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Abstract. Class incremental learning (CIL) aims to continually learn unseen
classes in new tasks without forgetting the previous ones. However, deep neu-
ral networks are prone to make a biased prediction towards classes in the most
recently learned task, dubbed task-recency bias. Most recent studies make a post-
training adjustment on the last fully connected layer to alleviate this problem
but ignore the feature extractor. This work proposes a novel training framework
termed network calibration (NeCa) that simultaneously adjusts the last fully con-
nected layer and the feature extractor. Specifically, we combine the post-training
adjustment process with the training process into a balanced learning module,
whose loss function is corrected based on the prior probabilities of classes. In this
module, the parameters of the whole network are well-calibrated via backprop-
agation. Additional knowledge transmission and decaying regularization mod-
ules further mitigate catastrophic forgetting in CIL. Experiment results manifest
that NeCa outperforms the state-of-the-art methods on three mainstream datasets,
including MNIST, CIFAR-100, and ImageNet-100, which validates the effective-
ness of our framework. Furthermore, we conduct experiments with the prevalent
vision transformer backbone, and the consistently excellent performance demon-
strates that NeCa is also competently suited for attention-based models.

Keywords: Class incremental learning · Catastrophic forgetting · Class
imbalance · Classification · Deep learning

1 Introduction

In recent years, deep neural networks (DNNs) have achieved excellent performance on
various visual tasks [9,10]. However, their success is generally limited to a single task.
Compared with humans, DNNs seem to be tremendously forgetful. Specifically, when
a new task arrives, DNNs are prone to forget the knowledge gained on the old task,
which is known academically as catastrophic forgetting [4,22]. Nowadays, the increas-
ing volume of data and privacy issues create an urgent need for a learning paradigm to
continually adapt to new tasks while maintaining performance on old ones.

To delve into catastrophic forgetting, researchers have proposed three incremental
learning scenarios: task-incremental learning, domain-incremental learning, and class-
incremental learning (CIL) [27]. They differ in whether the task identities are provided
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at inference and whether the task identities must be inferred. CIL is the most difficult of
the three because it has to predict unknown task identities. Researchers widely adopt a
size-limited exemplar memory [25] and knowledge distillation technique [19] for CIL.
With their help, the overall accuracy does improve, but predictions are still extremely
biased towards the classes in the most recently learned task. The limitation is termed
task-recency bias (TRB) [20], illustrated in Fig. 1.

Fig. 1. Compared to the model trained in the balanced
dataset, the TRB-affected model produced extremely high
output logits for the new classes, leading to inference errors.

Recently, several works
aim to correct TRB, most of
which argue that an imbal-
anced training set is the main
reason and the last fully con-
nected layer suffers the most.
So they perform a post-training
adjustment on the last fully
connected layer, which does
improve the performance to
some extent [25,30,34]. How-
ever, their methods leave the
feature extractor, which is also
trained on the same imbal-
anced dataset, untouched. To
improve this, we present a
simple and effective train-
ing framework named network
calibration (NeCa) that miti-
gates TRB by simultaneously tuning the last fully connected layer and the feature
extractor in a one-stage training.

In total, NeCa is composed of three parts. Balanced Learning: We confront an
imbalanced training set in each task because of the size limitation of exemplar mem-
ory. To address this issue, we calibrate the traditional classification loss via the prior
probability of each class and propose the calibrated cross-entropy (CCE) loss. Through
minimizing CCE loss, we calibrate the whole network (including the feature extractor
ignored by previous work) to obtain a more balanced classification boundary. Knowl-
edge Transmission: To transfer the knowledge along with the task, we apply knowledge
distillation (KD) [12] between the models of two adjacent tasks. We restrict the output
logits of the models to be as consistent as possible. This module can pass on the perfor-
mance gains from other modules. Decaying Regularization: As the training set starts
from a small part of the whole dataset, we heuristically adopt a stronger regularization
at the beginning to prevent overfitting and weaken it as the task progresses to combat
forgetting.

To sum up, our contribution is threefold: (i) Taking the information of prior proba-
bility into account, we propose CCE loss to confront the imbalanced training set in CIL.
Optimizing CCE loss will calibrate the whole network especially the feature extrac-
tor neglected in previous works. (ii) We propose a novel training framework called
NeCa consisting of three parts. They can promote each other very well and make
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the model’s prediction more balanced throughout the task continuum. (iii) Extensive
experiment results manifest that, compared with the current state-of-the-art methods,
our framework achieves the best performance on three mainstream datasets, including
MNIST, CIFAR-100, and ImageNet-100. Furthermore, experiments on vision trans-
formers demonstrate that NeCa is equally applicable to attention-based models.

2 Related Work

Class incremental learning (CIL) approaches are roughly classified into the following
four categories: (i) Structure-based methods fix the parameters related to previous tasks
and assign more to new tasks [1,24,31]. (ii) Regularization-based methods try to min-
imize the impact of learning a new task imposing on the old ones [2,3,15,19]. (iii)
Rehearsal methods provide training samples of previous tasks by storing a small num-
ber of exemplars or generating synthetic images or features [5,25,26,30]. (iv) Bias-
correction methods aim to alleviate task-recency bias (TRB) [5,13,25,30,34]. Our
framework network calibration (NeCa) belongs to (ii), (iii), and (iv) at the same time,
and the following is a brief overview of these three categories.

Knowledge Distillation. Knowledge distillation (KD) [12] belongs to the broad cate-
gory of regularization-based methods. Li and Hoiem [19] first utilize KD in incremental
learning to keep the model’s response for old tasks. After this, KD became a popular
technique used to retain the knowledge of old tasks in CIL. Rebuffi et al. [25] store a
limited number of previous exemplars for training and expand the KD loss for them.
Wu et al. [30] introduce a scalar to adjust the weight between KD loss for remembering
the previous knowledge and classification loss for learning the new ones. Ahn et al. [2]
impose KD independently on the output logits associated with each task and propose a
novel separated softmax layer to implement it.

Rehearsal. CIL can proceed without preserving any examples from the previous
task [3,14,19,33]. In contrast, rehearsal-based methods use a limited amount of pre-
viously seen exemplars or learn to generate them [26]. As far as we know, Rebuffi et
al. [25] first introduce the exemplar rehearsal method into CIL with a nearest-means-of-
exemplars classification strategy at inference. Due to its performance improvement and
ease of deployment, rehearsal is prevalent in recent works [2,13,18,30,31,34]. Prabhu
et al. [23] keep a balanced exemplar memory by greedily collecting samples over the
previous tasks, and they train a model from scratch in the next task using samples only in
the memory. Verwimp et al. [28] provide both conceptual and strong empirical evidence
to interpret the benefits and harms of the rehearsal-based method in the CIL scenario.

Bias Correction. The bias in the bias correction refers to the TRB. Despite resorting to
sorts of techniques to prevent forgetting, the model tends to make a biased prediction
towards the newest classes. To correct TRB, Rebuffi et al. [25] observe the last fully
connected layer of a model manifests higher bias than the modules before it, i.e., the
feature extractor. So they abandon the fully connected layer and utilize only the feature
extractor at inference. Castro et al. [5] take advantage of data augmentation and propose
a second-stage training phase called balanced fine-tuning. Wu et al. [30] add a bias cor-
rection layer following the last fully connected layer and train it on a balanced dataset
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obtained by down-sampling while freezing the feature extractor. Hou et al. [13] utilize
the hard negative classes of a new class to rectify the imbalanced class embeddings.
Furthermore, they note that the weight and bias of the last fully connected layer are dis-
torting between old and new classes. Inspired by this finding, Zhao et al. [34] propose
a simple and effective method to adjust the weight of the last fully connected layer via
its norms. Unlike previous approaches, our framework NeCa adjusts the parameters of
the feature extractor and merges the bias correction stage into the training phase.

3 Method

In this section, we first give a formal formulation of class incremental learning (CIL)
and then detail our proposed framework, namely network calibration (NeCa), which
consists of three main components: balanced learning, knowledge transmission, and
decaying regularization (illustrated in Fig. 2).

3.1 Problem Formulation

CIL is composed of T tasks coming in a row. In each task t = 1, 2, · · · , T , we get a
new training setDt that consists ofCt classes we have never seen before, which implies
that Li ∩ Lj = ∅,∀i �= j, where Li denotes the label space of Di. Note that we need
to expand the model parameters for the new classes on the last fully connected layer.
It is easy to get a model that performs well on task t by simply adopting a traditional
cross-entropy (CE) loss on Dt:

LCE(Dt) =
1

|Dt|
∑

(X,y)∈Dt

Lt
CE(X, y). (1)

Let Ct
old =

∑t−1
i=1 Ci and Ct

all =
∑t

i=1 Ci, we can express CE loss for a single
item as

Lt
CE(X, y) =

Ct
all∑

c=1

−1{c=y} log uc(X), (2)

in which 1{c=y} is the indicator function and uc(·) denotes the prediction probability
for the c-th class.

Note that before task t, our model has seen Ct
old classes from the previous datasets

D1,D2, · · · ,Dt−1. Only optimizing (1) will tremendously deteriorate the performance
of the model on the previous tasks, which is termed catastrophic forgetting. To alleviate
this phenomenon, we typically apply a size-limited exemplar memory M (size is lim-
ited to |M| < m and m � ∑t

i=1 |Di|) to randomly preserve �m/Ct
all� items in each

class after a task in a balanced manner and recall them at the next task. Thus, the CE
loss at task t is adopted on both Dt and M, i.e., LCE(Dt ∪ M). However, the prior
probability of each class in Dt ∪M is extremely biased, and the CE loss does not apply
to the situation anymore.
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Fig. 2. An overview of our framework NeCa, containing balanced learning (the yellow part),
knowledge transmission (the green part), and decaying regularization (the orange part) (Color
figure online)

3.2 Balanced Learning

Biased prior probability leads to biased prediction, which is exactly the cause of task-
recency bias (TRB). However, the distribution information of prior probability depicts
the degree of imbalance of each class, which we can utilize to correct the imbalanced
output logits for each class. We intend to construct a more balanced learning process by
using prior probabilities.

Considering a general situation, at task t, our training set contains Ct
all different

classes. Suppose the number of samples from c-th class is n(c), the prior probability of
c-th class can be estimated by

pt(c) =
n(c)

∑Ct
all

i=1 n(i)
. (3)

Then we demonstrate how this information corrects the imbalanced prediction prob-
ability. As the main reason for TRB, while training with an imbalanced dataset, the
prediction probabilities u(·) of the dominant classes (i.e., the new classes in class incre-
mental learning) are prone to be unexpectedly high. Inspired by recent approaches to
class imbalance [21,32], we address this problem by correcting the prediction probabil-
ity of c-th class uc(·) with the prior probability of c-th class pt(c) at inference:

vc(·) = uc(·)
pt(c)

, (4)

applying normalization on vc(·), we get the calibrated prediction probability as

ûc(·) = vc(·)
∑Ct

all
i=1 vi(·)

. (5)
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Through the above post-training calibration, the prediction probabilities ûc(·)
become more balanced and result in a considerable overall accuracy. But post-training
adjustment optimizes no parameter of the model. To complement this, we introduce the
calibration into the CE loss (2).

As for post-training calibration at inference, we turn it into a pre-training scaling
imposed on the prediction probabilities uc(·). The pre-training scaling can be consid-
ered as the inverse process of the post-training calibration (4):

v′
c(·) = pt(c) · uc(·), (6)

after the same normalization in (5), we get û′
c(·). The calibrated cross-entropy (CCE)

loss can be obtained by replacing prediction probabilities uc(·) in the CE loss (2) with
û′

c(·):

Lt
CCE(X, y) =

Ct
all∑

c=1

−1{c=y} log û′
c(X). (7)

Combining the above Eqs. (5), (6), and (7), we obtain the complete formulation of
CCE loss:

Lt
CCE(X, y) =

Ct
all∑

c=1

−1{c=y} log
eoc(X)+μ log pt(c)

∑Ct
all

i=1 eoi(X)+μ log pt(i)
, (8)

where oi(·) denotes the i-th class output of the current model and μ, like temperature in
the knowledge distillation (KD) technique, is an additional hyperparameter controlling
the smoothness magnitude. When μ = 0, it degenerates as the traditional CE loss, and
the neural network will not put additional attention on the old classes. When μ = 1, (8)
is equivalent to (7). As μ increases, the model begins to focus more on the old classes.

At inference, we use the prediction probabilities uc(·) without additional opera-
tion. As shown in Table 1, the pre-training scaling in (6) shares the same effect as
the post-training calibration in (4), i.e., it produces a balanced classification bound-
ary. However, unlike the post-training calibration leaves all the parameters untouched,
optimizing CCE loss will influence each parameter positively (including the last fully
connected layer and the feature extractor). When the model becomes a teacher model of
the knowledge transmission module in Sect. 3.3, its output logits will be more balanced
and teach more useful knowledge than a sub-balanced one.

Table 1. The relation between the post-training calibration and the pre-training scaling

Method Training w/ Inference w/

Post-training calibration uc(·) uc(·)/pt(c)

Pre-training scaling pt(c) · uc(·) uc(·)
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3.3 Knowledge Transmission

To transmit the knowledge, we preserve the teacher model Θt−1 at the end of task
(t − 1), then utilize KD to train the model Θt at task t. Specifically, the KD loss can be
formulated as

LKD(Dt ∪ M) =
1

|Dt ∪ M|
∑

(X,y)∈Dt∪M
LKD(X), (9)

in which KD loss for a single item LKD(·) is defined as

LKD(X) =
Ct

old∑

c=1

−q̂c(X) log qc(X), (10)

q̂c(X) =
e

ôc(X)
τ

∑Ct
old

i=1 e
ôi(X)

τ

, qc(X) =
e

oc(X)
τ

∑Ct
old

i=1 e
oi(X)

τ

,

where ôi(·) denote the i-th class output of the previous model Θt−1, and τ is the tem-
perature controlling the smoothness magnitude of the target distribution during KD.

Finally, we combine (8) with (10) as Wu et al. [30] did, and the overall loss on task
t becomes

Lt = (1 − λt)LCCE(Dt ∪ M) + λtLKD(Dt ∪ M), (11)

in which λt = Ct
old/Ct

all is a hyperparameter of the trade-off between the balanced
learning loss and the knowledge transmission loss.

Note that every parameter in our teacher model Θt−1 has been calibrated by opti-
mizing CCE loss at the previous task, thus the student Θt will learn a more balanced
classification boundary, which will also promote a more balanced training in the current
task.

3.4 Decaying Regularization

At the practical training phase, we often add a regularization term γt‖Θt‖2 (‖Θt‖2
denotes the 2-norm sum of each weight and bias in the model Θt) outside the overall
loss (11). This term drives all model parameters toward zero to prevent overfitting.

As we should impose a stronger regularization on the parameters when trained on a
smaller dataset, we replace the fixed regularization in previous works with a decaying
way. At the beginning of a class incremental learning problem, we always fit the model
on a tiny dataset, which is a small part of the complete dataset. A stronger regulariza-
tion helps prevent overfitting. After that, overly strong regularization tends to make the
parameters vanish, thus we weaken the regularization to protect the parameters fitted in
previous tasks. Specifically, we formulate the decaying regularization parameter as

γt =
1
t

· γ1, (12)
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in which γ1 is the regularization parameter of the first task, relying on the dataset and
the total number of tasks T . In addition, we have tried linear decaying regularization

γt =
(
1 − t − 1

T

)
· γ1, (13)

but it is not as good as the reciprocal decaying in (12).

Algorithm 1.. Network Calibration

Input: Datasets D1, D2, · · · , DT

Output: Classification models Θ1, Θ2, · · · , ΘT

Initialize: Exemplar memory M = ∅, decaying regularization factor γ1

Parameter: Random initialized model Θ0

1: for t = 1, · · · , T do
2: Input the dataset Dt for task t
3: if t = 1 then
4: Θt ← Optimize Θt−1 with LCE(D1) + γ1‖Θt−1‖2

5: else
6: Update decay regularization factor γt by (12)
7: Calculate λt and estimate prior probabilities pt(·) by (3)
8: Θt ←Optimize Θt−1 with (1−λt)LCCE(Dt∪M)+λtLKD(Dt∪M)+γt‖Θt−1‖2

9: end if
10: M ← Sample averagely and randomly from Dt ∪ M
11: Output a classification model Θt for task t
12: end for

Finally, summarizing the above three parts yields Algorithm 1. As can be seen,
NeCa is easy to deploy because no additional training phase and complex data sampling
method (e.g., herding in iCaRL [25]) are needed.

4 Experiments

In this section, we evaluate our proposed framework network calibration (NeCa) in the
class incremental learning (CIL) scenario and compare NeCa with some state-of-the-
art methods. Moreover, we apply NeCa to both ResNet [10,11] and vision transformer
(ViT) [8], to demonstrate its model-independent attribute.

4.1 Datasets, Baselines and Experimental Details

Our experiments involve three datasets with significantly diverse data volumes, includ-
ing MNIST [17], CIFAR-100 [16], and a subset of ImageNet ILSVRC 2012 [7], i.e.,
ImageNet-100. MNIST contains 60,000 bi-level images of handwritten digits 0 to 9 for
training and 10,000 for testing. CIFAR-100 contains 50,000 RGB images at 32 × 32
resolution from 100 classes for training and 10,000 images for testing. ImageNet
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ILSVRC 2012 is a larger dataset containing about 1.2 million images at different reso-
lutions from 1,000 classes for training and 50,000 for evaluation. As for ImageNet-100,
we randomly select 100 classes from the former.

We choose the following typical or state-of-the-art methods (also mentioned in
Sect. 2) for comparison:

• LwF [19]: Retain the previous knowledge via knowledge distillation only.
• iCaRL [25]: Use an exemplar memory and predict using the outputs of the feature
extractor in a nearest-means-of-exemplars way.

• EEIL [5]: Introduce an additional balanced training phase and impose stronger data
augmentation.

• BiC [30]: Add additional modules, which require an independent training phase, to
correct the task-recency bias (TRB) in the last fully connected layer.

• WA [34]: Make post-training adjustments, utilizing the information of the magnitude
of its norms, only to the parameters of the last fully connected layer.

• SS-IL [2]: Propose a novel separate softmax module, which calculates loss indepen-
dently for the output logits of each task, especially suitable for large-scale datasets.

For CIFAR-100, we only adopt random cropping, horizontal flipping, and normal-
ization for data augmentation in all experiments. For all methods, we use a 32-layer
ResNet [10,11] and an SGD optimizer with a momentum of 0.9. We vary the total num-
ber of tasks as T = {2, 5, 10, 20} with correspondence to batch size = 32, m = 2000,
τ = 4, γ1 = 0.00005 · T , and μ = 1.5. The learning rate starts from 0.1 and reduces to
1/10 of the previous after 100, 150, and 200 epochs (250 epochs in total).

For MNIST, we only adopt normalization for data augmentation. All details are the
same as in CIFAR-100 except γ1 = 0.00004 · T and μ = 1. The learning rate starts
from 0.01 and reduces to 0.001 after the 5-th epoch (10 epochs in total).

For ImageNet-100, we use an 18-layer ResNet. Except for γ1 = 0.00001 · T ,
all other details are the same as in CIFAR-100. The learning rate starts from 0.1 and
reduces to 1/10 of the previous after 30, 60, 80, and 90 epochs (100 epochs in total).

4.2 Results

OnMNIST, we take the average of 5 experiments and report the accuracy of the last task
AT in Table 2 and the average accuracy across all tasks A in Table 3. The performance
gaps among these methods are not very significant because the task is quite simple, but
our method NeCa still achieves a slight lead. Note that, in Table 3 we use Joint to denote
the method of saving all previous data for joint training, which is generally regarded as
the upper bound indicator of performance that can be obtained in class incremental
learning tasks.

On CIFAR-100, we take the average of 5 experiments and report the top-1 accu-
racy at each task in Fig. 3, the accuracy of the last task AT in Table 2, and the average
accuracy across all tasks A in Table 3. We denote the performance of jointly training
all data as the upper bound. Among the methods of comparison, WA is the strongest
baseline method. Compared with it, NeCa exceeds its accuracy at each task, and the
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Fig. 3. CIL results on CIFAR-100 with a total number of 2, 5, 10, and 20 tasks respectively

average accuracy of all tasks increases by about 0.82, 1.71, 1.76, and 2.93 for 2-, 5-,
10-, and 20-step CIL scenarios, respectively. The improvement achieved by NeCa is
more pronounced when the total number of tasks increases.

On ImageNet-100, we take the average of 3 experiments and report the top-1 and
top-5 accuracy (denoted by 10 and 10� respectively in the T attribute) in Table 2 and
Table 3. The results further indicate that NeCa still performs well on a larger dataset.
As a method designed for large-scale datasets, SS-IL becomes the strongest baseline
method. Compared with it, NeCa still surpasses about 4.12 and 0.96 on the average
top-1 and top-5 accuracy of all tasks, respectively. Our framework especially improves
a large margin on the top-1 accuracy.

Table 2. Last accuracy AT (%) at different CIL settings

Model ResNet-32 ResNet-18 ViT-M ViT-B

Dataset MNIST CIFAR-100 ImageNet-100 CIFAR-100

T 2 5 2 5 10 20 10 10� 10

LwF 98.13 92.17 52.13 35.75 23.48 16.03 21.25 37.22 12.34 70.78

iCaRL 98.26 93.18 60.69 53.62 47.09 41.37 49.88 78.42 27.91 86.93

EEIL 98.37 96.61 60.47 54.42 50.02 44.28 52.74 80.02 41.80 84.89

BiC 98.62 96.89 64.71 56.69 50.75 46.96 58.88 81.96 45.40 86.37

WA 98.86 97.22 64.15 56.70 51.44 44.97 56.78 79.20 47.49 73.32

SS-IL 97.83 87.96 56.74 50.03 44.87 38.77 59.24 85.70 44.72 87.28

NeCa 99.21 98.10 65.55 59.01 54.10 47.15 64.22 86.56 49.72 87.87

Joint 99.67 68.93 82.34 95.21 67.52 96.46

4.3 Experiments on Vision Transformer

ViT [8] is attention-based, which separates the input image into several parts and cal-
culates the potential correlation between them. ViT has the same prediction head (i.e.,
the fully connected layer behind the [class] token) as ResNet does, thus can be ratio-
nally calibrated via NeCa. In this section, we transfer NeCa into the ViT model. Table 4
presents the details of our ViT models.
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Table 3. Average accuracy A (%) at different CIL settings

Model ResNet-32 ResNet-18 ViT-M ViT-B

Dataset MNIST CIFAR-100 ImageNet-100 CIFAR-100

T 2 5 2 5 10 20 10 10� 10

LwF 98.98 96.05 64.49 54.47 45.19 32.84 49.26 64.75 36.47 83.40

iCaRL 99.08 97.65 68.83 67.62 64.46 59.21 69.78 90.10 46.79 91.89

EEIL 99.11 98.15 68.77 67.92 64.94 62.23 69.69 89.92 55.96 90.71

BiC 99.26 98.39 70.88 68.91 65.87 62.22 71.60 90.27 57.46 91.61

WA 99.39 98.79 70.50 68.31 66.40 60.58 71.16 89.72 59.85 87.32

SS-IL 98.88 92.52 66.94 64.72 61.12 55.16 71.04 91.96 56.58 91.94

NeCa 99.57 99.21 71.32 70.02 68.16 63.51 75.16 92.92 60.83 93.12

Table 4. Specific information about ViT-M and ViT-B

Input size Patch size Depth Head Feature dimension Pre-training status

ViT-M 32× 32 2× 2 6 8 512 From scratch

ViT-B 224× 224 16× 16 12 12 768 Pretrained on ImageNet-1000

On CIFAR-100, ViT-M is prone to overfit because it contains no convolutional oper-
ation. To alleviate this situation, we additionally apply RandAugment [6] in data aug-
mentation. We train around 20000 steps for every task with an SGD optimizer and
utilize the cosine annealing learning rate with the warmup technique. Besides, due to
the prevalence of big data, it is urgent to investigate a continual learning method for
strongly pre-trained models [29]. The ViT-B is a stronger model that has been pre-
trained on ImageNet-1000 with a top-1 accuracy of around 0.81. On CIFAR-100, we
apply ViT-B in the CIL setting. We train around 4000 steps for every task with an SGD
optimizer and utilize the cosine annealing learning rate. We report their top-1 accuracy
results in the two rightmost columns of Table 2 and Table 3. The results show that on the
pre-trained ViT-B, the WA method has a very drastic performance degradation due to
the hard modification of the classifier parameters, while NeCa achieves the best perfor-
mance through adaptively calibrating the whole network, showing its generalizability
and effectiveness.

4.4 Ablation Studies

To further analyze the role of each factor in NeCa, we consider some variants of our
method. After evaluating them in a 10-step CIL scenario on CIFAR-100, we report
the accuracy of the last task AT , the average accuracy of all tasks A, and forgetting
rate A1 − AT (the accuracy gap between the first and last task) in the three rightmost
columns of Table 5, where KT and DR denote knowledge transmission and decaying
regularization modules respectively. In V3, CCE� indicates using post-training calibra-
tion mentioned in Sect. 3.2 rather than optimizing CCE loss. This method has poor
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performance because, like the comparison method in Sect. 4.1, it does not calibrate the
relevant parameters of the model. Ablation studies show that every part of NeCa plays
an active role and is indispensable. When used in combination, they can outperform
state-of-the-art methods.

4.5 Analysis on Hyperparameter

In this section, we analyze the hyperparameter μ in the CCE loss (8). As discussed in
Sect. 3.2, the CCE loss imposes greater emphasis on older classes when μ increases.
However, an overhigh μ causes the model to ignore the new classes. It is a trade-off
between the level of concern for the old and new classes, and we can set an optimal
value for μ. Our experiment finds that the optimal μ is always in the range from 1 to 2
for every dataset. As shown in Table 6, we report the average accuracy across all tasks
A when μ varies in [1,2]. Results demonstrate that our method is not very sensitive to
the value of μ, which implies that our approach is easy to deploy across datasets without
excessive hyperparameter tuning.

Table 5. Accuracy results of the variants

Variant Loss KT DR AT (%) A (%) A1 − AT (%)

V1 CE � × 34.75±1.25 56.66±1.08 51.35

V2 CE � � 34.04±0.56 58.43±0.45 55.40

V3 CCE� � � 40.67±0.66 62.75±0.36 50.03

V4 CCE × � 43.83±1.07 62.52±1.15 46.60

V5 CCE � × 52.96±0.41 67.17±0.75 36.58

NeCa CCE � � 54.10±0.54 68.16±0.43 36.00

Table 6. Influence of μ in CCE loss

μ 1.0 1.2 1.4 1.5 1.6 1.8 2.0

A 66.88 66.48 67.15 68.16 65.67 66.34 66.43

4.6 Balanced Classification Boundaries

In this section, we demonstrate the effect of the NeCa training framework on the clas-
sification boundaries between the old and new classes of the classification model.

As shown in Fig. 4, when optimizing the CE loss (2), due to the inconsistent data
distribution between the training and testing sets, the classification boundary that per-
forms well on the training set may lead to many misjudgments when stepping into the
test phase. The optimization of the CCE loss (8) will shift the original classification
boundary by a distance toward the center of the new class, allowing the model to make
more balanced inferences about the old and new classes, thus solving the TRB problem.
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Experimentally, we record the accuracy of each CIL method on Cifar-100 for mul-
tiple tasks on both old and new classes and then calculate their average gap. The results
in Table 7 demonstrate that NeCa allows the final classification boundary to reach the
most balanced state thanks to the calibration of the whole network parameters, thus
resulting in the minimal accuracy gap between the old and new classes and the highest
overall accuracy.

Fig. 4. Impact of optimizing CCE loss on the classification boundary between old and new classes

Table 7. The accuracy gap between the old and new classes of various CIL methods

Method Classes Task 2 Task 4 Task 6 Task 8 Task 10 Accuracy gap

iCaRL
old 83.4 66.6 59.1 51.2 45.5

12.34
new 74.0 70.6 69.5 66.0 68.6

EEIL
old 78.0 69.3 60.6 52.1 49.0

9.11
new 84.3 72.2 69.7 68.9 59.4

BiC
old 75.8 67.8 61.2 53.8 50.1

8.13
new 87.8 75.9 68.4 60.7 56.7

WA
old 79.3 67.5 62.0 56.2 51.5

7.64
new 85.5 80.2 69.2 62.3 57.5

NeCa
old 85.0 70.9 63.5 58.4 53.7

6.50
new 81.1 77.1 72.4 62.1 63.5

5 Conclusion

In this work, we combat the task-recency bias problem in the class incremental learn-
ing scenario. We propose a novel framework network calibration (NeCa) to calibrate
the whole network via the prior probability and pass the ability of balanced prediction
through knowledge distillation. Finally, the decaying regularization further improves
the performance. Extensive experiments confirm the effectiveness and generalizability
of NeCa. However, the bottleneck of having to preserve some of the samples remains
unresolved. In the future, we will try to extend NeCa into the memory-free scenario.
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