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Abstract. We study online learning to rank (OL2R), where a param-
eterized ranking model is optimized based on sequential feedback from
users. A natural and popular approach for OL2R is to formulate it as
a multi-armed dueling bandits problem, where each arm corresponds to
a ranker, i.e., the ranking model with a specific parameter configura-
tion. While the dueling bandits and its application to OL2R have been
extensively studied in the literature, existing works focus on static envi-
ronments where the preference order over rankers is assumed to be sta-
tionary. However, this assumption is often violated in real-world OL2R
applications as user preference typically changes with time and so does
the optimal ranker. To address this problem, we propose non-stationary
dueling bandits where the preference order over rankers is modeled by
a time-variant function. We develop an efficient and adaptive method
for non-stationary dueling bandits with strong theoretical guarantees.
The main idea of our method is to run multiple dueling bandits gradi-
ent descent (DBGD) algorithms with different step sizes in parallel and
employ a meta algorithm to dynamically combine these DBGD algo-
rithms according to their real-time performance. With straightforward
extensions, our method can also apply to existing DBGD-type algo-
rithms.

Keywords: Online learning to rank · Dueling bandits ·
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1 Introduction

As a powerful ranking optimization paradigm, learning to rank has found appli-
cations in a variety of information retrieval scenarios such as web search, online
advertising, and recommendation systems [7,15]. In the classical offline learn-
ing to rank, a parameterized ranking model is first trained on collected queries
and documents with relevance labels, and then deployed to respond to users’
queries with predicted relevant documents. A drawback of offline learning to
rank is that the process of collecting training data with relevance labels is highly
time-consuming and expensive in large-scale applications [4]. Furthermore, as
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the ranking model is fixed after being deployed, it cannot track the evolution of
user needs [6].

To address these issues, recent advances in information retrieval have intro-
duced online learning to rank (OL2R), where the ranking model is optimized
based on its interactions with users on the fly [3]. Compared to its offline counter-
part, OL2R has lighter computational overhead and higher updating frequency.
At the heart of OL2R lies the trade-off between exploring new rankers and
exploiting the seemingly optimal ranker. Thus, a natural and popular approach
for OL2R is to formulate it as a dueling bandits problem [13,14], where each
ranker is viewed as an arm and the ranking model is optimized through sequential
noisy comparisons between rankers. While the dueling bandits based methods
have been widely studied for OL2R, they are limited in that the preference order
over rankers is assumed to follow stationary probability distributions. However,
in real-world scenarios, user preference typically changes with time, making the
stationary assumption invalid.

To better cope with real-world ranking tasks, we investigate dueling bandits
with non-stationary preference probability distributions for OL2R. Specifically,
let w and w′ be two points in the parameter space of the ranking model. We
model the probability that users prefer the ranking results produced by a ranker
with parameter w over those of a ranker with parameter w′ by a composite
function ft(w,w′) = σ(vt(w) − vt(w′)), where σ is a static link function, and
vt denotes the utility function in round t. Compared to the existing works on
dueling bandits, the novelty of our model is that the utility function can change
with time t, capturing the non-stationarity of user preference. Since vt and vt′ can
be different for t �= t′, the optimal parameter w∗

t that maximizes vt and hence
the optimal ranker can change with time, making the non-stationary dueling
bandits much harder to deal with than its stationary counterpart.

Nevertheless, by drawing inspiration from recent progress in dynamic online
optimization [16,17], we develop an efficient and adaptive method for non-
stationary dueling bandits. Our method follows the prediction with expert advice
framework [1] and has a two layer hierarchical structure: multiple dueling ban-
dits gradient descent (DBGD) [14] algorithms running parallel in the bottom
and a meta algorithm aggregating the outputs of DBGDs in the top. Generally
speaking, DBGDs aim at balancing the exploration-exploitation tradeoff, which
also exists in the classical stationary dueling bandits, and the meta algorithm is
responsible for tracking the change of utility functions, which is a new task aris-
ing only in our non-stationary setting. Under mild assumptions, we prove that
our method guarantees no-regret learning, indicating that when the number of
rounds goes infinity, the average performance of our method is the same as that
of a clairvoyant who knows the optimal ranker in each round. Furthermore, we
show that our method, while developed in the context of DBGD, can be also
straightforwardly extended to existing variants of DBGD. Finally, we conduct
extensive experiments on public datasets to demonstrate the effectiveness and
efficiency of our method for OL2R in non-stationary environments.1

1 Due to space limitation, proofs and experiments are postponed to the full version of
this paper: www.lamda.nju.edu.cn/lusy/ns-ol2r.pdf.

www.lamda.nju.edu.cn/lusy/ns-ol2r.pdf
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2 Problem Setup

We study non-stationary dueling bandits for online learning to rank, which pro-
ceeds in a sequence of rounds. Let W ⊆ R

d be the parameter space of a ranking
model and T be the number of rounds. Following previous work [8,11,12], we
refer to the ranking model with a specific parameter configuration as a ranker.
In each round t ∈ [T ] = {1, . . . , T}, firstly a learner chooses two rankers with
parameters wt ∈ W and w′

t ∈ W, respectively. Then, the ranking lists produced
by the rankers are merged by an interleaving method [5,9]. The merged list
is displayed to a user and a noisy preference order over the rankers is inferred
from the user’s click feedback. Specifically, the ranker whose ranking list receives
more clicks is preferred. Finally, the learner updates the parameter of the ranking
model based on the inferred preference order.

We denote by w � w′ the event that users prefer the ranking list produced by
the ranker w than that of the ranker w′. While the existing works only consider
the setting where the probability of this event is fixed, we allow the probability to
change with time so as to capture the non-stationary nature of user preference.
Specifically, in round t, the probability of the event w � w′ is defined as

Pr(w � w′|t) = ft(w,w′) = σ(vt(w) − vt(w′)) (1)

where σ is a static link function, and vt denotes the utility function in round t.
Following previous work [11,14], we make some standard assumptions as follows:

– The parameter space of the ranking model W is bounded

max
w∈W

‖w‖2 ≤ R. (2)

– The link function σ is rotation-symmetric

σ(x) = 1 − σ(−x). (3)

– The link function σ is monotonically increasing and satisfies

σ(−∞) = 0, σ(0) = 1/2, σ(∞) = 1.

– The link function σ is Lσ-Lipschitz, and all utility functions vt, t ∈ [T ] are Lv-
Lipschitz. Furthermore, the link function σ is also second order L2-Lipschitz.2

Denoting L = LσLv, the above assumptions directly imply the functions ft, t ∈
[T ] are L-Lipschitz in both arguments.

Let w∗
t = argmaxw∈W vt(w) denote the optimal ranker achieving the maxi-

mum utility in round t. We adopt dynamic regret as performance metric, defined
as

DR(T ) =
T∑

t=1

(
ft(w∗

t ,wt) + ft(w∗
t ,w′

t) − 2ft(w∗
t ,w∗

t )
)
.

Our goal is to design an online learning method for minimizing the above
dynamic regret.
2 In OL2R, a widely used link function is the sigmoid function σ(x) = 1/

(
1+exp(−x)

)
,

which satisfies all of our assumptions.
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3 Method

In this section, we first review the dueling bandits gradient descent (DBGD)
algorithm and derive its dynamic regret bound, then present our method as well
as its theoretical guarantee, and finally discuss the extensions of our method to
existing DBGD-type algorithms.

3.1 Dueling Bandits Gradient Descent

As outlined in Algorithm 1, DBGD has two hyperparameters δ and γ, corre-
sponding to the step sizes of exploration and exploitation, respectively. In each
round t, DBGD first draws a vector ut uniformly at random from the unit sphere
S � {x ∈ R

d : ‖x‖2 = 1} as an exploratory direction. Then, a candidate ranker
is created with parameter

w′
t = ΠW [wt + δut] (4)

where wt is the current parameter of the ranking model and ΠW [·] denotes the
operation of projecting a point to the parameter space W. Next, the two rankers
wt and w′

t are compared by the probabilistic interleaving method [5], which can
merge the ranking lists produced by the two rankers and infer a preference order
over the two rankers from user clicks on the merged ranking list. Finally, based on
the preference order, DBGD updates the parameter of the ranking model for the
next round. Specifically, if w′

t wins, which reveals that the exploratory direction
leads to better ranking performance, then the parameter of the ranking model
moves along the exploratory direction with step size γ: wt+1 = ΠW [wt + γut].
Otherwise, the ranking model remains unchanged.

We rigorously analyze the learning properties of DBGD and derive a sub-
linear dynamic regret bound as follows.

Theorem 1. Let CT be the path length of the optimal rankers over T rounds,
defined as

CT =
T∑

t=2

‖w∗
t − w∗

t−1‖2. (5)

By setting δ =
√

2λd
(11+2λ)L

√
T
and γ =

√
5R2+2RCT

T , the dynamic regret of DBGD
satisfies

E[DR(T )] ≤
√

2(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 .

3.2 DBGD Meets Meta Learning

While DBGD can achieve a sub-linear dynamic regret bound for CT = o(
√

T ),
it requires the value of the path-length CT for tuning the step size γ, which is
clearly impossible in practice since CT depends on the unknown optimal rankers
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Algorithm 1. DBGD
Require: step sizes of exploration δ and exploitation γ
1: Initialize a ranker w1 ∈ W arbitrarily
2: for t = 1, 2, . . . , T do
3: Draw a vector ut uniformly at random from S

4: Create an exploratory ranker w′
t = ΠW [wt + δut]

5: Compare wt and w′
t by probabilistic interleaving

6: if w′
t � wt then

7: Set wt+1 = ΠW [wt + γut]
8: else
9: Set wt+1 = wt

10: end if
11: end for

w∗
1, . . . ,w

∗
T . To address this issue, we employ the meta learning technique to

automatically tune the step size γ, which has exhibited successes in online convex
optimization [2,16,17]. The basic idea is to run multiple DBGDs in parallel,
each of which is configured with a different step size γ and admits the sub-
linear dynamic regret bound for a class of path length. We develop our method
in the prediction with expert advice framework, where each DBGD is viewed
as an expert and the outputs of DBGDs are combined by an expert-tracking
algorithm.

We now describe our method in detail, which is termed as DBGD Meets Meta
Learning (DM2L) and consists of a meta algorithm and an expert algorithm.

Meta Algorithm As outlined in Algorithm 2, at the beginning of the meta algo-
rithm, we invoke the expert algorithm with different step size γ. According to
our theoretical analysis, we maintain

N =
⌈
log2

√
1 + 4T/5

⌉
+ 1 (6)

experts and the step size γ of the i-th expert is configured as

γi = 2i−1R
√
5/T , i = 1, . . . , N. (7)

Each expert i ∈ [N ] is associated with a time-variant weight πi
t, which is dynam-

ically adjusted according to the real time performance of expert i. For deriving
a tighter dynamic regret bound, we take a nonuniform initialization of weights:

πi
1 =

N + 1
i(i + 1)N

, i = 1, . . . , N. (8)

In each round t, we first receive a ranker wi
t from each expert i ∈ [N ] and

aggregate these rankers according to the weights of experts πi
t, i ∈ [N ] as wt =
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∑N
i=1 πi

tw
i
t. Then, we sample a vector ut from the unit sphere S uniformly at

random and compare wt with w′
t = ΠW [wt + δut] by invoking the probabilistic

interleaving method, which returns a noisy preference order I{w′
t�wt}. Next, we

update the weight of each expert using an exponential scheme

πi
t+1 =

πi
t exp(−α	t(wi

t))∑N
j=1 πj

t exp(−α	t(w
j
t ))

, i = 1, . . . , N (9)

where 	t(w) is a surrogate loss function, defined as

	t(w) = −d

δ
〈I{w′

t�wt}ut,w − wt〉

which approximately evaluates the real-time performance of the experts. Finally,
both the preference order I{w′

t�wt} and the exploratory direction ut are sent to
each expert so that they can update their own rankers accordingly.

Expert Algorithm. As summarized in Algorithm 3, the expert algorithm is a
variant of DBGD. In each round t, each expert i ∈ [N ] first sends its current
ranker wi

t to the meta algorithm. Then, each expert receives the same preference
order I{w′

t�wt} and exploratory direction ut from the meta algorithm. Finally,
each expert updates its own ranker as

wi
t+1 = ΠW [wi

t + γiI{w′
t�wt}ut], i = 1, . . . , N. (10)

Different from DBGD, we here take the same updating direction I{w′
t�wt}ut

for all experts so that only two rankers wt,w′
t need to be compared in each

round. While the updating direction is no longer opposite to the gradient of the
smoothed function ∇ht(wi

t), it is the inverse of the gradient of the surrogate loss
function ∇	t(wi

t). Thus, the updating rule of each expert can still be viewed as
gradient descent and the dynamic regret of each expert can be analyzed following
the proof of Theorem 1.

We present the theoretical guarantee of our method DM2L in the follow-
ing theorem. Compared to DBGD, the main advantage of DM2L is that it can
achieve the sub-linear dynamic regret bound without prior knowledge of the path
length CT and thus can adapt to unknown non-stationarity of environments.

Theorem 2. By setting δ =
√

3λd
(11+2λ)L

√
T

and α = 4/
√

T and using the con-

figurations in (6) and (7), DM2L achieves the following dynamic regret bound

E[DR(T )] ≤
√

3(11 + 2λ)λdL
(
1 +

√
5R2 + 2RCT

)
T

3
4 + λ(1 + ln (N + 1))

√
T .

3.3 Extensions to DBGD-Type Algorithms

While our meta learning method is developed in the context of DBGD, it be also
straightforwardly extended to existing DBGD-type algorithms such as MGD [10]



172 S. Lu et al.

Algorithm 2. DM2L: Meta Algorithm
Require: number of experts N , step sizes δ, γ1, . . . , γN , learning rate α
1: Invoke Algorithm 3 with γi for each expert i ∈ [N ]
2: Initialize the weights of experts πi

1, i ∈ [N ] by (8)
3: for t = 1, 2, . . . , T do
4: Receive ranker wi

t from each expert i ∈ [N ]
5: Aggregate the rankers as wt =

∑N
i=1 πi

tw
i
t

6: Draw a vector ut uniformly at random from S

7: Create an exploratory ranker w′
t = ΠW [wt + δut]

8: Compare wt and w′
t by probabilistic interleaving

9: Update the weight of each expert πi
t, i ∈ [N ] by (9)

10: Send I{w′
t�wt} and ut to each expert i ∈ [N ]

11: end for

Algorithm 3. DM2L: Expert Algorithm
Require: step size of exploitation γi

1: Initialize a ranker wi
1 ∈ W arbitrarily

2: for t = 1, 2, . . . , T do
3: Send ranker wi

t to Algorithm 2
4: Receive I{w′

t�wt} and ut from Algorithm 2
5: Update ranker wi

t+1 = ΠW [wi
t + γiI{w′

t�wt}ut]
6: end for

and NSGD-DSP [11,12]. Note that the existing DBGD-type algorithms only dif-
fer in the exploratory direction and the updating direction. Thus, we can replace
Steps 6–8 at Algorithm 2 with the corresponding exploration pseudocodes of the
DBGD-type algorithm and set ut used in Steps 9–10 at Algorithm 2 as the
updating direction in the DBGD-type algorithm, while keeping Algorithm 3 and
the other steps of Algorithm 2 unchanged. We termed the algorithms obtained
by applying our meta learning method to MGD and NSGD-DSP as M3L (MGD
Meets Meta Learning) and NM2L (NSGD-DSP Meets Meta Learning), respec-
tively.

4 Conclusion

We have formulated a new bandits model for OL2R, termed as non-stationary
dueling bandits, where the preference order over rankers can change with time.
For this bandits model, we developed a meta learning method, which dynami-
cally aggregates multiple DBGD algorithms with different step sizes. Theoretical
analysis showed that under mild assumptions, our meta learning method enjoys
a sub-linear dynamic regret bound. We also discuss the extensions of our meta
learning method to existing DBGD-type algorithms. Extensive experiments on
public datasets demonstrate the effectiveness and efficiency of our meta learning
method for OL2R in non-stationary environments.
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