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Abstract

To efficiently solve high-dimensional problems with com-
plicated constraints, projection-free online learning has re-
ceived ever-increasing research interest. However, previous
studies either focused on static regret that is not suitable
for dynamic environments, or only established the dynam-
ic regret bound under the smoothness of losses. In this pa-
per, without the condition of the smoothness, we propose
a novel projection-free online algorithm, and achieve an
O(max{T 2/3V

1/3
T ,
√
T}) dynamic regret bound for convex

functions and an O(max{
√
TVT log T , log T}) dynamic re-

gret bound for strongly convex functions, where T is the
time horizon and VT denotes the variation of loss functions.
Specifically, we first improve an existing projection-free algo-
rithm called online conditional gradient (OCG) to enjoy smal-
l dynamic regret bounds with the prior knowledge of VT . To
work with unknowable VT , we maintain multiple instances of
the improved OCG that can handle different functional varia-
tions, and combine them with a meta-algorithm that can track
the best one. Experimental results validate the efficiency and
effectiveness of our algorithm.

Introduction
Online convex optimization (OCO) is a powerful framework
for online learning, which enjoys both computational ef-
ficiency and theoretical guarantees (Shalev-Shwartz 2011).
According to the protocol of OCO, it is a repeated game be-
tween a learner and an adversary. In each round t, the learner
first chooses a decision xt ∈ K, where K is a convex deci-
sion set. Then, the adversary reveals a convex loss function
ft(x) : K → R, and the learner suffers a loss ft(xt). To
measure the performance of the learner, the static regret with
respect to the best fixed decision is commonly used, which
is defined as

RS = R(T ) =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

where T is the total number of rounds.
Over the past decades, various online algorithms have

been put forward to minimize the static regret under differ-
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ent scenarios, which can be divided into projection-based al-
gorithms (Zinkevich 2003; Hazan, Agarwal, and Kale 2007;
Shalev-Shwartz and Singer 2007) and projection-free al-
gorithms (Hazan and Kale 2012; Hazan 2016; Garber and
Hazan 2016). Specifically, projection-based algorithms such
as online gradient descent (OGD) (Zinkevich 2003) and
regularized follow the leader (RFTL) (Shalev-Shwartz and
Singer 2007; Hazan 2016) perform one projection step in
each round, which could be computationally expensive for
high-dimensional problems with complicated constraints. In
contrast, projection-free algorithms such as online condi-
tional gradient (OCG) (Hazan and Kale 2012; Hazan 2016)
and its variants replace the projection step with one linear
optimization step, which can be carried out efficiently and
have received ever-increasing attention (Zhang et al. 2017b;
Chen et al. 2018; Chen, Zhang, and Karbasi 2019; Wan, Tu,
and Zhang 2020; Wan and Zhang 2021).

Although the static regret has been extensively studied
for projection-based and projection-free algorithms, it is not
suitable to measure the performance of the learner in dy-
namic environments, where the best decision may frequently
change. To address this limitation, recent advances in OCO
focused on dynamic regret which measures the performance
of the learner against a sequence of local minimizers

RD = R(x∗1, · · · ,x∗T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) (1)

where x∗t ∈ argminx∈K ft(x) is a local minimizer, and
proposed many projection-based algorithms for minimizing
the dynamic regret (Besbes, Gur, and Zeevi 2015; Jadbabaie
et al. 2015; Mokhtari et al. 2016; Yang et al. 2016; Zhang
et al. 2018; Zhang, Lu, and Yang 2020; Zhang 2020).

Due to the arbitrary fluctuation in the loss functions, it
is impossible to achieve a sub-linear dynamic regret bound
unless introducing some conditions on the comparator se-
quence or the function sequence (Jadbabaie et al. 2015). A
common condition introduced by previous studies (Besbes,
Gur, and Zeevi 2015; Zhang et al. 2018) is that the functional
variation defined as

VT =

T∑
t=2

max
x∈K
|ft(x)− ft−1(x)|

is sub-linear in T . If the value of VT is not small than
1 and given, Besbes, Gur, and Zeevi (2015) achieved an
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O(T 2/3V
1/3
T ) dynamic regret bound for convex functions

and an O(log T
√
TVT ) dynamic regret bound for strong-

ly convex functions by properly restarting OGD. Moreover,
Zhang et al. (2018) showed that maintaining multiple OGD
and combining them carefully are able to achieve almost the
same dynamic regret bounds for convex and strongly convex
functions without any prior knowledge of VT .

However, the projection step could limit their appli-
cations. While recent studies (Kalhan et al. 2019, 2020)
proposed projection-free algorithms for dynamic environ-
ments, they only established the dynamic regret bound
for smooth functions. To tackle this limitation, we pro-
pose a novel projection-free algorithm named as Multi-
OCG+ to minimize the dynamic regret without the s-
moothness. Specifically, we first develop an improved
variant of OCG named as OCG+, which achieves an
O(max{T 2/3V

1/3
T ,
√
T}) dynamic regret bound for con-

vex functions and an O(max{
√
TVT log T , log T}) dynam-

ic regret bound for strongly convex functions with the prior
knowledge of VT . Compared with the original OCG, there
exist three critical changes.

• Besides the surrogate loss function defined in OCG, our
OCG+ further introduces a new surrogate loss function
from Garber and Hazan (2016) to utilize the strong con-
vexity.

• The restarting strategy (Besbes, Gur, and Zeevi 2015) has
been utilized in our OCG+ to handle a specific functional
variation.

• Different from OCG that only performs 1 linear optimiza-
tion step in each round, our OCG+ performs multiple lin-
ear optimization steps.

Note that the third change is inspired by previous studies
(Chen et al. 2018; Xie et al. 2020; Hazan and Minasyan
2020), which have utilized multiple linear optimization step-
s to improve the static regret of projection-free algorithms.
Furthermore, to handle the unknown VT , our Multi-OCG+
maintains multiple instances of OCG+ with different restart-
ing frequencies, and combines them with a meta-algorithm
that can track the best one. We prove that the dynamic re-
gret bounds of Multi-OCG+ are on the same order as those
bounds of OCG+.

Related Work
In this section, we briefly review the related work on the
static and dynamic regret in the context of OCO.

Static Regret
Since the pioneering work of Zinkevich (2003), the static
regret has been extensively studied under different scenar-
ios (Hazan, Agarwal, and Kale 2007; Shalev-Shwartz 2011;
Hazan 2016). For convex functions, there are several al-
gorithms such as the classical OGD (Zinkevich 2003) and
RFTL (Hazan 2016) that achieved the O(

√
T ) static regret

bound. For strongly convex functions, Hazan, Agarwal, and
Kale (2007) established the O(log T ) static regret bound
for OGD. The O(

√
T ) rate for convex functions and the

O(log T ) rate for strongly convex functions are known to
be minimax optimal (Abernethy et al. 2008). However, in
each round, these algorithms need to perform one projection
step, which could be computationally expensive for high-
dimensional problems with complicated constraints (Hazan
and Kale 2012). For example, OGD needs to perform the
following projection step

xt+1 = argmin
x∈K

‖x− (xt − ηt∇ft(xt))‖22

where ηt is a parameter.
To tackle this computational bottleneck, OCG (Hazan and

Kale 2012; Hazan 2016) was put forward, which is the first
projection-free online algorithm for OCO. The key idea of
OCG is to replace the projection step with one linear opti-
mization step, as follows

vt = argmin
x∈K

{
∇Ft(xt)>x

}
, xt+1 = xt + σt(vt − xt)

where Ft(x) = η
∑t−1
i=1∇fi(xi)>x + ‖x − x1‖22 is a sur-

rogate loss function, η and σt are parameters, which can be
carried out efficiently. However, the static regret bound of
OCG is O(T 3/4), which is worse than the optimal O(

√
T )

bound for convex functions. Recently, projection-free algo-
rithms with optimal static regret for both convex and strong-
ly convex functions have been proposed for special deci-
sion sets such as polytope (Garber and Hazan 2016) and s-
mooth set (Levy and Krause 2019). Furthermore, ifO(T 3/2)
linear optimization steps are allowed in each round, Chen
et al. (2018) have achieved the optimal static regret bound
O(
√
T ) for convex and smooth functions. In the same set-

ting, Xie et al. (2020) reduced the number of linear optimiza-
tion steps to O(T ) while achieved the static regret bound
of O(

√
T log T ). Hazan and Minasyan (2020) proposed a

projection-free algorithm by estimating the expected deci-
sion of follow the perturbed leader (FPL) algorithm (Hazan
2016) with enough samples, each of which is computed by
one linear optimization step. If T linear optimization step-
s are allowed in each round, their algorithm attains a regret
bound of O(

√
dT ) for convex functions, where d is the di-

mensionality and the dependence on d is caused by the ran-
domized regularization in FPL.

Dynamic Regret
In the pioneering work of Zinkevich (2003), a more general
definition of dynamic regret is proposed to measure the per-
formance of the learner against any sequence of comparators

R(u1, · · · ,uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) (2)

where u1, · · · ,uT ∈ K. To bound the general dynam-
ic regret, Zinkevich (2003) introduced the path-length de-
fined as P (u1, · · · ,uT ) =

∑T
t=2 ‖ut − ut−1‖2 and

proved that OGD enjoys a general dynamic regret bound
of O(

√
T (1 + P (u1, · · · ,uT ))). Similarly, using a dy-

namic model Φt(·) to predict a reference point for the
t-th round, Hall and Willett (2013) introduced a vari-
ant of the path-length defined as P ′(u1, · · · ,uT ) =
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∑T
t=2 ‖ut − Φt(ut−1)‖2 and proposed a novel algo-

rithm to achieve a general dynamic regret bound of
O
√
T (1 + P ′(u1, · · · ,uT ))).

Furthermore, Zhang, Lu, and Zhou (2018) proposed a
serial of novel algorithms that reduce the general dy-
namic regret bounds to O(

√
T (1 + P (u1, · · · ,uT ))) and

O(
√
T (1 + P ′(u1, · · · ,uT ))), respectively. Because of

x∗t ∈ argminx∈K ft(x), it is easy to verify that

R(u1, · · · ,uT ) ≤ R(x∗1, · · · ,x∗T )

which implies that the dynamic regret defined in (1) can be
treated as the worst case of the general one defined in (2).
Additionally, there also exist many studies that directly in-
vestigate the worst case under different scenarios (Besbes,
Gur, and Zeevi 2015; Jadbabaie et al. 2015; Mokhtari et al.
2016; Yang et al. 2016; Zhang et al. 2017a, 2018).

However, the above algorithms are based on the pro-
jection step, which could limit their applications. Recent-
ly, Kalhan et al. (2019, 2020) proposed two projection-
free algorithms termed OFW and Meta-Frank Wolfe for
dynamic environments. For smooth functions, they proved
that OFW and Meta-Frank Wolfe with O(T a) linear opti-
mization steps per round have the dynamic regret bound of
O(
√
T (1 + VT +

√
DT )) and O(1 + VT + T 1−a +RAD) re-

spectively, where DT =
∑T
t=2 ‖∇ft(xt)−∇ft−1(xt−1)‖22

and RAD denotes the dynamic regret of an online linear opti-
mization oracle. Compared with Kalhan et al. (2019, 2020),
our work has significant differences. First, we do not require
the smoothness of functions, which is not satisfied by some
common losses such as the hinge loss and absolute loss. Sec-
ond, we further utilize the strongly convexity to achieve a
better regret bound, which was not not studied by Kalhan
et al. (2019, 2020). Third, as long as VT is sublinear in T ,
our regret ofO(max{T 2/3V

1/3
T ,
√
T}) for convex functions

is sublinear in T . By contrast, the regret of OFW could be
O(T ) if VT = O(

√
T ) or DT = O(T ). Moreover, since

RAD could be O(T ) in the worst case, it is not comparable
between the regret of Meta-Frank Wolfe and our regret.

Main Results
In this section, we first introduce necessary preliminaries.
Then, we present our OCG+ that is an improved variant
of OCG, and establish small dynamic regret bounds with
the prior knowledge of VT . Finally, we present our Multi-
OCG+, which enjoy similar dynamic regret bounds without
any prior knowledge of VT .

Preliminaries
Following previous studies on OCO (Hazan and Kale 2012;
Zhang, Lu, and Zhou 2018), we introduce two common as-
sumptions, which will be used to bound the dynamic regret.

Assumption 1 The diameter of the convex decision set K is
bounded by D, i.e., ‖x− y‖2 ≤ D for any x ∈ K,y ∈ K.

Assumption 2 At each round t, the loss function ft(x) is
G-Lipschitz over K, i.e., |ft(x) − ft(y)| ≤ G‖x − y‖2 for
any x ∈ K,y ∈ K.

Algorithm 1 CG

1: Input: feasible set K, K, F (x), xin

2: z0 = xin

3: for k = 0, 1, · · · ,K − 1 do
4: vk ∈ argmin

x∈K

{
∇F (zk)>x

}
5: σk = argmin

σ∈[0,1]
{F (zk + σ(vk − zk))}

6: zk+1 = zk + σk(vk − zk)
7: end for
8: return xout = zK

Then, we recall the standard definitions for smooth and
strongly convex functions (Boyd and Vandenberghe 2004).
Definition 1 Let f(x) : K → R be a function over K. It is
called β-smooth over K if for all x ∈ K,y ∈ K

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖22.

Definition 2 Let f(x) : K → R be a function over K. It is
called α-strongly convex over K if for all x ∈ K,y ∈ K

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22.

Furthermore, we introduce conditional gradient (CG) (Frank
and Wolfe 1956; Jaggi 2013), which will be utilized as a
subroutine of our proposed algorithms. Given a function
F (x) : K → R and an initial point z0 = xin ∈ K, the
idea of CG is to iteratively perform linear optimization step
K times

vk = argmin
x∈K

{
∇F (zk)>x

}
, zk+1 = zk + σk(vk − zk)

where σk = argminσ∈[0,1] {F (zk + σ(vk − zk))} is se-
lected by line search. The detailed procedures of CG are
summarized in Algorithm 1. Compared with performing lin-
ear optimization step once, CG can output a point xout such
that F (xout) is small enough.

Note that CG is originally an algorithm for offline op-
timization, and OCG proposed by Hazan and Kale (2012)
is its extension for online learning. However, OCG only
performs 1 linear optimization in each round, and its stat-
ic regret bound O(T 3/4) is worse that the optimal bound
O(
√
T ). As a result, directly applying the restarting strate-

gy (Besbes, Gur, and Zeevi 2015) to OCG could not achieve
the optimal dynamic regret. Although previous studies im-
proved the static regret of OCG by performing multiple lin-
ear optimization steps in each round, there exist some limita-
tions. Chen et al. (2018) and Xie et al. (2020) used stochas-
tic gradients to update decision, and their results required
the smoothness of loss functions. The regret bound of Haz-
an and Minasyan (2020) has additional dependence on the
dimensionality d, which is caused by the randomized regu-
larization. Different from these studies that employed some
randomized methods, we utilize CG that is a deterministic
method to improve the static regret of OCG, and further pro-
pose a projection-free algorithm with small dynamic regret
bounds for convex and strongly convex functions.
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Algorithm 2 OCG+

1: Input: feasible set K, the modulus of strong convexity
λ, Kγ , γ

2: Set ηγ = D
G
√
γ

3: for t = 1, · · · , T do
4: if t mod γ = 1 then
5: sγ = t and choose xγt ∈ K
6: end if
7: if λ = 0 then
8: F γt+1(x) = ηγ

∑t
i=sγ
∇fi(xγi )>x + ‖x− xγsγ‖

2
2

9: else
10: F γt+1(x) =

∑t
i=sγ

(
∇fi(xγi )>x + λ

2 ‖x− xγi ‖22
)

+λ
2 ‖x− xγsγ‖

2
2

11: end if
12: xγt+1 = CG(K,Kγ , F

γ
t+1(x),xγt )

13: end for

OCG+ for a Knowable Function Variation
To cope with dynamic environments, we investigate the dy-
namic regret defined in (1), which measures the perfor-
mance of the learner against a sequence of local minimizers.
Following previous studies (Besbes, Gur, and Zeevi 2015;
Zhang et al. 2018), the goal of this paper is to upper bound
the dynamic regret by the functional variation VT .

By utilizing CG as a subroutine, the detailed procedures
of our algorithm are presented in Algorithm 2, where λ is the
modulus of strong convexity of loss functions, γ and Kγ are
parameters, which is named as improved online condition-
al gradient (OCG+). Compared with the original OCG, we
have made three critical changes to achieve small dynam-
ic regret bounds. First, besides the surrogate loss function
for convex functions in line 8 of OCG+, a new surrogate
loss function F γt+1(x) in line 10 is introduced from Garber
and Hazan (2016), which can utilize the strong convexity.
Note that Garber and Hazan (2016) utilized this surrogate
loss function to propose a projection-free online algorithm
over polyhedral sets, which only performs one linear opti-
mization step in each round and attains the optimal static
regret. By contrast, our algorithm are designed to minimize
dynamic regret over any convex decision set, which requires
multiple linear optimization steps in each round. Second, we
utilize the restarting strategy (Besbes, Gur, and Zeevi 2015)
in our OCG+ to handle a specific functional variation. The
restarting frequency of our OCG+ is determined by the pa-
rameter γ. Let r = dT/γe, qi = (i−1)γ+1 for i = 1, · · · , r
and qr+1 = T + 1. It is easy to verify that OCG+ essentially
performs the same steps on time intervals

[q1, q2 − 1], [q2, q3 − 1], · · · , [qr, qr+1 − 1] (3)

successively. Third, during the j-th time interval in (3), our
OCG+ invokes CG shown in Algorithm 1 as

xγt+1 = CG(K,Kγ , F
γ
t+1(x),xγt )

to choose the decision xγt+1.
The following two theorems present the dynamic regret

bounds of Algorithm 2 for convex and strongly convex func-
tions, respectively.

Theorem 1 Under Assumptions 1 and 2, for convex losses,
Algorithm 2 with γ ≤ T and Kγ = γ ensures

RD ≤
8TGD
√
γ

+ 2γVT .

Theorem 2 Under Assumptions 1 and 2, for λ-strongly con-
vex losses, Algorithm 2 with γ ≤ T and Kγ = γ2 ensures

RD ≤
2T (c1 + c2 ln(γ + 1))

γ
+ 2γVT

where c1 = λD2

2 + 2(G+ λD)D and c2 = 2(G+λD)2

λ .

Based on Theorems 1 and 2, we derive the specific dynamic
regret bounds of Algorithm 2.
Corollary 1 Assume that ft(x) is convex for any t ∈ [T ]. If
VT ≥

√
1/T , under Assumptions 1 and 2, Algorithm 2 with

γ =
⌊
(T/VT )2/3

⌋
and Kγ = γ ensures

RD ≤ (8
√

2GD + 2)T 2/3V
1/3
T .

Otherwise, under Assumptions 1 and 2, Algorithm 2 with
γ = T and Kγ = γ achieves

RD ≤ 8GD
√
T + 2

√
T .

Corollary 2 Let c1 = λD2

2 + 2(G + λD)D and c2 =
2(G+λD)2

λ . Assume that ft(x) is λ-strongly convex for any
t ∈ [T ]. If VT ≥ ln(T + 1)/T , under Assumptions 1 and 2,

Algorithm 2 with γ =
⌊√

T ln(T + 1)/VT

⌋
and Kγ = γ2

ensures

RD ≤ (4c1 + 4c2 + 2)
√
TVT ln(T + 1).

Otherwise, under Assumptions 1 and 2, Algorithm 2 with
γ = T and Kγ = γ2 achieves

RD ≤ 2c1 + (2c2 + 2) ln(T + 1).

Remark From Corollaries 1 and 2, if the value of VT is
available, our OCG+ achieves an O(max{T 2/3V

1/3
T ,
√
T})

dynamic regret bound for convex functions and an
O(max{

√
TVT log T , log T}) dynamic regret bound for

strongly convex functions. If VT ≥ 1, these bounds re-
duce to O(T 2/3V

1/3
T ) for convex functions which matches

the minimax rate proved by Besbes, Gur, and Zeevi (2015),
and O(

√
TVT log T ) for strongly convex losses which near-

ly matches the minimax rate of O(
√
TVT ) proved by Bes-

bes, Gur, and Zeevi (2015) up to a polylogarithmic factor.

Multi-OCG+ for Unknown Function Variations
However, in practice, the value of VT could be unknown,
which limits the applications of OCG+. To tackle this limita-
tion, an efficient strategy to search the optimal γ for OCG+ is
required. Note that similar problems also exist in previous s-
tudies on OCO (van Erven and Koolen 2016; Zhang, Lu, and
Zhou 2018; Wang, Lu, and Zhang 2019; Wang et al. 2020),
where it is necessary to search the optimal parameter for oth-
er algorithms. The main idea of their solutions is to run mul-
tiple instances of their algorithms with different parameters,
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and combine them with a meta-algorithm based on the ex-
ponentially weighted average forecaster (Cesa-Bianchi and
Lugosi 2006), which is able to track the best instance.

Inspired by this idea, we define a set H = {γ1, · · · , γN}
of N values for parameter γ, and activate a set of experts
{Eγ |γ ∈ H} by invoking OCG+ shown in Algorithm 2 as

Eγ = OCG+(K, λ,Kγ , γ).

In each round, we simultaneously run these experts {Eγ |γ ∈
H} to generate a set of decisions {xγt |γ ∈ H}. Then, we
adopt the exponentially weighted average forecaster as fol-
lows to generate a weight wγt for each expert Eγ , and com-
bine {xγt |γ ∈ H} as xt =

∑
γ∈H w

γ
t x

γ
t .According to Cesa-

Bianchi and Lugosi (2006), the initial weight of each expert
Eγi is set to be wγi1 = C

i(i+1) where C = 1 + 1
N is used

to normalize these weights. In each round t, after observing
the loss function, the weights of experts are updated as

wγt+1 =
wγt exp(−τft(xγt ))∑
γ∈H w

γ
t exp(−τft(xγt ))

where τ > 0 is a constant. The detailed procedures of our
algorithm are summarized in Algorithm 3, and it is named
as Multi-OCG+. Compared with OCG+, our Multi-OCG+
does not require any prior knowledge of VT and enjoys the
following dynamic regret bounds.
Theorem 3 Assume that ft(x) is convex for any t ∈ [T ].
Let H =

{
γi = 2i|i = 0, · · · , N

}
where N = blog2(T )c,

and τ =
√

8/TG2D2. For each expert in {Eγ |γ ∈ H}, let
Kγ = γ. Under Assumptions 1 and 2, Algorithm 3 ensures

RD ≤max
{
c3
√
T , c4T

2/3V
1/3
T

}
+
√
TG2D2/8 (1 + 2 lnN)

where c3 = 8
√

2GD + 2 and c4 = 16GD + 2.

Theorem 4 Assume that ft(x) is λ-strongly convex for any
t ∈ [T ]. Let H =

{
γi = 2i|i = 0, · · · , N

}
where N =

blog2(T )c, and τ = λ/G2. For each expert in {Eγ |γ ∈ H},
let Kγ = γ2. Under Assumptions 1 and 2, Algorithm 3 en-
sures

RD

≤max


4c1 + (4c2 + 2) ln(T + 1) +

2G2

λ
lnN

(8c1 + 8c2 + 2)
√
TVT ln(T + 1) +

2G2

λ
lnN

where c1 = λD2

2 + 2(G+ λD)D and c2 = 2(G+λD)2

λ .

Remark To compare with previous studies, we consid-
er the case of VT ≥ 1. For convex functions, Theorem 3
shows that the dynamic regret bound of our Algorithm 3
is on the order of O(T 2/3V

1/3
T ) where we treat the dou-

ble logarithmic as a constant, which also matches the min-
imax rate proved by Besbes, Gur, and Zeevi (2015). For
strongly-convex functions, Theorem 4 shows that the dy-
namic regret bound of our Algorithm 3 is on the order of

Algorithm 3 Multi-OCG+

1: Input: feasible set K, strong convexity parameter λ, τ ,
H = {γ1, · · · , γN} and Kγ , ∀γ ∈ H

2: Activate a set of experts {Eγ |γ ∈ H} by invoking Al-
gorithm 2 as Eγ = OCG+(K, λ,Kγ , γ)

3: Set wγi1 = C
i(i+1) for i ∈ [N ], where C = 1 + 1

N

4: for t = 1, · · · , T do
5: Receive xγt from each expert Eγ and set xt =∑

γ∈H w
γ
t x

γ
t

6: Set wγt+1 =
wγt exp(−τft(xγt ))∑
γ∈H wγt exp(−τft(xγt ))

, ∀γ ∈ H
7: end for

O(
√
TVT log T ), which nearly matches the minimax rate

proved by Besbes, Gur, and Zeevi (2015) up to a polylog-
arithmic factor. Although Besbes, Gur, and Zeevi (2015)
established similar dynamic regret bounds, their algorithm
needs to know the upper bound of VT and is not projection-
free. Besides, our bound for convex functions is slightly bet-
ter than the bound O(T 2/3V

1/3
T log1/3 T ) achieved by an-

other projection-based algorithm (Zhang et al. 2018) that
does not require any prior knowledge of VT .

Theoretical Analysis
In this section, we only provide the proofs of Theorems 1
and 2. Due to the limitation of space, we postpone the omit-
ted proofs to the supplementary material.

Proof of Theorem 1
Let r = dT/γe, qi = (i − 1)γ + 1 for i = 1, · · · , r and
qr+1 = T + 1. First, we have

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)

=
r∑
i=1

(
qi+1−1∑
t=qi

ft(x
γ
t )−

qi+1−1∑
t=qi

min
x∈K

ft(x)

)

=
r∑
i=1


qi+1−1∑
t=qi

ft(x
γ
t )−min

x∈K

qi+1−1∑
t=qi

ft(x)︸ ︷︷ ︸
:=ai

+ min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

min
x∈K

ft(x)︸ ︷︷ ︸
:bi

 .

(4)

To bound ai, we introduce the following lemma, which gives
the static regret bound of Algorithm 2 over each interval in
(3).

Lemma 1 Assume that ft(x) is convex for any t ∈ [T ]. Let
r = dT/γe, qi = (i− 1)γ + 1 for i = 1, · · · , r and qr+1 =
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T + 1. Under Assumptions 1 and 2, for any x∗ ∈ K and
j ∈ [r], Algorithm 2 with Kγ = γ ensures

qj+1−1∑
t=qj

ft(x
γ
t )−

qj+1−1∑
t=qj

ft(x
∗) ≤ 4GD

√
γ.

It is not hard to bound ai using Lemma 1 as below

ai =

qi+1−1∑
t=qi

ft(x
γ
t )−min

x∈K

qi+1−1∑
t=qi

ft(x) ≤ 4GD
√
γ. (5)

To upper bound bi, we follow the proof of Theorem 3 in
Zhang et al. (2018) as below

bi = min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

ft(x
∗
t )

≤
qi+1−1∑
t=qi

ft(x
∗
qi)−

qi+1−1∑
t=qi

ft(x
∗
t )

≤γ max
t∈[qi,qi+1−1]

(
ft(x

∗
qi)− ft(x

∗
t )
)
.

(6)

For brevity, let

VT (i) =

qi+1−1∑
t=qi+1

max
x∈K
|ft(x)− ft−1(x)|.

Then, for any t ∈ [qi, qi+1 − 1], we have

ft(x
∗
qi)− ft(x

∗
t )

=ft(x
∗
qi)− fqi(x

∗
qi) + fqi(x

∗
qi)− ft(x

∗
t )

≤ft(x∗qi)− fqi(x
∗
qi) + fqi(x

∗
t )− ft(x∗t )

≤2VT (i).

(7)

Combining (7) with (6), we have

min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

min
x∈K

ft(x) ≤ 2γVT (i). (8)

Substituting (5) and (8) into (4), we have

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x) ≤4rGD
√
γ + 2γ

r∑
i=1

VT (i)

≤8TGD
√
γ

+ 2γVT

where the last inequality is due to r ≤ T
γ + 1 ≤ 2T

γ and∑r
i=1 VT (i) ≤ VT .

Proof of Theorem 2
Similar to the proof of Theorem 1, we introduce the follow-
ing lemma, which gives the static regret bound of Algorithm
2 over each interval in (3) for strongly convex functions.

Lemma 2 Let r = dT/γe, qi = (i−1)γ+1 for i = 1, · · · , r
and qr+1 = T + 1. If each ft(x) is λ-strongly convex and

Assumptions 1 and 2 hold, for any x∗ ∈ K and j ∈ [r],
Algorithm 2 with Kγ = γ2 ensures

qj+1−1∑
t=qj

ft(x
γ
t )−

qj+1−1∑
t=qj

ft(x
∗)

≤λD
2

2
+ 2(G+ λD)D +

2(G+ λD)2 ln(γ + 1)

λ
.

Let r = dT/γe, qi = (i − 1)γ + 1 for i = 1, · · · , r and
qr+1 = T + 1. It is not hard to verify that (4) and (8) still
hold. So, we only need to bound ai in (4) using Lemma 2 as
below

ai ≤ c1 + c2 ln(γ + 1). (9)

Then, substituting (9) and (8) into (4), we have

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)

≤r(c1 + c2 ln(γ + 1)) + 2γ
r∑
i=1

VT (i)

≤2T (c1 + c2 ln(γ + 1))

γ
+ 2γVT

where the last inequality is due to r ≤ T
γ + 1 ≤ 2T

γ and∑r
i=1 VT (i) ≤ VT .

Experiments
In this section, we perform numerical experiments in dy-
namic environments to verify the efficiency and effective-
ness of our Multi-OCG+. All algorithms are implemented
wtih Matlab R2016b and tested on a linux machine with
2.4GHz CPU and 768GB RAM.

Settings and Datasets
Following Hazan and Kale (2012), we consider the online
matrix completion problem, the goal of which is to construct
a low-rank matrixX ∈ Rm×n that can approximate a matrix
M ∈ Rm×n by observing its entries according to the on-
line setting. At each round t, the learner first chooses a ma-
trix X such that ‖X‖∗ ≤ r, where ‖X‖∗ denotes the trace
norm of X and r is a constant. Then, the learner receives
a loss function ft(X) =

∑
(i,j)∈OBt

|Xij − Mij | where
OBt ⊂ [m] × [n]. We use a publicly available dataset—
MovieLens 100K1, which originally contains 100000 rat-
ings in {1, 2, 3, 4, 5} by 943 users on 1682 movies and can
be denoted as {(ik, jk,Mikjk)}100000k=1 . To create dynamic
environments, we slightly modify the dataset such that the
optimal low-rank approximation matrix changes at certain
rounds. To be precise, we construct a larger dataset denoted
as {(ik, jk,Mikjk)}300000k=1 by combining three copies of the
original MovieLens 100K and flipping the original value of
Mikjk by multiplying−1 for any k = 100001, · · · , 200000.
For simplicity, this dataset is equally divided into T = 3000

1https://grouplens.org/datasets/movielens/100k/
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Figure 1: Experimental results for online matrix completion in dynamic environments

partitions according to its original sequence, and we denote
the set of (i, j) in the t-th partition as OBt. In this way,
the optimal low-rank approximation matrix will change af-
ter each 1000 rounds. Moreover, we set r = 5000, following
Hazan and Kale (2012).

Baselines and Results
Note that for any t = 1, · · · , T , ft(X) is not strongly con-
vex. So, we first compare our Multi-OCG+ against RFTL
(Hazan 2016) to demonstrate that simply running an algo-
rithm with optimal static regret cannot deal with dynamic
environments. Specifically, RFTL updates as

xt+1 = argmin
x∈K

{
η

t∑
i=1

∇fi(xi)>x + ‖x− x1‖22

}
where η is a parameter and we set η = c/

√
T by tuning the

constant c from the set {0.1, 1.0, · · · , 1e6}. To further ver-
ify the performance of our Multi-OCG+, we also compare
it against the projection-based algorithm proposed by Zhang
et al. (2018), which achieves the existing best dynamic regret
bound without any prior knowledge of environment chang-
ing. Similar as the framework of our Multi-OCG+, their al-
gorithm also consists of two parts:
• A set of expert {EI |I ∈ I}, each of which is an instance

of the expert-algorithm running over an interval I ∈ I,
where I is the geometric covering intervals proposed by
Daniely, Gonen, and Shalev-Shwartz (2015);

• A meta-algorithm—CBCE (Jun et al. 2017), which is able
to combine the decisions generated by active experts in
each round.

We note that the expert-algorithm could be any online al-
gorithm with an O(

√
T ) static regret bound. In our exper-

iments, we select RFTL as the expert-algorithm, and de-
note this algorithm as CBCE-RFTL. Specifically, CBCE-
RFTL contains two parameters including the prior distri-
bution π ∈ ∆|I| over all experts and the learning rate ηI

for each expert EI . Following Jun et al. (2017), we set π
as the uniform distribution, and set ηI = c/

√
|I|, where c

is selected from {0.1, 1.0, · · · , 1e6}. For our Multi-OCG+,
we set H =

{
γi = 2i|i = 0, · · · , blog2(T )c

}
. Since ft(X)

is not strongly convex, the parameter τ is set to be s/
√
T ,

where s is selected from {1e− 4, 1e− 3, · · · , 1.0}. Besides,
the parameter ηγ of each expert Eγ is set to be c/

√
γ, where

c is selected from {0.1, 1.0, · · · , 1e6}. Although in theory
we may need to set Kγ = γ for our Multi-OCG+ to achieve
an optimal dynamic regret bound for convex loss functions,
we find that Multi-OCG+ with a much smaller K can al-
so achieve good performance in our experiments. Therefore,
we simply set Kγ = 4 for our Multi-OCG+ to reduce the
time cost.

Figure 1 shows the cumulative loss and runtime of each
algorithm in dynamic environments. Obviously, the per-
formance of RFTL becomes worse after the environment
changes, which shows that RFTL cannot deal with dynam-
ic environments. By contrast, CBCE-RFTL and our Multi-
OCG+ catch up with changing environments very fast. Fur-
thermore, our Multi-OCG+ outperforms CBCE-RFTL, and
is significantly faster than it, which verifies the advantages
of our algorithm in the dynamic regret and time cost.

Conclusion
In this paper, we propose a projection-free online algo-
rithm named as Multi-OCG+ to minimize the dynam-
ic regret without the smoothness. According to theoreti-
cal analysis, our Multi-OCG+ enjoys an optimal dynam-
ic regret bound of O(max{T 2/3V

1/3
T ,
√
T}) for convex

functions, which does not require any prior knowledge
of VT . Furthermore, for strongly convex functions, Multi-
OCG+ achieves a nearly optimal dynamic regret bound of
O(max{

√
TVT log T , log T}). Experiments in dynamic en-

vironments demonstrate the efficiency and effectiveness of
our Multi-OCG+.
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