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Abstract. In this paper, we develop a randomized algorithm and theory
for learning a sparse model from large-scale and high-dimensional data,
which is usually formulated as an empirical risk minimization problem
with a sparsity-inducing regularizer. Under the assumption that there
exists a (approximately) sparse solution with high classification accu-
racy, we argue that the dual solution is also sparse or approximately
sparse. The fact that both primal and dual solutions are sparse moti-
vates us to develop a randomized approach for a general convex-concave
optimization problem. Specifically, the proposed approach combines the
strength of random projection with that of sparse learning: it utilizes
random projection to reduce the dimensionality, and introduces ¢;-norm
regularization to alleviate the approximation error caused by random
projection. Theoretical analysis shows that under favored conditions, the
randomized algorithm can accurately recover the optimal solutions to the
convex-concave optimization problem (i.e., recover both the primal and
dual solutions).

Keywords: Random projection -+ Sparse learning - Convex-concave
optimization - Primal solution - Dual solution

1 Introduction

Learning the sparse representation of a predictive model has received consider-
able attention in recent years [4]. Given a set of training examples {(x;,¥y:)}7
with x; € R? and y; € R, the optimization problem is generally formulated as

n

min 2 3 o(yex] w) + y(w) (1)

WENR N 4
i=1

where £(+) is a convex function such as the logistic loss to measure the empirical
error, and t(-) is a sparsity-inducing regularizer such as the elastic net [3§]
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to avoid overfitting [13]. When both d and n are very large, directly solving
(1) could be computationally expensive. A straightforward way to address this
challenge is first reducing the dimensionality of the data, then solving a low-
dimensional problem, and finally mapping the solution back to the original space.
The limitation of this approach is that the final solution, after mapping from
the low-dimensional space to the original high-dimensional space, may not be
sparse.

The goal of this paper is to develop an efficient algorithm for solving the
problem in (1), and at the same time preserve the (approximate) sparsity of the
solution. Our approach is motivated by the following simple observation:

If there exists a sparse model with high prediction accuracy, the dual
solution to (1) is also sparse or approximately sparse.

To see this, let us formulate (1) as a convex-concave optimization problem. By
writing £(z) in its convex conjugate form, i.e.,
V(z) = max Az — £ ()
() = max A= — £.(V),

where £,(-) is the Fenchel conjugate of £(-) [27] and I" is the domain of the dual
variable, we get the following convex-concave formulation:

n n

max min yny(w) — Z C(\) + Z \yix; w. (2)

Al we2 c :
i=1 1=1

Denote the optimal solutions to (2) by (w,, As). By the Fenchel conjugate the-
ory [9, Lemma 11.4], we have

Aui = 0 (yix] w).

Let us consider the squared hinge loss for classification [31], where £(z) =
max(0,1 — z)2. Therefore, y;x; w, > 1 indicates that [A.]; = 0. As a result,
when most of the examples can be classified by a large margin (which is likely
to occur in large-scale and high-dimensional setting), it is reasonable to assume
that the dual solution is sparse. Similarly, for logistic regression, we can argue
the dual solution is approximately sparse.
Abstracting (2) slightly, in the following, we will study a general convex-
concave optimization problem:
; T
max min g(w) —h(A) —w " AX 3)
where A C R™ and §2 C R? are the domains for A and w, respectively, g(-) and
h(-) are two convex functions, and A € R?*" is a matrix. The benefit of analyzing
(3) instead of (1) is that the convex-concave formulation allows us to exploit the
prior knowledge that both w, and A, are sparse or approximately sparse. The
problem in (3) has been widely studied in the optimization community, and

when n and d are medium size, it can be solved iteratively by gradient based
methods [21,22].
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We assume the two convex functions ¢(-) and h(-) are relatively simple such
that evaluating their values or gradients takes O(d) and O(n) complexities,
respectively. The bottleneck is the computations involving the bilinear term
w | AX, which have O(nd) complexity in both time and space. To overcome this
difficulty, we develop a randomized algorithm that solves (3) approximately but
at a significantly lower cost. The proposed algorithm combines two well-known
techniques—random projection and £1-norm regularization in a principled way.
Specifically, random projection is used to find a low-rank approximation of A,
which not only reduces the storage requirement but also accelerates the com-
putations. The role of ¢1-norm regularization is twofold. One one hand, it is
introduced to compensate for the distortion caused by randomization, and on
the other hand it enforces the sparsity of the final solutions. Under mild assump-
tions about the optimization problem in (3), the proposed algorithm has a small
recovery error provided the optimal solutions to (3) are sparse or approximately
sparse.

2 Related Work

Random projection has been widely used as an efficient algorithm for dimension-
ality reduction [6,16]. In the case of unsupervised learning, it has been proved
that random projection is able to preserve the distance [11], inner product [3],
volumes and distance to affine spaces [18]. In the case of supervised learning, ran-
dom projection is generally used as a preprocessing step to find a low-dimensional
representation of the data, and thus reduces the computational cost of training.
For classification, theoretical studies mainly focus on examining the general-
ization error or the preservation of classification margin in the low-dimensional
space [5,24,28]. For regression, there do exist theoretical guarantees for the recov-
ery error, but they only hold for the least squares problem [19].

Our work is closely related to Dual Random Projection (DRP) [35,36] and
Dual-sparse Regularized Randomized Reduction (DSRR) [34], which also inves-
tigate random projection from the perspective of optimization. However, both
DRP and DSRR are limited to the special case that ¥ (w) = ||w||3, which leads
to a simple dual problem. In contrast, our algorithm is designed for the case that
¥(+) is a sparsity-inducing regularizer, and built upon the convex-concave for-
mulation. Similar to DSRR, our algorithm makes use of the sparsity of the dual
solution, but we further exploit the sparsity of the primal solution. A notice-
able advantage of our analysis is the mild assumption about the data matrix A.
To recover the primal solution, DRP assumes the data matrix is low-rank and
DSRR assumes it satisfies the restricted eigenvalue condition, in contrast, our
algorithm only requires columns or rows of A are bounded.

There are many literatures that study the statistical property of the sparse
learning problem in (1) [2,23,33,37]. For example, in the context of compressive
sensing [12], it has been established that a sparse signal can be recovered up to
an O(y/slogd/n) error, where s is the sparsity of the unknown signal. We note
that the statistical error is not directly comparable to the optimization error
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derived in this paper. That is because the analysis of statistical error relies on
heavy assumptions about the data, e.g., the RIP condition [8]. On the other
hand, the optimization error is derived under very weak conditions.

3 Algorithm

To reduce the computational cost of (3), we first generate a random matrix
R € R™™™ where m < min(d, n). Define A=AR€ R¥*™ e propose to solve
the following problem
max min g(w) = h(A) = wTARTA + 30wl = Al (4)

where 7, and «, are two regularization parameters. The construction of the
random matrix R, as well as the values of the two regularization parameters -,
and v, will be discussed later. The optimization problem in (4) can be solved
by algorithms designed for composite convex-concave problems [10,14].

Compared to (3), the main advantage of (4) is that it only needs to load A and
R into the memory, making it convenient to deal with large-scale problems. With
the help of random projection, the computational complexity for evaluating the
value and gradient is reduced from O(dn) to O(dm+mnm). Compared to previous
randomized algorithms [5,34,35], (4) has two new features: (i) the optimization
is still performed in the original space; and (ii) the ¢;-norm is introduced to
regularize both primal and dual solutions. As we will prove later, the combination
of these two features will ensure the solutions to (4) are approximately sparse.
Finally, note that in (4) RR" is inserted at the right side of A, it can also be put
at the left side of A. In this case, we have the following optimization problem

max min g(w) = h(A) = w' RAX + 3wl = AL (5)

where R € R™™ is a random matrix, and A=RTAeR™ ",

Let (w,, As) and (W, A) be the optimal solution to the convex-concave opti-
mization problem in (3) and (4)/(5), respectively. Under suitable conditions, we
will show that

[~ w.llz <0 ( ”W*'O”**'Obg”) and
m
||X_ A2 <0 [w.llol|Ax o log d
*[|2 > o

implying a small recovery error when w, and A, are sparse. A similar recovery
guarantee also holds when the optimal solutions to (3) are approximately sparse,
i.e., when they can be well-approximated by sparse vectors.

4 Main Results

We first introduce common assumptions that we make, and then present theo-
retical guarantees.
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4.1 Assumptions

Assumptions About (3). We make the following assumptions about (3).

— g(w) is a-strongly convex with respect to the Euclidean norm. Let’s take the
optimization problem in (2) as an example. (2) will satisfy this assumption if
some strongly convex function (e.g., ||[w]||2) is a part of the regularizer ¥ (w).

— h(A) is B-strongly convex with respect to the Euclidean norm. For the problem
in (2), if £(-) is a smooth function (e.g., the logistic loss), then its convex
conjugate £, () will be strongly convex [15,27].

— Either columns or rows of A have bounded ¢>-norm. Without loss of generality,
we assume

[[Aisllz <1, Vi € [d], (6)
[Asjllz <1, Vi € [n]. (7)

The above assumption can be satisfied by normalizing rows or columns of A.

Assumptions About R. We assume the random matrix R € R™*™ has the fol-

lowing property.

— With a high probability, the linear operator R’ : R™ — R™ is able to pre-
serve the ¢o-norm of its input. In mathematical terms, we need the following
property.

Property 1. There exists a constant ¢ > 0, such that

Pr{(1—-¢)lx[l3 < [R"x|3 < (1 +¢)lx[3} = 1 — 2exp(—me®/c)

for any fixed x € Reéand 0 < e < 1/2.

The above property is widely used to prove the famous Johnson—
Lindenstrauss lemma [11]. Let R = \/—%S. Previous studies [1,3] have proved

that Property 1 is true if {S;;} are independent random variables sampled from
the Gaussian distribution N(0,1), uniform distribution over {£1}, or the fol-
lowing database-friendly distribution

V3, with probability 1/6;
X=<0, with probability 2/3;
—/3, with probability 1/6.
More generally, a sufficient condition for Property 1 is that columns of R are
independent, isotropic, and subgaussian vectors [20].

4.2 Theoretical Guarantees

Sparse Solutions. We first consider the case that both w, and A, are sparse.
Define
Sw = ||W*||07 and S\ = ||A*||0

We have the following theorem for the optimization problem in (4).
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~

Theorem 1. Let (W, ) be the optimal solution to the problem in (4). Set

c 4in
7= 2 AT w5 Elog 5 8)

4 6vx+/ 4
o = 2 1) S log 28 4 IV (7 € (003D 6 0g 2 )
m 5 16 m 1) 85
(9)

With a probability at least 1 — 39, we have

- 3 S N 12,8 — Wy
19— wells < PR ey < P, g (RN < sy
- * |2
provided
4
m > 4clog5 (10)

where ¢ is the constant in Property1.

Notice that [|[wW — w.|1/||W — w.||2 < 4/5,, indicates that W — w, is approxi-
mately sparse [25,26]. Combining with the fact w, is sparse, we conclude that
W is also approximately sparse.

Then, we discuss the recovery guarantee for the sparse learning problem in
(1) or (2). Since ATw, € R™, we can take ||ATw.|l2 = O(y/n). Since | Ao =
sx, we can assume [|[A.|l2 = O(y/sx). According to the theoretical analysis of
regularized empirical risk minimization [17,29,32], the optimal +, that minimizes
the generalization error, can be chosen as v = O(1/y/n), and thus a = O(yn) =
O(y/n). When the loss £(+) is smooth, we have 8 = O(1). The following corollary
provides a simplified result based on the above discussions.

Corollary 1. Assume |ATw.|2 = O(/n), [| A2 = O(/5x), @ = O(y/n), and
B =0(1). When m > O(sylogn), we can choose

nlogn sxlogd nsy logn
= A/ d Yy = \/ =2 e
Y O( - ) and 7y, O< + AV ) ( -

such that with a high probability

—~ YwA/ Sw Sws)\logn || W*”l
||w—w*||2§o()=o J <1
I m T

A natural question to ask is whether similar recovery guarantees for X can
be proved under the conditions in Theorem 1. Unfortunately, we are not able to
give a positive answer, and only have the following theorem.

Theorem 2. Assume vy satisfies the condition in (8). With a probability at least
1 -9, we have
~ 3’}/)\ S) 2 ~
1A= Al < T\ﬁ +5 (14 |RET = I2) AT (8 = wa)l
provided (10) holds.



Sparse Learning for Large-Scale and High-Dimensional Data 89

The upper bound in the above theorem is quite loose, because |[RRT — I||3 is
roughly on the order of nlogn/m [30].

Due to the symmetry between A and w, we can recover A, via (5) instead of
(4). Then, by replacing w, in Theorem 1 with A, W with )\, n with d, and so
on, we obtain the following theoretical guarantee.

Theorem 3. Let (W, \) be the optimal solution to the problem in (5). Set

c 4d
Yw Z 2||AA*||2 1Og )
m 0

4 67w/ 5w 4 d
Y > 2| w2 ﬁlog—nJru 1+ 7)< log—n+165wlog9— .
m o m o 8

) Sw

With a probability at least 1 — 35, we have

~ 3 12 A=A
IR A < TR A < ’Vﬁnd“AH < 4yE
- 2

provided (10) holds.

To simplify the above theorem, we can take ||A\, ||z = O(V/d) since A\, €
R?. Because (1) has both a constraint and a regularizer, we can assume the

optimal primal solution is well-bounded, that is, ||w.|2 = O(1). Finally, we
assume d < O(n), and have the following corollary.
Corollary 2. Assume |[AX]2 = O(Vd), ||w.|2 = O(1), @ = O(y/n), 8 =

O(1), and d < O(n). When m > O(sy, logd), we can choose

_O< /dlogd) and 7 = O ( logn sw> §O< /swlogd>
m \/ n m

such that with a high probability

- Swsylogd A=Al
A=Al <O(vsn) =0 \/7 and M2 Ty s
IR = Al €O (3av5n) ( - ) Fox ]S4

Approximately Sparse Solutions. We now proceed to study the case that
the optimal solutions to (3) are only approximately sparse.

With a slight abuse of notation, we assume w, and A, are two sparse vectors,
with [|[W|lo = sw and [|[A«]jo = sa, that solve (3) approximately in the sense that

[Vg(w.) — Ao <, (11)
IVR(A) + ATw. o <, (12)
for some small constant ¢ > 0. The above conditions can be considered as sub-

optimality conditions [7] of w, and A, measured in the £,-norm. After a similar
analysis, we have the following theorem.
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Theorem 4. Let (W, X) be the optimal solution to the problem in (4). Assume
(11) and (12) hold. Set

4
> 2| ATw, a1/ — log — + 2,
m 1
4d  6vry/ 4d 9
Yo = 2 A f2r ) = log == + 22VEX (1 4 7 /€ (10g 22 4 165y log — | | + 2.
m 1) 16 m 1) 85

With a probability at least 1 — 35, we have

- 3 N 12 W —
1% = wllo < V0 G ), < Pty 19 = Wl
8] [0

<4y/sy

[w — w.lla
provided (10) holds.

When ¢ is small enough, the upper bound in Theorem 4 is on the same order as
that in Theorem 1. To be specific, we have the following corollary.

Corollary 3. Assume |ATw.|2 = O(Vn), [[Adl2 = O(/sx), a = O(V/n),

B =0(), and ¢ = O(y/nlogn/m). When m > O(sylogn), we can choose 7y
and vy as in Corollaryl such that with a high probability

. Y/ 5w 5u5xlogn [W — w1
—wylly = — d =z < 4y/50.
9wl =0 (2272) O<V m )” o —wl, =1

5 Analysis

Due to the limitation of space, we only provide proofs of Theorem 1 and related
lemmas. The omitted proofs will be included in a supplementary.

5.1 Proof of Theorem 1

To facilitate the analysis, we introduce a pseudo optimization problem

TipT
max —h(A) —w, AR X — 7| Al
whose optimal solution is denoted by}\. In the following, we will first discuss
how to bound the difference between A and A, and then bound the difference
between w and w, in a similar way.
From the optimality of A and A,, we derive the following lemma to bound
their difference.

Lemma 1. Denote
pr=|[(RRT — DA w.|| . (13)

By choosing vy > 2px, we have

~ 35N % 127955, ||;\— A1
A=Al < ——=, [A= A < , and =< < 4y/sy.
p p A = A2
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Based on the property of the random matrix R described in Property 1, we
have the following lemma to bound py in (13).

Lemma 2. With a probability at least 1 — §, we have
4
< AT w]lzy/ = log =
o0 m )

Combining Lemmal with Lemma?2, we immediately obtain the following

lemma.
4n
Y > 2||A W*Hgﬂ—log 5

With a probability at least 1 — 6§, we have

= |(RRT —1)ATw.|

provided (10) holds.

Lemma 3. Set

N VM/ 12'Y>\3/\ ||/\ A1
[A = Aull2 < X =N < , and —=————— < 4,/s)
s ||>\ Aill2

provided (10) holds.

We are now in a position to formulate the key lemmas that lead to Theo-
rem 1. Similar to Lemma 1, we introduce the following lemma to characterize the
relation between w and w,.

Lemma 4. Denote

pw = ||A(I = RRT)A||_ + HARRT(A* - X)H . (14)

o0

By choosing v, > 2p.,, we have

3Yw/S N
'll)a w , HW

1274 84 H W*”l

[W—w.ll2 < — w1 < ; and
a

< 4./Sp.

W = w.lls

The last step of the proof is to derive an upper bound for p, based on
Property 1 and Lemma 3.

Lemma 5. Assume the conclusion in Lemma3 happens. With a probability at
least 1 — 26, we have

4d | 35 Ad
P < || A HQ\/—I og 2y TV (4 7 log 29 | 165, log 2
5 T8 5 85

provided (10) holds.
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5.2 Proof of Lemmal

Notations. For a vector x € R? and a set D C [d], we denote by xp the vector
which coincides with x on D and has zero coordinates outside D.
Let £2) include the subset of non-zeros entries in A, and {2, = [n]\ ). Define

L(A) = =h(X) + min g(w) = wAX,
AN) = —h(A) = w]ARTX = %[ AllL-
Let v € ||A||1 be any subgradient of || - ||; at A.. Then, we have!
u=—Vh(A,)—RR"ATw, — v € OX(A.).

Using the fact that A maximizes A(-) over the domain A and h(-) is B-strongly
convex, we have

02 A0 ~AR) > (~(X = X)) + 5 A, X3
N 5 _ (15)
= <>\ — A, VR(A) + RRTATw, + ’y>\v> + Sl = X
By setting v; = sign(\;), Vi € 2\, we have <XQA,V_Q/\> = ||XQ)\ |l1. As a result,
<X - >‘*’V> = <XQMV{Z>\> + <;‘-Q>\ - A*7VQ>\> > ||XQAH1 - HXQA - >‘*||1 (16)
Combining (15) with (16), we have
(A=A, Vh\) + RETATw. ) + gux* —XB+lxa, b < iR, — A,

(17)
From the fact that A, maximizes L£(-) over the domain A, we have

(VLA A=A) = (=Vh(A,) —ATwa, A=A <0, VA€ A (18)
Then,
<X — AL VRO + RRTATW*>

= <X — A, VA(AL) + ATW*> + <X — A, (RRT - I)ATW*>
as (19)
> — A= A1 [|(RRT = DATw,||

(13) < < ~
2 oAl A=Al = =px (IAg, I+ [Aa, = Al )
From (17) and (19), we have
6 ~ ~ ~
LA A3+ (= o) Ag [l < (a4 o) A, — Al

! In the case that h(-) is non-smooth, Vh(X,) refers to a subgradient of A(-) at A.. In
particular, we choose the subgradient that satisfies (18).
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Since vy > 2px, we have

37

Bix A X
SIA= A + S Ae b < =7 X2y = Al

And thus,

37

b5 3N v

IIR a3 < 22 9%0, Al < 222 Ko, - Al
~ 3V A/Sx

= A=Al < SR

3% |

B % Bx
A = A S SIA= A5 < Aoy — Al
QSA 2
~ 378
=[Xa, — Ay < T2,
AR 3%\
5 Aol = == X2y — Al
3 1258
=[x, lh < 3||>\m “ A= X = A < 7
ANl Ao, Al AR A
1A =X ||2 X=Xz~ IX = A2 B

5.3 Proof of Lemma 2

We first introduce one lemma that is central to our analysis. From the property
that R preserves the fs-norm, it is easy to verify that it also preserves the inner
product [3]. Specifically, we have the following lemma.

Lemma 6. Assume R satisfies Propertyl. For any two fized vectors u € R"
and v € R™, with a probability at least 1 — &, we have

c 4
|uTRRTV - uTv} < |lu|l2||v||21/ — log —.
m o

provided (10) holds.

Let e; be the j-th standard basis vector of R™. From Lemma 6, we have with
a probability at least 1 — 6,

4
‘ [(RRT - I)ATW*L.‘ —Je] (RRT = D)ATw.| < [ATw. 2/ % log 5

for each j € [n]. We complete the proof by taking the union bound over all
J € [n].
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5.4 Proof of Lemmabj
We first upper bound p,, as

pu < J|AU = REDA| , + |4 = X)|_+|[ARET - D(A. = X)|

oo

=U1 :=Us :=Us
Bounding U;. From Lemma 6, we have with a probability at least 1 — 4,

[[A(I = RRT)A.],| = |Ai(l — RRT)A,

c 4 (6) c 4
< Aicll2 I —log = < || — log =
S Acalllay S 10g 3 € 1ALy og

for each i € [d]. Taking the union bound over all i € [d], we have with a proba-
bility at least 1 — 6,

T [ € 10g 39
AT = RRV)AL|| < A2 —log —.

Bounding Us. From our assumption, we have

~ -~ (6) -
MM&—AMng%%&mﬂ&—AMSHM—AM

Bounding Us. Notice that the arguments for bounding U; cannot be used to
upper bound Us, that is because A, — A is a random variable that depends on R
and thus we cannot apply Lemma 6 directly. To overcome this challenge, we will
exploit the fact that A, — A is approximately sparse to decouple the dependence.
Define

Ktosy = {x €R” : x|z < 1, |x]l1 < 4y/53}-

When the conclusion in Lemma 3 happens, we have

P
—— € Kn,lﬁs (20)
[A = Asll2 g
and thus _
~ A — A
Us = |A — A2 ||A(RRT — T)-———2—
A = All2 ||

(20) ~ T
< A=Al sup [JA(RR —I)ZHOO

n,16sy

=Uy

Then, we will utilize techniques of covering number to provide an upper bound
for Uy.
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Lemma 7. With a probability at least 1 — §, we have

4d 9
sup ||A(RRT - I)ZH <224 V?2) < (log — + 165, log n>
26K 1605 o0 m ) 85

Putting everything together, we have

Puw
c 4d
<[ Asll2y/ —log —
~ 4
+ | As = X2 <1 +2(2 + \@)\/C (1ogd + 165 log 9”))
m 1) 85

id 3 4d 9
SH)\*HQ\/%log?Jr%\T@ <1+7\/; <10g6+165,\log8;)>.

6 Conclusion and Future Work

In this paper, a randomized algorithm is proposed to solve the convex-concave
optimization problem in (3). Compared to previous studies, a distinctive feature
of the proposed algorithm is that ¢;-norm regularization is introduced to control
the damage cased by random projection. Under mild assumptions about the
optimization problem, we demonstrate that it is able to accurately recover the
optimal solutions to (3) provided they are sparse or approximately sparse.

From the current analysis, we need to solve two different problems if our
goal is to recover both w, and A, accurately. It is unclear whether this is an
artifact of the proof technique or actually unavoidable. We will investigate this
issue in the future. Since the proposed algorithm is designed for the case that
the optimal solutions are (approximately) sparse, it is practically important to
develop a pre-precessing procedure that can estimate the sparsity of solutions
before applying our algorithm. We plan to utilize random sampling to address
this problem. Last but not least, we will investigate the empirical performance
of the proposed algorithm.

Acknowledgments. This work was partially supported by NSFC (61333014,
61272217), JiangsuFS (BK20160658, BK20131278), NSF (1463988, 1545995), and the
Collaborative Innovation Center of Novel Software Technology and Industrialization of
Nanjing University.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci. 66(4), 671-687 (2003)



96

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

L. Zhang et al.

Agarwal, A., Negahban, S., Wainwright, M.J.: Fast global convergence of gradient
methods for high-dimensional statistical recovery. Ann. Stat. 40(5), 2452-2482
(2012)

Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: robust concepts and
random projection. Mach. Learn. 63(2), 161-182 (2006)

Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-
inducing penalties. Found. Trends Mach. Learn. 4(1), 1-106 (2012)

Balcan, M.F., Blum, A., Vempala, S.: Kernels as features: on kernels, margins, and
low-dimensional mappings. Mach. Learn. 65(1), 79-94 (2006)

Bingham, E., Mannila, H.: Random projection in dimensionality reduction: appli-
cations to image and text data. In: Proceedings of the 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 245-250 (2001)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

Candes, E.J.: The restricted isometry property and its implications for compressed
sensing. C.R. Math. 346(9-10), 589-592 (2008)

Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge Uni-
versity Press, Cambridge (2006)

Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145 (2011)
Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and lin-
denstrauss. Random Struct. Algorithms 22(1), 60-65 (2003)

Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to com-
pressed sensing (chap. 1). In: Compressed Sensing, Theory and Applications, pp.
1-64. Cambridge University Press (2012)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2009)

He, Y., Monteiro, R.D.: An accelerated hpe-type algorithm for a class of compos-
ite convex-concave saddle-point problems. Technical report, Georgia Institute of
Technology (2014)

Kakade, S.M., Shalev-Shwartz, S., Tewari, A.: On the duality of strong convexity
and strong smoothness: learning applications and matrix regularization. Technical
report, Toyota Technological Institute at Chicago (2009)

Kaski, S.: Dimensionality reduction by random mapping: fast similarity computa-
tion for clustering. In: Proceedings of the 1998 IEEE International Joint Conference
on Neural Networks, vol. 1, pp. 413-418 (1998)

Koltchinskii, V.: Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems. Springer, Heidelberg (2011)

Magen, A.: Dimensionality reductions that preserve volumes and distance to affine
spaces, and their algorithmic applications. In: Rolim, J.D.P.; Vadhan, S.P. (eds.)
RANDOM 2002. LNCS, vol. 2483, pp. 239-253. Springer, Heidelberg (2002)
Mahoney, M.W.: Randomized algorithms for matrices and data. Found. Trends
Mach. Learn. 3(2), 123-224 (2011)

Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Uniform uncertainty principle
for Bernoulli and subgaussian ensembles. Constr. Approximation 28(3), 277-289
(2008)

Nemirovski, A.: Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. STAM J. Optim. 15(1), 229-251 (2005)

Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program.
103(1), 127-152 (2005)



23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sparse Learning for Large-Scale and High-Dimensional Data 97

Omidiran, D., Wainwright, M.J.: High-dimensional variable selection with sparse
random projections: measurement sparsity and statistical efficiency. J. Mach.
Learn. Res. 11, 2361-2386 (2010)

Paul, S., Boutsidis, C., Magdon-Ismail, M., Drineas, P.: Random projections for
support vector machines. In: Proceedings of the 16th International Conference on
Artificial Intelligence and Statistics, pp. 498-506 (2013)

Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Com-
mun. Pure Appl. Math. 66(8), 1275-1297 (2013)

Plan, Y., Vershynin, R.: Robust 1-bit compressed sensing and sparse logistic regres-
sion: a convex programming approach. IEEE Trans. Inf. Theor. 59(1), 482-494
(2013)

Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)
Shi, Q., Shen, C., Hill, R., van den Hengel, A.: Is margin preserved after ran-
dom projection? In: Proceedings of the 29th International Conference on Machine
Learning (2012)

Sridharan, K., Shalev-shwartz, S., Srebro, N.: Fast rates for regularized objectives.
Adv. Neural Inf. Process. Syst. 21, 1545-1552 (2009)

Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Found. Com-
put. Math. 12, 389-434 (2012)

Tsochantaridis, 1., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453—
1484 (2005)

Wu, Q., Zhou, D.X.: Svmm soft margin classifiers: linear programming versus
quadratic programming. Neural Comput. 17(5), 1160-1187 (2005)

Xiao, L., Zhang, T.: A proximal-gradient homotopy method for the ¢1-regularized
least-squares problem. In: Proceedings of the 29th International Conference on
Machine Learning, pp. 839-846 (2012)

Yang, T., Zhang, L., Jin, R., Zhu, S.: Theory of dual-sparse regularized random-
ized reduction. In: Proceedings of the 32nd International Conference on Machine
Learning (2015)

Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Recovering the optimal solution
by dual random projection. In: Proceedings of the 26th Annual Conference on
Learning Theory (COLT), pp. 135-157 (2013)

Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Random projections for clas-
sification: a recovery approach. IEEE Trans. Inf. Theor. 60(11), 7300-7316 (2014)
Zhang, L., Yang, T., Jin, R., Zhou, Z.H.: A simple homotopy algorithm for com-
pressive sensing. In: Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics (2015)

Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Series B (Stat. Methodol.) 67(2), 301-320 (2005)



	Sparse Learning for Large-Scale and High-Dimensional Data: A Randomized Convex-Concave Optimization Approach
	1 Introduction
	2 Related Work
	3 Algorithm
	4 Main Results
	4.1 Assumptions
	4.2 Theoretical Guarantees

	5 Analysis
	5.1 Proof of Theorem1
	5.2 Proof of Lemma1
	5.3 Proof of Lemma2
	5.4 Proof of Lemma5

	6 Conclusion and Future Work
	References


