rank stochastic gradient of f(·) can be con-
structed as follows. We randomly sample a triplet (i1, j1, k)
and a pair (i2, j2). Here, (xi1 ,xj1) and (xi2 ,xj2) respec-
tively share the same label while xk has a different label to
the pair (xi1 ,xj1). Then, the stochastic gradient is given by

g(Wt)

=c(xi1 − xj1)(xi1 − xj1)
� − c(xi1 − xk)(xi1 − xk)

�

+ (xi2 − xj2)(xi2 − xj2)
� ,

when 1 + ||xi1 − xj1 ||2W − ||xi1 − xk||2W > 0, and

g(Wt) = (xi2 − xj2)(xi2 − xj2)
� ,

otherwise. It is obvious that g(Wt) is a stochastic gradi-
ent of g(·). Furthermore, it is symmetric and low-rank, and
thus can be represented as AtA

�
t . Finally, note that we can

control the rank of g(Wt) by sampling specific number of
triplets and pairs.
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Updating Wt by Incremental SVD

Next, we show that when Wt is represented in the form of
eigen decomposition (i.e, Wt = UtΣtU

�
t ) and g(Wt) is rep-

resented in factorized form (i.e., g(Wt) = AtA
�
t ), the up-

dating rule in (3) can be implemented efficiently.
The key idea is to make use of the incremental SVD

(Brand 2006) to calculate the eigen decomposition of Wt −
ηtg(Wt), which is described below.

Incremental SVD Let W ∈ R
d×d be a rank-r matrix with

eigen decomposition W = UΣU�, where U ∈ R
d×r and

Σ ∈ R
r×r. Let A ∈ R

d×c. Then, the eigen decomposition
of W −AA� can be calculated in O(d(r + c)2 + (r + c)3)
time with O(d(r + c)) memory.

Let P be an orthogonal basis of the column space of
(I − UU�)A, and set RA = P�(I − UU�)A. Note that
cols(P ) = rows(RA) = rank((I − UU�)A) ≤ c, and may
be zero if A lies in the column space of U . Then, we have

[ U A ] = [ U P ]

[
I U�A
0 RA

]
.

Then, we can easily get

W −AA� = [ U P ]K [ U P ]
�

where

K =

[
I U�A
0 RA

] [
Σ 0
0 −I

] [
I U�A
0 RA

]�

=

[
Σ 0
0 0

]
−

[
U�A
RA

] [
U�A
RA

]�
∈ R

(r+p)×(r+p)

and p = cols(P ). Let the eigen decomposition of K be
K = Û Σ̂Û�. Then, the eigen decomposition of W − AA�
is given by

W −AA� =
(
[ U P ] Û

)
Σ̂
(
[ U P ] Û

)�
.

Efficient Updating

We first recall some basic facts of projection onto the PSD
cone.
Theorem 1. Let X ∈ R

d×d be a symmetric matrix with
eigen decomposition

X =
∑
i

λiuiu
�
i

where (λi ∈ R,ui ∈ R
d) is the i-th pair of eigenvalue and

eigenvector. Then, the projection of X onto the PSD cone
S+ is given by (Boyd and Vandenberghe 2004)

ΠS+ [X] =
∑

i:λi>0

λiuiu
�
i .

Following the above theorem, the updating rule in (3) can
be implemented in two steps:

1. Given Wt = UtΣtU
�
t and g(Wt) = AtA

�
t , we use the

incremental SVD to obtain the eigen decomposition of
Ŵt+1 = Wt − ηtg(Wt). Let rt and ct be the rank of
Wt and g(Wt), respectively. The time and space com-
plexities of this step are O(d(rt + ct)

2 + (rt + ct)
3) and

O(d(rt + ct)), respectively.

2. Based on the eigen decomposition of Ŵt+1 =∑
i μiviv

�
i , Wt+1 = ΠS+ [Ŵt+1 − ηtλI] can be calcu-

lated directly according to Theorem 1. Specifically, we
have

Wt+1 =
∑

i:μi>ηtλ

(μi − ηtλ)viv
�
i .

As can be seen, Wt+1 is also represented in the form of
eigen decomposition. The time complexity of this step is
O(rt + ct), and there is no additional space requirement.

Note that the eigenvalues of Ŵt+1 that is smaller than ηtλ
will be removed, and thus Wt+1 tends to be a low-rank ma-
trix. By choosing ct = O(rt), the time complexity per iter-
ation is O(dr2) and the space complexity is O(dr), where
r = maxt rt.

Discussions

In this section, we discuss some extensions of low-rank
DML in (2), and then provide the convergence rate of the
proposed algorithm.

Low-rank DML with Additional Constraints

To avoid overfitting, we may want to add some constraints
to control the size of the distance metric.

We first consider imposing a spectral norm constraint.
Then, the optimization problem becomes

min
W∈Rd×d

f(W ) + λ tr(W )

s. t. W ∈ S+, ‖W‖2 ≤ τ

where ‖ · ‖2 is the spectral norm of matrices. Then, the up-
dating rule of SGD becomes

Wt+1 = ΠS+∩{W |‖W‖2≤τ} [Wt − ηtg(Wt)− ηtλI] . (4)

To calculate Wt+1, we need the following theorem.

Theorem 2. Let X ∈ R
d×d be a symmetric matrix with

eigen decomposition

X =
∑
i

λiuiu
�
i

where (λi ∈ R,ui ∈ R
d) is the i-th pair of eigenvalue and

eigenvector. Then, the projection of X onto the intersection
of S+ and {W |‖W‖2 ≤ τ} is given by

ΠS+∩{W |‖W‖2≤τ} [X] =
∑

i:λi>τ

τuiu
�
i +

∑
i:0<λi≤τ

λiuiu
�
i

According to Theorem 2, the updating rule in (4) can be
implemented as:

1. We use the incremental SVD to obtain the eigen decom-
position of Ŵt+1 = Wt − ηtg(Wt).

2. Based on the eigen decomposition of Ŵt+1 =∑
i μiviv

�
i , Wt+1 is calculated as

Wt+1 =
∑

i:μi−ηtλ>τ

τuiu
�
i +

∑
i:0<μi−ηtλ≤τ

(μi−ηtλ)uiu
�
i
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We then consider adding a Frobenius norm constraint to
(2). In this case, the updating rule of SGD becomes

Wt+1 = ΠS+∩{W |‖W‖F≤τ} [Wt − ηtg(Wt)− ηtλI] . (5)

To calculate Wt+1, we need the following theorem.
Theorem 3. Let X ∈ R

d×d be a symmetric matrix with
eigen decomposition

X =
∑
i

λiuiu
�
i

where (λi ∈ R,ui ∈ R
d) is the i-th pair of eigenvalue and

eigenvector. Then, the projection of X onto the intersection
of S+ and {W |‖W‖F ≤ τ} is given by

ΠS+∩{W |‖W‖F≤τ} [X] = min

(
1,

τ

‖ΠS+ [X]‖F

)
ΠS+ [X]

According to Theorem 3, the updating rule in (5) can be
implemented as:

1. We use the incremental SVD to obtain the eigen decom-
position of Ŵt+1 = Wt − ηtg(Wt).

2. Based on the eigen decomposition of Ŵt+1 =∑
i μiviv

�
i , Wt+1 is calculated as

Wt+1 = min
(
1,

τ

F

) ∑
i:μi>ηtλ

(μi − ηtλ)viv
�
i

where F =
√∑

i:μi>ηtλ
(μi − ηtλ)2.

Convergence Rate

Since our method is based on SGD, the recent theoreti-
cal guarantees of SGD can be directly applied. Specifically,
we need the convergence rate of the last iterate of SGD
(Rakhlin, Shamir, and Sridharan 2012; Shamir and Zhang
2013).

We first consider the case that f(·) in (2) is a general con-
vex function. Define F (·) = f(·) + λ tr(·), and let W be

S+ ∩ {W |‖W‖2 ≤ τ} or S+ ∩ {W |‖W‖F ≤ τ} .

According to Theorem 2 of (Shamir and Zhang 2013), we
have the following theorem.
Theorem 4. Suppose f(·) is convex and that for some con-
stants D, G, it holds that E[‖g(Wt)+λI‖2F ] ≤ G2 for all t,
and supW,W ′∈W ||W −W ′||F ≤ D. Consider Algorithm 1
with step size ηt = c/

√
t where c > 0 is a constant. Then for

any T > 1, it holds that

E[F (WT )− F (W ∗)] ≤
(
D2

c
+ cG2

)
2 + log(T )√

T

where W ∗ = argminW∈W F (W ).
The above theorem indicates that the last iterate converges

at an O(log T/
√
T ) rate.

When the loss f(·) is strongly convex, which could be
true if ‖W‖2F is a part of f(·), we have a faster convergence
rate. Based on Theorem 1 of (Shamir and Zhang 2013), we
obtain the theorem below.

Theorem 5. Suppose f(·) is μ-strongly convex, and
E[‖g(Wt) + λI‖2F ] ≤ G2 for all t. Consider Algorithm 1
with step size ηt = 1/(μt) . Then for any T > 1, it holds
that

E[F (WT )− F (W ∗)] ≤ 17G2(1 + log T )

μT
.

Thus, for strongly convex losses, our algorithm has an
O(log T/T ) rate of convergence. Finally, we note that when
the loss is both smooth and strongly convex, the rate can be
further improved to O(1/T ) (Rakhlin, Shamir, and Sridha-
ran 2012).

Experiments
In this section, we present empirical studies of the proposed
method. The main purpose is to illustrate two characteristics
of our method:
• Memory-efficient: The proposed algorithm has an O(dr)

space complexity, where r is an upper bound of the rank
of the intermediate solution. To verify our algorithm is
memory-efficient, we need to show that all the intermedi-
ate solutions are indeed low-rank.

• Computation-efficient: By taking advantage of the low-
rank structure of intermediate solutions and stochastic
gradients, the time complexity is O(dr2) per iteration. We
will examine the convergence behavior of our method.
We will choose the following formulation of low-rank

DML (Qian et al. 2015a):

min
W∈Rd×d

1

T

∑
i,j,k

max(1 + ||xi − xj ||2W − ||xi − xk||2W , 0)

+ λ tr(W )

s. t. W ∈ S+, ‖W‖F ≤ 1

where T is the total number of triplets. We will use three
real-world data sets in our experiments: Gisette (Chang and
Lin 2011), Dexter (Guyon et al. 2004) and News20 (Lang
1995). The dimensionality of them is 5000, 20000, and
62061, respectively. The generation of the training triplets is
similar to (Qian et al. 2015a). In each iteration, we randomly
sample 100 triplets to construct the low-rank stochastic gra-
dient. All algorithms are tested on a computer with 3.1GHz
CPU and 8GB RAM.

The Rank of the Intermediate Distance Metrics

We set the step size ηt = c/
√
t where c is searched in

{1e−7, 1e−6, . . . , 1, 10}, and we choose the one that leads
to the largest decrement of the objective value. We run our
algorithm 500 iterations and record the rank of the interme-
diate solution Wt in each round. We terminate the program
if the running time exceeds 3 hours.

We have tried different settings of the regularization pa-
rameter λ, and the rank of Wt of all the data sets is plotted
in Fig. 1. As can be seen, the rank could be much smaller
than the dimensionality with a suitable choice of λ, leading
to a low memory requirement. For example, on the Dexter
data set, the rank is around 100 if we set λ = 0.1, which is
much smaller than its dimensionality 20000. The experiment
validates our method’s memory-efficient property.
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Figure 1: Rank of the intermediate solution versus the number of iterations
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Figure 2: Objective value versus the running time

The Convergence Behavior

To show the efficiency of our method, we compare it with
the following optimization algorithms:
• Gradient descent (GD), which calculates the full gradient

and performs the projection by eigen decomposition;
• Stochastic gradient descent (SGD), which replaces gradi-

ents in GD with stochastic gradients;
• SGD with mini-batch (SGD-Batch), which uses mini-

batch to reduce the number of projections of SGD (Shaw,
Huang, and Jebara 2011; Qian et al. 2015a);

• Frank-Wolfe method (FW), which solves constrained lin-
ear programming problems instead of projections (Ying
and Li 2012; Cao, Ying, and Li 2012; Jaggi 2013);

• Stochastic gradient descent with only one projection
(SGD-One) (Mahdavi et al. 2012): which only requires
one projection computation at the final iteration.

For convenience, we denote our algorithm by SGD-IncSVD
to emphasize the fact it is built upon the incremental SVD.

Parameters of all the methods are determined in the fol-
lowing way: For GD, SGD-Batch and SGD-One, we search
the step size in {1e−7, 1e−6, . . . , 1, 10}; For SGD and
SGD-IncSVD, we set the step size ηt = c/

√
t, where c is

searched in {1e−7, 1e−6, . . . , 1, 10}; For the FW method,
we set ηt = c/(t+2) where c is searched in the same range;
For SGD-Batch, we set the batch size to 10, according to the
suggestion in (Qian et al. 2015a).

In Fig. 2, we plot the value of the objective function versus
the running time of different methods, where the regulariza-
tion parameter λ is set to be 1, 0.1 and 0.01 for Gisette, Dex-
ter and News20, respectively. As can be seen from Fig. 2, our
algorithm converges much faster than all the compared algo-
rithms and when the dimension of the data is much higher,
the advantage of SGD-IncSVD is more obvious. Thus, we
may claim that reducing the cost of projection is essential
for improving the efficiency. On the News20 data set, we
only provide the result of SGD-IncSVD because all the other
methods suffer memory overflow issues, which again vali-
dates our method is memory-efficient.

Conclusions

We present an efficient stochastic algorithm for solving low-
rank DML. By taking advantage of the low-rank structure,
we use incremental SVD to obtain O(dr2) time complexity
per iteration. Since all the iterates and stochastic gradients
are represented in factorized forms, the space complexity is
also linear in d. Experimental results validate the memory-
efficient and computation-efficient features of our method.
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