
Learning to Augment Imbalanced Data for Re-ranking Models
Zi-Hao Qiu,1 Ying-Chun Jian,1 Qing-Guo Chen,2 Lijun Zhang1

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Alibaba Group, Hangzhou, China

{qiuzh,jianyc}@lamda.nju.edu.cn,qingguo.cqg@alibaba-inc.com,zhanglj@lamda.nju.edu.cn

ABSTRACT
The conventional solution to learning to rank problems ranks indi-
vidual documents by prediction scores greedily. Recent emerged
re-ranking models, which take as input initial lists, aim to capture
document interdependencies and directly generate the optimal or-
dered lists. Typically, a re-ranking model is learned from a set of
labeled data, which can achieve favorable performance on average.
However, it can be suboptimal for individual queries because the
available training data is usually highly imbalanced. This problem is
challenging due to the absence of informative data for some queries
and furthermore, the lack of a good data augmentation policy.

In this paper, we propose a novel method named Learning to
Augment (LTA), which mitigates the imbalance issue through learn-
ing to augment the initial lists for re-ranking models. Specifically,
we first design a data generation model based on Gaussian Mixture
Variational Autoencoder (GMVAE) for generating informative data.
GMVAE imposes a mixture of Gaussians on the latent space, which
allows it to cluster queries in an unsupervised manner and then
generate new data with different query types using the learned
components. Then, to obtain a good augmentation strategy (in-
stead of heuristics), we design a teacher model that consists of two
intelligent agents to determine how to generate new data for a
given list and how to rank both the raw data and generated data to
produce augmented lists, respectively. The teacher model leverages
the feedback from the re-ranking model to optimize its augmenta-
tion policy by means of reinforcement learning. Our method offers
a general learning paradigm that is applicable to both supervised
and reinforced re-ranking models. Experimental results on bench-
mark learning to rank datasets show that our proposed method can
significantly improve the performance of re-ranking models.

CCS CONCEPTS
• Information systems → Learning to rank.

KEYWORDS
Learning to rank; Data augmentation; Re-ranking

ACM Reference Format:
Zi-Hao Qiu,1 Ying-Chun Jian,1 Qing-Guo Chen,2 Lijun Zhang1 . 2021. Learn-
ing to Augment Imbalanced Data for Re-ranking Models. In Proceedings of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482364

Initial 
lists

Teacher
action 𝑎!

Generated
data

Teacher
action 𝑎"

Augmented
lists

Reward feedback

Data 
Generation

Model

Teacher
Model

Re-ranking
Model

Figure 1: An overview of our data augmentation framework,
which contains a data generation model to produce infor-
mative data and a teacher model for augmentation decision-
making.

the 30th ACM International Conference on Information and Knowledge Man-
agement (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482364

1 INTRODUCTION
Learning to rank (LTR) is an important machine learning area in
the IT industry, powering online advertisement, search engines and
various content recommendation services [20, 25]. Many existing
LTR applications aim to generate and display an ordered list of
“documents” to users (called a “slate” in Swaminathan et al. [28];
Sunehag et al. [27]), based on both user preferences and documents
content. For large scale LTR systems, a common scalable approach
is to first select a small set of candidate documents out of the entire
document pool to form the initial lists. Then a function approxi-
mator such as a neural network called the “re-ranking model” [37]
is used to rank the initial lists and generate result ordered lists to
users. This two-step process is widely popular to solve large scale
LTR problems due to its scalability and fast inference at serving
time. The re-ranking models play an important role in this process
because they have to model not only the relations between docu-
ments and users but also the mutual influence between documents,
and directly generate optimal lists that maximize some type of user
engagement feedback.

The re-ranking models are typically learned on labeled datasets
and able to achieve favorable performance on average. However,
such a model may be not optimal for individual queries because
the available training data is usually imbalanced [1, 21, 30]. The
imbalance problem mainly comes from two sources [35]: (1) given
a query, the documents judged with high relevance level are much
fewer than judged irrelevant documents; and (2) different queries
typically have different amounts of relevance judgments. Some
pioneering work has been proposed to mitigate this problem. Re-
sampling methods [4] and ensemble methods [12] attempt to avoid
learning a biased model with imbalanced data, but none of them
provide informative augmentation for the training data. Generative
Adversarial Networks (GAN) [14] based models can generate data

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1478

https://doi.org/10.1145/3459637.3482364
https://doi.org/10.1145/3459637.3482364


by adversarial learning. However, they capture the input data distri-
bution and will intrinsically inherit the imbalance in the training set.
Yu and Lam [35] employs query embedding and clustering to dis-
cover several query types first, then uses Adversarial Autoencoder
(AAE) to generate new data with different query types. However,
such query types may be biased and suboptimal for data generation.

While generating informative data is important to handle the
data imbalance problem, we find that there are very limited attempts
on building a good augmentation policy in LTR area. Existing data
augmentation methods [19, 35] generate new data based on heuris-
tic rules, which rely on the strong assumptions of the tasks and
may be not optimal for some raw data. Therefore, an effective aug-
mentation policy for re-ranking models should first decide what
kind of data should be generated to mitigate the imbalance prob-
lem. Moreover, previous work suggests that the performance of
re-ranking models is often sensitive to the order in which the input
is processed [2, 3, 5]. Thus such policy should then decide the order
of both raw items1 and generated items in the augmented list. Besides,
the augmentation policy should be formulated towards optimizing
the overall performance of the re-ranking models, which is a much
more principled way than manually crafting heuristics.

In this paper, we propose a novel and modular data augmenta-
tion framework for re-ranking models. Fig. 1 shows an overview of
our framework, which contains two main models to achieve differ-
ent goals: (1) a data generation model that can generate new data
given different query types and different relevance levels; and (2)
a teacher model that can make the augmentation decisions and be
optimized towards the overall performance of the re-ranking model.
To achieve the first goal, we devise the data generation model as a
GMVAE [13]. GMVAEs learn a latent space by imposing a prior of a
mixture of Gaussians and allowing the means and variances of each
component to be determined by training. Each component of the
mixture thus learns to encode a meaningful subset of training data.
When applied to data generation, such a model could help discover
clusters of query types with similar semantics. Moreover, inspired
by Yu and Lam [35], the relevance information is disentangled from
the latent representations of query types, so each component of
the Gaussians mixture could be used as a generative model to pro-
duce data for a particular query type with different relevance levels.
In our framework, this data generation model will be trained on
the labeled datasets first and used by the teacher model for data
augmentation next.

To achieve the second goal, we construct a teacher model to
decide when given an initial list, how to generate new data and how
to produce augmented lists for the re-ranking model. Specifically,
there are two intelligent agents in the teacher model: a generation
agent, determining the query types and relevance levels needed
for new data generation (teacher action 𝑎1 in Fig. 1), and a ranking
agent, rearranging both raw items and new generated items and
produce augmented lists (teacher action 𝑎2 in Fig. 1). The training
phase of the teacher model contains several episodes of sequential
interactions between the teacher model and the re-ranking model.
Based on the state information in each step, the teacher model
updates its actions to improve the performance of the re-ranking

1The terms “document” and “item” are synonymous references and used interchange-
ably in this paper.

model. The re-ranking model then performs its learning process
based on the augmented lists from the teacher model, and provides
reward signals (e.g., the NDCG@𝑘 on the held-out validation set)
back to the teacher afterward. The teacher model then updates its
parameters via policy gradient methods (e.g., REINFORCE [33]) by
such rewards. The whole process is end-to-end trainable, exempt
from the limitations of human-defined heuristics, thus we name
our method as Learning to Augment (LTA).

To demonstrate and understand the effectiveness of our method,
we conduct empirical experiments on large-scale learning to rank
corpora and employ both supervised and reinforced re-ranking
models. Experimental results show that our approach can signif-
icantly improve the performance. In addition, our analyses show
that our data generation model can produce new data with high
quality and the teacher model is able to learn a good strategy for
handling data imbalance. To the best of our knowledge, this is the
first work for handling data imbalance in learning to rank area from
both data generation and augmentation strategy optimization.

2 RELATEDWORK
A basic task for information retrieval is to rank a set of documents
given a query, based on the relevance between a document and a
query [9]. Learning to rank (LTR) refers to a group of techniques
that attempts to solve ranking problems by using machine learning
algorithms with the feature representations of query-document
pairs. There are several types of LTR models, including point-wise,
pair-wise, list-wise, and so on. Point-wise models [11, 18] treat
the ranking problems as classification or regression tasks for each
item. Pair-wise models [7, 8] convert the original problem into the
internal ranking of pairs. List-wise models [2, 34] use well designed
loss functions to directly optimize the ranking criteria. Group-wise
models [3] and page-wise models [36] are proposed recently, which
are similar to re-ranking models [37].

Re-ranking models aim to rank the initial lists given by the global
ranking function and generate new ranked lists for users. They use
the whole initial list as input and model the complex dependencies
between items in different ways. Ai et al. [2] uses an unidirectional
Gated Recurrent Unit (GRU) to encode the information of the whole
list into the representation of each item. Pei et al. [22] optimizes
the whole list by employing a transformer structure to encode the
items in the list. Zhuang et al. [37] uses Long Short-Term Memory
(LSTM) and Bello et al. [5] uses pointer network [31] not only to
encode the whole list information, but also to generate the ranked
list by a decoder. Slate optimization [5] is a close topic with LTR.
Similar to the objective of re-ranking, it also aims to optimize some
criteria of the whole slate (i.e. a list or a webpage).

Data augmentation is a promising direction for mitigating the
imbalance problem, which includes a set of methods that intro-
duce unobserved data via generative models. Such techniques have
been employed in some LTR scenarios. Li et al. [19] proposes a
attention-based sequence-to-sequence generative model for data
augmentation in Point-Of-Interest (POI) recommendation. Yu and
Lam [35] proposes a data generation model based on Adversarial
Autoencoder (AAE) for tackling the data imbalance in LTR. They
disentangle the relevance level information from the latent repre-
sentations, so that their model can reconstruct data with specific

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1479



relevance levels. However, in order to discover different query types,
they employ a separate query embedding and clustering process,
which may not be optimal for data generation. In our work, we
devise the data generator as a GMVAE, which is able to discover
clusters of queries during training by imposing a prior of a mix-
ture of Gaussians. Thus it can generate data with different query
types naturally and improve the performance of re-ranking mod-
els. Besides, we employ an end-to-end trainable method to learn a
good augmentation strategy, which is much more principled than
heuristics rules used in previous methods.

3 PROBLEM FORMULATION
Each training sample 𝒗𝑞,𝑖 for LTR is the feature vector derived from
a pair of query 𝑞 and document 𝑖 . Besides, a relevance level 𝑟𝑞,𝑖 ,
which measures the relevance between query 𝑞 and document 𝑖 , is
associated with 𝒗𝑞,𝑖 . Let 𝑛𝑟 denote the number of relevance levels,
so 𝑟𝑞,𝑖 is an integer value in the range [0, 𝑛𝑟 − 1].

Given a query 𝑞, practical LTR systems first employ global rank-
ing functions to select a small set of candidate items and form the
initial list 𝐿𝑞 = [𝒗𝑞,1, · · · , 𝒗𝑞,𝑛] = [𝒗𝑞,𝑖 ]𝑛𝑖=1. To further model the
mutual influence between item-pairs and the interaction between
users and items, a re-ranking model 𝑀 is introduced and its loss
function can be formulated as:

L𝑟𝑒−𝑟𝑎𝑛𝑘𝑖𝑛𝑔 =
∑︁
𝑞∈𝑄

ℓ
(
{𝑟𝑞,𝑖 , 𝑃 (𝑟𝑞,𝑖 |𝒗𝑞,𝑖 ;𝜃𝑀 ) |𝑖 ∈ 𝐿𝑞}

)
, (1)

where 𝑄 is the set of all users’ queries. 𝑃 (𝑟𝑞,𝑖 |𝒗𝑞,𝑖 ;𝜃𝑀 ) is the pre-
dicted relevance level of item 𝑖 given by the re-ranking model with
parameter 𝜃𝑀 . ℓ is the loss computed with 𝑟𝑞,𝑖 and 𝑃 (𝑟𝑞,𝑖 |𝒗𝑞,𝑖 ;𝜃𝑀 ).

Our goal is to address the imbalance issue of the initial lists
𝐿 = {𝐿𝑞 : 𝑞 ∈ 𝑄} and improve the performance of re-ranking
models. First, we employ a data generation model 𝐺 to produce
informative data. The model is trained on the whole dataset, and it
can discover query clusters containing queries that are semantically
close during training. Each cluster can be regarded as a query type
labeled with a type ID. At generation time, the model produces a
new item 𝒗∗ given a query type 𝑒∗ and a relevance level 𝑟∗:

𝒗∗ = 𝐺 (𝑟∗, 𝑒∗;𝜃𝐺 ), (2)

where 𝜃𝐺 is the parameters for the data generation model. More
details of this model can be found in section 4.

We further design a teacher model to make augmentation deci-
sions for initial lists as follows:

• Decide how to produce new items. Specifically, the generation
agent in the teacher model needs to decide 𝑘 relevance levels
𝑅∗ = {𝑟∗1 , · · · , 𝑟

∗
𝑘
} and 𝑘 query types 𝐸∗ = {𝑒∗1, · · · , 𝑒

∗
𝑘
} for an

given initial list 𝐿𝑞 .
• Generate 𝑘 new items 𝑽 ∗ = {𝒗∗1, · · · , 𝒗

∗
𝑘
} by feeding 𝑅∗ and 𝐸∗

into the data generation model as in Eq. (2).
• Decide how to rank both raw items in 𝐿𝑞 and generated items
in 𝑽 ∗ to produce a result list 𝐿

′
𝑞 with 𝑛 items for the re-ranking

model. The ranking agent in the teacher model is responsible for
this process.

The loss function for the re-ranking model is presented in Eq. (1).
Thus, the training process of this model actually corresponds to the

𝒗

𝒚

𝒛 𝒗∗Decoder

Prior-
assigning
network

Label-
assigning
network

Encoder

Component latent
distribution

𝑐𝑜
𝑛𝑐
𝑎𝑡
(*
)

𝑐𝑜
𝑛𝑐
𝑎𝑡
(*
)

𝑠𝑎𝑚𝑝𝑙𝑒

𝒓

𝑝(𝑦|𝑣) 𝑞(𝑧|𝑦)

𝑝(𝑧|𝑣, 𝑦)

𝝁𝒊

𝝈𝒊

𝝁𝒄

𝝈𝒄

𝒗 input vector
𝒗∗ output vector
𝒚 query type
𝒛 latent vector
𝒓 relevance level

training time
generation time
loss terms

Figure 2: The data generationmodel based on GMVAE, where
GM-prior loss is the KL-divergence between the input latent
distribution and the component latent distribution.

following optimization problem:

𝜃∗𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃𝑀

. L𝑟𝑒−𝑟𝑎𝑛𝑘𝑖𝑛𝑔 ≜ 𝜇𝑀 (𝐿) .

Here we use 𝜇𝑀 (·) to denote the learning algorithm for re-ranking
model 𝑀 . As a summary, this learning algorithm takes the input
lists 𝐿 as inputs, and outputs a function with parameters 𝜃∗

𝑀
by

minimizing the empirical risk L𝑟𝑒−𝑟𝑎𝑛𝑘𝑖𝑛𝑔 .
The goal of the teacher is to augment the initial input lists for the

re-ranking model such that it can achieve better performance, e.g.,
measured by the evaluation measureM on a held-out validation
set 𝐷𝑣𝑎𝑙𝑖𝑑 . So the goal of the teacher model is

max
𝐿

. M(𝜇𝑀 (𝐿), 𝐷𝑣𝑎𝑙𝑖𝑑 ).

4 DATA GENERATION MODEL
In this section, we first demonstrate the architecture of our pro-
posed data generation model. Then we introduce the training and
generation process of the model.

4.1 Architecture
In a Variational Autoencoder (VAE) [17], the encoder takes in an
input vector and outputs a mean vector and a variance vector that
parameterize the input latent distribution corresponding to the
input vector. A latent vector is then sampled from such distribution
and forwarded through the decoder to produce the reconstruction
of the input vector. Two losses areminimized in the training process:
(1) the reconstruction loss between the input and output vectors
and (2) the KL-divergence between the latent distribution and the
Gaussian prior. Fig. 2 demonstrates our data generationmodel based
on a GMVAE [13]. A GMVAE with a𝑚-component GM prior makes
the following two modifications to such a VAE:

Label-assigning network The input vector 𝒗 is first passed to
a label-assigning network, whose last layer, the Gumbel-Softmax
layer [15], produces a𝑚-dimensional label. Its 𝑖-th dimension con-
tains the probability that the input vector belongs to the 𝑖-th GM
component. This set of probabilities is gradually enforced to be
concentrated on one component during training. Therefore, during

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1480



𝒗𝒒,𝟏

𝒗𝒒,𝟐

𝒗𝒒,𝒏

𝒆𝟏

𝒆𝟐

𝒆𝒏

𝑐𝑜𝑛𝑐𝑎𝑡(') 𝑓! 𝒚

(1) Feed into the label-assigning
network to get 𝑛 query types.

(2) Sample 𝑘 query types for generation.

Sample 𝑘
relevance
levels

Generation Agent

𝒗𝒒,𝒏

𝒗𝒒,𝒏&𝟏

𝒗𝒒,𝟏

𝒗𝒒,𝒏&𝒌

𝑘 new items
𝑷𝑨𝑫

𝒗𝒒,𝒏
(𝟏)

𝒗𝒒,𝒏&𝒌
(𝟐)

𝒗𝒒,𝟏
(𝒏*𝟏)

𝒗𝒒,𝒏&𝟏
(𝒏)

Ranking Agent

Data 
Generation

Model

Initial 
lists

Augmented 
lists

𝑳𝑺𝑻𝑴 𝑳𝑺𝑻𝑴𝒆𝒏𝒄

𝑳𝑺𝑻𝑴𝒆𝒏𝒄

𝑳𝑺𝑻𝑴𝒆𝒏𝒄

𝑳𝑺𝑻𝑴𝒆𝒏𝒄

𝑳𝑺𝑻𝑴𝒅𝒆𝒄

𝑳𝑺𝑻𝑴𝒅𝒆𝒄

𝑳𝑺𝑻𝑴𝒅𝒆𝒄

⋮

𝑳𝑺𝑻𝑴𝒅𝒆𝒄

𝑳𝑺𝑻𝑴

𝑳𝑺𝑻𝑴

⋮ ⋮

⋮

⋮

⋮

⋮

s𝒕
State

features

Figure 3: The structure of our teacher model, which consists of a generation agent and a ranking agent.

later stages in training and generation, given the input vector 𝒗, this
network outputs one-hot labels 𝒚 ∈ R𝑚 . This allows our model to
cluster items in an unsupervised manner, and the labels produced
by the label-assigning network are the query types for input items.
So the label-assigning network models a distribution 𝑝 (𝒚 |𝒗). The
concatenation of the input vector 𝒗 and the label 𝒚 is then fed into
the encoder and get a latent representation 𝒛 for the decoder. Thus
the encoder actually models a distribution 𝑝 (𝒛 |𝒗,𝒚).

Prior-assigning network For each input vector 𝒗, we now
minimize the KL-divergence between its latent distribution and its
assigned component latent distribution, which is parameterized by
the component mean vector and component variance vector obtained
by forwarding its label 𝒚 through the prior-assigning network. This
new loss term is called the GM-prior loss. Let 𝒛 denote the latent
representation sampled from the component latent distribution for
label 𝒚, then this network models a distribution 𝑞(𝒛 |𝒚).

Having the prior-assigning network allows us to produce latent
representations 𝒛 for specific one-hot query types 𝒚. To facilitate
the support of generating a feature vector with a target relevance
level, inspired by Yu and Lam [35], the relevance levels are encoded
into one-hot relevance indicator vector 𝒓 and added as the input
for the decoder. This disentanglement enforces the encoder to gen-
erate relevance-independent latent representations. Therefore the
generation procedure can be controlled via concatenating a specific
target relevance level with the latent representation produced by a
specific query type. The detailed structure of each network will be
described in section 6.1.3.

The main advantage of our data generation model is that it is a
unified framework for queries clustering using learnable GM prior
and data reconstruction, which allows us to generate new data with
specific query types accurately. On the contrary, the data generation
model proposed by Yu and Lam [35] employs a separate process,
including query embedding and K-means clustering, to discover
the query type for each item first. Then they randomly select a
fixed mixture of Gaussians as a prior, and train the AAE model by
reconstructing the items belonging to each query type from the
corresponding Gaussian distribution. Therefore, these query types
may be biased and suboptimal for data generation.

4.2 Training and Generation
To train our data generation model, we seek to minimize the fol-
lowing objective, which is the sum of the reconstruction loss, the
GM prior loss and an additional entropy term:

L𝐺 = ∥𝒗 − 𝒗𝑟𝑒𝑐𝑜𝑛 ∥22 + E𝑝 (𝒚,𝒛 |𝒗)
(
𝛼 log

𝑝 (𝒛 |𝒗,𝒚)
𝑞(𝒛 |𝒚) + 𝛽 log 𝑝 (𝒚 |𝒗)

)
,

where 𝒗 and 𝒗𝑟𝑒𝑐𝑜𝑛 are the input vector and reconstructed vector
respectively, 𝛼 is a coefficient to balance these two terms, and
𝑝 (𝒚, 𝒛 |𝒗) = 𝑝 (𝒚 |𝒗) ·𝑝 (𝒛 |𝒗,𝒚). Besides, we add an additional entropy
loss to encourage the model to explore more GM components for
the given inputs. 𝛽 is a hyper-parameter balancing the last entropy
term.

When generation, given a query type𝒚 and a relevance level 𝒓 , a
new item (feature vector) 𝒗∗ is generated by first sampling a latent
representation 𝒛 form the learned prior-assigning network 𝑞(𝒛 |𝒚),
concatenating with the one-hot encoding of the relevance level 𝒓
and passed into the learned decoder, and finally generating 𝒗∗.

5 TEACHER MODEL
As reviewed in section 2, existing works that consider augmenta-
tion strategies simply employ some heuristic rules. In this section,
we propose to model the augmentation strategy via a sequential
decision process. We first elaborate in detail on the structure of our
teacher model. Then we introduce how to leverage reinforcement
learning to model the interaction between the re-ranking model
and teacher model, and the corresponding optimization process.

5.1 Structure
The structure of the teacher model is shown in Fig. 3. We can
see that it contains two main components: generation agent and
ranking agent. We will illustrate the details of the architecture and
the corresponding forward process in this section.

Generation Agent This agent decides what kind of new data
should be generated for the given initial lists. As show in Fig. 3, it
contains an LSTM cell as the encoder for the input lists. At each
encoding step 𝑖 ≤ 𝑛, the encoder reads the input vector 𝒗𝑞,𝑖 and
outputs a result vector 𝒆𝑖 , thus transforming the input sequence
[𝒗𝑞,𝑖 ]𝑛𝑖=1 into a sequence of latent states [𝒆𝑖 ]

𝑛
𝑖=1. These latent states

can be seen as a compact representation of the initial list. Then the
latent states [𝒆𝑖 ]𝑛𝑖=1 are concatenated and passed through a fully
connected network 𝑓𝑐 with softmax as the output layer and produce
a result probability matrix 𝒚 ∈ R𝑘×𝑛𝑟 , which can be regarded as 𝑘
𝑛𝑟 -dimensional distributions. Such process can be formulated as:

𝒆𝑖 = 𝐿𝑆𝑇𝑀 (𝒗𝑞,𝑖 ),

𝒚 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑓𝑐 (𝑐𝑜𝑛𝑐𝑎𝑡 ( [𝒆𝑖 ]𝑛𝑖=1))

)
∈ R𝑘×𝑛𝑟 .

The teacher model then can sample 𝑘 relevance levels from 𝒚. This
is the first action that the teacher takes, so we set the action as 𝑎1
and denote the decision process as 𝜙𝑇 (𝑎1 |𝑠𝑡 ). 𝑠𝑡 is the state features
for both agents and will be introduced in section 5.2.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1481



To get the query types that are needed for generating new data,
we first feed all items in the initial list into the label-assigning
network mentioned in section 4.1 and get query types for each item,
then sample 𝑘 query types from them. Now we can produce 𝑘 new
items by feeding these 𝑘 query types and relevance levels into the
data generation model. The detailed data generation process has
been described in section 4.2.

Ranking Agent This component is used to rank both raw items
and generated items to produce augmented lists for the re-ranking
model. As shown in Fig. 3, we frame this process as a sequence-to-
sequence (Seq2Seq) problem and adopt the pointer network, which
is a Seq2Seq model with an attention mechanism for pointing at
position in the input [31]. Such a model contains an encoder and a
decoder, both of which use LSTM cells. At encoding stage, the en-
coder transforms the input sequence [𝒗𝑞,𝑖 ]𝑛+𝑘𝑖=1 , where [𝒗𝑞,𝑖 ]𝑛𝑖=1 are
raw items and [𝒗𝑞,𝑖 ]𝑛+𝑘𝑖=𝑛+1 are generated items, into a 𝜌-dimensional
latent states sequence [𝒆𝑖 ]𝑛+𝑘𝑖=1 . At each decoding step 𝑗 , the decoder
outputs a vectors 𝒅 𝑗 ∈ R𝜌 , which are used as queries in the atten-
tion function. The attention function takes as input the query 𝒅 𝑗

and latent states [𝒆𝑖 ]𝑛+𝑘𝑖=1 and produces a probability distribution
over the next item to include in the output list as follows:

𝑡
𝑗
𝑖
=𝑾𝑇

𝑣 tanh(𝑾𝑒𝑛𝑐 · 𝒆𝑖 +𝑾𝑑𝑒𝑐 · 𝒅 𝑗 )

𝑝 (𝜋 𝑗 = 𝑖 |𝜋< 𝑗 , 𝒗) =


𝑒𝑡

𝑗

𝑖

/ ∑︁
𝑘∉𝜋< 𝑗

𝑒𝑡
𝑗

𝑘 𝑖 𝑓 𝑖 ∉ 𝜋< 𝑗

0 𝑖 𝑓 𝑖 ∈ 𝜋< 𝑗

where𝑾𝑒𝑛𝑐 ,𝑾𝑑𝑒𝑐 ∈ R𝜌×𝜌 and𝑾 𝑣 ∈ R𝜌 are learnable parameters
for the attention function, 𝜋 ∈ Π denotes a permutation of item and
each 𝜋 𝑗 ∈ {1, · · · , 𝑛 +𝑘} denotes the index of the item in position 𝑗 .
Then an item can be selected by sampling, and its embedding is fed
as input to the next decoding step. The input to the first decoding
step is a learnable vector denoted as ‘PAD’ in Fig. 3. The decoding
step will run for 𝑛 times and finally we get the augmented list for
the re-ranking model. This process can be regarded as the second
action that the teacher takes, so we set the action as 𝑎2 and denote
the decision process as 𝜙𝑇 (𝑎2 |𝑠𝑡 ).

5.2 Interaction and Optimization
The overall interactive process between the teacher model and the
re-ranking model can be modeled via reinforcement learning: (1) at
the 𝑡-th step, given the state 𝑠𝑡 and initial lists, the teacher model
takes augmentation action 𝑎1,𝑡 and 𝑎2,𝑡 to produce augmented lists;
(2) the re-ranking model updates itself based on these lists, changes
the environment to 𝑠𝑡+1 and then provides a reward 𝑟𝑡 to the teacher
model; and (3) the teacher model then updates its parameters 𝜃𝑇 to
maximize the accumulated reward. Finally, the whole interactive
process stops when the re-ranking model gets converged, forming
one episode of the teacher model training.

To encourage good performance, assuming the length of input
lists is 𝑛, we directly employ the ranking measure NDCG@𝑛 on
validation data as the reward 𝑟𝑡 . For state features 𝑠𝑡 , we adopt
three categories features to compose 𝑠𝑡 :
• Data features, contain feature vectors and relevance levels (we
use one-hot encoding) of items in the input lists. Such features
are commonly used in curriculum learning [6, 29].

• Re-ranking model features, include the signals reflecting howwell
the current model is trained (measured by NDCG@10) and the
model training progress (i.e., iteration).

• Features for the combination of data and re-ranking model. Here
assume the length of the initial lists is 𝑛. The initial lists will
be ranked by the re-ranking model first, and then we calculate
NDCG@𝑘 (𝑘 ∈ {1, · · · , 𝑛}) on the ranked lists. Such 𝑛 values for
each list can form a 𝑛-dimensional vector representing how the
re-ranking model performs on the initial input lists.
The state features 𝑠𝑡 are computed after the arrival of each mini-

batch training data, and then added as the input for both agents
as in Fig. 3. They can effectively and efficiently represent the state
for the teacher model and enable the model to learn a better policy.
The teacher model is trained by maximizing the expected reward:

𝐽 (𝜃𝑇 ) = E𝜙𝑇 (𝑎1 |𝑠)𝜙𝑇 (𝑎2 |𝑠)𝑅(𝑠, 𝑎1, 𝑎2),

where 𝑎1 and 𝑎2 are the actions made by the generation agent and
the ranking agent respectively, 𝑅(𝑠, 𝑎1, 𝑎2) is the state-action value
function. Since𝑅(𝑠, 𝑎1, 𝑎2) is non-differentiable w.r.t. the parameters
of teacher model 𝜃𝑇 , we use REINFORCE [33], a likelihood ratio
policy gradient algorithm to optimize 𝐽 (𝜃𝑇 ) based on the gradient:

∇𝜃𝑇 = E𝜙𝑇

[
𝑇∑︁
𝑡=1

∇𝜃𝑇
(
log𝜙𝑇 (𝑎1,𝑡 |𝑠𝑡 ) + log𝜙𝑇 (𝑎2,𝑡 |𝑠𝑡 )

)
𝐺𝑡 :𝑇

]
,

where𝐺𝑡 :𝑇 =
∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ is the discounted cumulative reward. To
reduce the variance of policy gradient method, a typical technique
is subtracting baseline values from the original rewards. Inspired
by the self-critical algorithm [24], at each training iteration, the
teacher samples several different actions and uses the average of
their cumulative rewards as the baseline. So the final gradient is:

∇𝜃𝑇 = E𝜙𝑇

[
𝑇∑︁
𝑡=1

∇𝜃𝑇
(
log𝜙𝑇 (𝑎1,𝑡 |𝑠𝑡 ) + log𝜙𝑇 (𝑎2,𝑡 |𝑠𝑡 )

)
(𝐺𝑡 :𝑇 −𝑉𝑡 )

]
,

where 𝑉𝑡 is the average cumulative reward of different actions in
iteration 𝑡 . As a result, rewards will be increased as the teacher in-
crease the generation probability of good lists while decreasing the
chances of worse lists generation. Finally, at serving time, the well-
trained teacher model can generate not just a single but multiple
augmented lists for any given list using sampling policy [5].

Our proposed augmentation method is flexible and controllable
by using both the generation agent and the ranking agent. Further-
more, we bridge the gap between the isolated processes of data
augmentation and re-ranking model optimization by the interactive
learning process, which allows our method to generate more proper
training samples for the re-ranking model than heuristic rules.

6 EXPERIMENTS
We conduct experiments to answer the following questions:
RQ1: How is the performance of our proposed LTA compared with
existing baseline methods?
RQ2: How do the components of LTA affect its performance?
RQ3: How do the hyper-parameters affect its performance?
RQ4: Where are the improvements of our framework come from?

We first present experimental settings, followed by results and
analyses to answer each research question.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1482



Table 1: Statistics of Datasets.

Dataset MS 10K MS 30K Yahoo! set 1

Query 10,000 30,000 29,921
Q-D pair 1,200,192 3,771,125 709,877

Q-D pair with 𝑟=4 8,881 30,435 13,402
Q-D pair with 𝑟=3 21,317 69,010 54,473
Q-D pair with 𝑟=2 159,451 504,958 202,700
Q-D pair with 𝑟=1 386,280 1,225,770 254,110
Q-D pair with 𝑟=0 624,263 1,940,952 185,192

max Q-D pair per query 908 1,245 135
min Q-D pair per query 1 1 1

6.1 Experimental Settings
6.1.1 Datasets. In our experiments, we use three benchmark datasets,
Microsoft 10k, Microsoft 30k [23]2 and Yahoo! Webscope v2.0 set
13. We purposefully choose them because as far as we know, these
are the largest public learning to rank datasets from commercial
English search engines. Due to privacy concerns, these datasets
do not disclose any text information and only provide feature vec-
tors for each query-document pair (Q-D pair). For these datasets,
documents for each query are annotated with 5 different relevance
levels, namely from 0 for irrelevance to 4 for high relevance. The
Microsoft datasets are partitioned into five folds and define cross
validation by using three folds for training, one fold for validation
and one fold for testing. The Yahoo! dataset splits the queries arbi-
trarily and uses 19944 for training, 2994 for validation and 6983 for
testing.

The statistics of these datasets are listed in Table 1. We can
observe that query-document pairs with high relevance levels are
relatively scarce in the training set. In addition, the large range of
the number of Q-D pairs for a query indicates the data imbalance
regarding queries. To reflect such imbalance in our experiments,
when the global ranking models do the initial retrieval for each
query, they will generate initial lists that are proportional to the
number of Q-D pairs for this query.

6.1.2 Baselines. To the best of our knowledge, there is no existing
data augmentation method for re-ranking models. To back up our
claim, we compare LTA with several relevant approaches. Consid-
ering different queries having different number of initial lists, we
employ a simple strategy for all baselines. Assuming there are at
most𝑚 initial lists belonging to one query, in order to augment a
query with 𝑛 (𝑛 ≤ 𝑚) lists, baseline methods will take as input each
list for this query and produce 𝑚−𝑛

𝑛 augmented lists. Thus, every
query will have𝑚 lists in the end. All baseline methods employ
this strategy and differ in how to produce augmented lists given the
initial list. The details of each method are as follows:
- Random Augment. This method produces augmented lists by
randomly rearrange the items in the initial list. Experiments con-
ducted by Ai et al. [2] have shown that this strategy can mitigate
the overfitting of the model and improve the performance.

- AAE-based Augment [35]. This method employs an adversar-
ial autoencoder (AAE) to generate informative data and uses

2https://www.microsoft.com/en-us/research/project/mslr/
3https://webscope.sandbox.yahoo.com

heuristic augmentation rules to handle the data imbalance issue.
Here we adopt its heuristic rules to produce augmented lists for
re-ranking models. The dimension of latent representations in
the AAE model and the number of query types are tuned in the
range of {5,10,15,20,25} and {5,10,15,20}, respectively.

- GMVAE-based Augment. This method employs GMVAE (our
data generation model) instead of AAE to generate new items.
To produce augmented lists, it uses the same heuristic rules as in
AAE-based Augmentation. For fair comparisons, we adapt the
same encoder and decoder architecture with the AAE model and
match their number of parameters to 4.1 M.

6.1.3 Model Training. We use two types of global learning to rank
models to do the initial retrieval: SVMrank [16] and LambdaMART
[8]. SVMrank is a well-known ranking model trained with pairwise
losses while LambdaMART is the famous LTR algorithm trained
with listwise losses. In this paper, we use the implementation of
SVMrank from Joachims4 and the implementation of LambdaMART
from RankLib5. We tune the global ranking model on the validation
set based on NDCG@10 and select the best one as our initial ranking
function. For SVMrank, we tune parameter c from 20 to 200; for
LambdaMART, we tune tree numbers from 100 to 1000.

For the re-ranking models, we try both a supervised model and
a reinforced model. We implement a supervised re-ranking model
named PRM [22], which optimizes the whole list by employing a
transformer structure. The hidden dimensionality is set to 1024 and
the batch size is set to 256. The learning rate of Adam optimizer
in our implementation is the same with [22]. For the reinforced
model, we employ Seq2Slate [5], which uses a sequence-to-sequence
model for ranking and can be optimized by REINFORCE algorithm
[33]. Inspired by literature [5], the batch size is set to 256 and the
LSTM cells have 128 hidden units. The model is trained with Adam
optimizer and an initial learning rate of 0.0003 decayed every 1000
steps by a factor of 0.96.

Our framework contains a data generation model and a teacher
model. In the data generation model for Microsoft datasets, the
label-assigning network, encoder, prior-assigning network, and the
decoder are all fully connected networks with the layer size as 136-
512-10, 146-512-256, 10-256, and 261-512-136, respectively. As for
Yahoo! dataset, the network structures are 700-512-20, 720-512-256,
20-256, and 261-512-700, respectively. The number of GM compo-
nents is set to 10 for Microsoft datasets and 20 for Yahoo! set 1. We
set 5 new items to be generated for each initial list. The teacher
model contains a generation agent and a ranking agent. The gener-
ation agent has an LSTM cell with 256 units and a fully connected
network with the layer size as 256-25. The ranking agent has two
LSTM cells with 256 units. All network parameters are initialized
uniformly at random in [-0.1,0.1] and optimized by Adam optimizer.
The batch size is 256 and the learning rate for the data generation
model and teacher model are 0.003 and 0.0002, respectively. We
train the teacher model till convergence, i.e., the terminal reward
of the re-ranking model stops improving for several episodes.

6.1.4 Hyper-parameter Settings. There are five hyper-parameters
for our LTA: the size of initial lists𝑛, the number of GM components

4https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
5https://sourceforge.net/p/lemur/wiki/RankLib/

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1483



Table 2: Performance (NDCG@10 / ERR@10 / Precision@10) of baseline methods and LTA on MS 10K, MS 30K and Yahoo! set 1.
∗ indicates significant improvements over the corresponding original re-ranking models, at level 0.01.
Global Ranking Algorithm SVMrank LambdaMART

Re-ranking model PRM Seq2Slate PRM Seq2Slate
MS 10K

Original 0.3618 / 0.2614 / 0.6048 0.3635 / 0.2622 / 0.6069 0.3977 / 0.3087 / 0.6309 0.4041 / 0.3125 / 0.6371
Random Augment 0.3689 / 0.2732 / 0.6109 0.3710 / 0.2759 / 0.6125 0.4024 / 0.3168 / 0.6379 0.4125 / 0.3247 / 0.6433

AAE-based Augment 0.3789 / 0.2774 / 0.6151 0.3802 / 0.2797 / 0.6189 0.4125 / 0.3206 / 0.6452 0.4197 / 0.3289 / 0.6498
GMVAE-based Augment 0.3826*/ 0.2808*/ 0.6179* 0.3875*/ 0.2831*/ 0.6209* 0.4161*/ 0.3243*/ 0.6487* 0.4208*/ 0.3337*/ 0.6533*

LTA(ours) 0.3943*/0.2976*/0.6247* 0.3986*/0.2994*/0.6279* 0.4239*/0.3353*/0.6546* 0.4301*/0.3412*/0.6608*
MS 30K

Original 0.3624 / 0.2613 / 0.6044 0.3689 / 0.2677 / 0.6108 0.4107 / 0.3179 / 0.6401 0.4162 / 0.3214 / 0.6462
Random Augment 0.3712 / 0.2709 / 0.6132 0.3724 / 0.2788 / 0.6175 0.4170 / 0.3249 / 0.6461 0.4221 / 0.3287 / 0.6520

AAE-based Augment 0.3812 / 0.2793 / 0.6185 0.3843 / 0.2832 / 0.6204 0.4269 / 0.3263 / 0.6502 0.4287 / 0.3311 / 0.6568
GMVAE-based Augment 0.3895*/ 0.2846*/ 0.6236* 0.3912*/ 0.2915*/ 0.6279* 0.4282*/ 0.3332*/ 0.6579* 0.4313*/ 0.3391*/ 0.6607*

LTA(ours) 0.3959*/0.2991*/0.6303* 0.4018*/0.3027*/0.6385* 0.4321*/0.3405*/0.6627* 0.4405*/0.3468*/0.6702*
Yahoo! set 1

Original 0.6919 / 0.4079 / 0.7094 0.6942 / 0.4132 / 0.7142 0.6976 / 0.4189/ 0.7144 0.7019 / 0.4231 / 0.7183
Random Augment 0.6983 / 0.4123 / 0.7129 0.7004 / 0.4192 / 0.7198 0.7021 / 0.4259/ 0.7193 0.7084 / 0.4318 / 0.7234

AAE-based Augment 0.7043 / 0.4164 / 0.7179 0.7054 / 0.4234 / 0.7234 0.7104 / 0.4329/ 0.7205 0.7139 / 0.4367 / 0.7278
GMVAE-based Augment 0.7098*/ 0.4245*/ 0.7236* 0.7126*/ 0.4287*/ 0.7279* 0.7149*/ 0.4387*/ 0.7233* 0.7209*/ 0.4396*/ 0.7301*

LTA(ours) 0.7152*/0.4308*/0.7289* 0.7182*/0.4327*/0.7311* 0.7193*/0.4419*/0.7284* 0.7252*/0.4438*/0.7316*

𝑚 in the data generation model, the number of new generated
items 𝑘 for each initial list, coefficients 𝛼 and 𝛽 for training data
generation model. We tune 𝑛 from 10 to 50, 𝑚 from 5 to 20, 𝑘
from 2 to 10, and 𝛼 and 𝛽 in {0.5,0.7,1.0,1.2,1.5}. We present hyper-
parameter studies in section 6.4 and set them according to the
results to achieve satisfactory performance. We train our models
on one Nvidia Tesla V100 GPU with 32 GB memory. The training
of the data generation model takes about 1 hour for convergence,
while the training of the teacher model takes about 11 hours for
convergence. The whole augmentation process takes about 2 to 3
ms for each initial list.

6.1.5 Evaluation Protocols. Our datasets have five-level relevance
judgments, from 0 (irrelevant) to 4 (perfectly relevant), so we use
two types of multi-label ranking metrics to evaluate the re-ranked
lists. They are Normalized Discounted Cumulative Gain (NDCG)
and Expected Reciprocal Rank (ERR) [10]. We also use Precision
to reflect the fraction of clicked items in the re-ranked lists for all
test samples. For these three metrics, we report results at rank 10
to show the performance. Statistical differences are computed with
the Fisher randomization test [26] (𝑝 ≤ 0.01).

6.2 Overall Performance (RQ1)
The overall performance of two re-ranking models with different
data augmentationmethods onMS 10K,MS 30K and Yahoo! set 1 are
presented in Table 2. ‘Original’ represents training the re-ranking
models using raw data without any augmentation operation. From
the table, we have the following observations:

• According to the results, Random Augment generally improves
LTR performance over Original, which indicates even a simple
strategy can mitigate data imbalance regarding queries. Besides,
we can observe that both AAE-based Augment and GMVAE-
based Augment perform better than Random-Augment, which
implies that new informative data is critical for mitigating data
imbalance regarding relevance levels.

• In particular, GMVAE-based Augment outperforms AAE-based
Augment on all datasets. These results signify the effectiveness
of our data generation model, which is attributed to the dedi-
cated design of the model. Our model unifies unsupervised query
types discovering and supervised data reconstruction as a whole,
which allows us to generate features with different query types
naturally. We will present detailed analyses of these two data
generation models in section 6.5.

• LTA consistently produces better results than GMVAE-based
Augment. It validates our belief that the sequence of the input
lists is important to the final performance of the re-ranking
model. Our method shows strength in modeling the relationship
between items and producing augmented lists which can help
the re-ranking models learn well. In-depth analyses about our
proposed method will be given in section 6.5.

• We also observe that our method is able to bring stable and
significant improvements to both supervised re-ranking model
PRM and reinforced re-reranking model Seq2Slate. This demon-
strates that our proposed method is general and can be applied
to different ranking models.

• Compared to other datasets, we notice that the improvements
from the augmentation baselines are relatively small on Yahoo!
set 1. This, however, is not surprising considering the special
properties of this dataset. From Table 1, we can observe that
Yahoo! set 1 is more balanced than the other two datasets. These
results indicate that the more imbalanced the raw data is, the
greater the improvement our method will bring.

6.3 Ablation Studies (RQ2)
The strengths of LTA come from two novel components: (1) the data
generation model that can discover queries types automatically and
generate new item features given specific query types and relevance
levels; and (2) the teacher model with two agents that augments
the initial lists with a learned policy. To justify the rationality of
LTA, we study the following five variants:

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1484



(a) MS 10K. (b) Yahoo! set 1.
Figure 4: Augmentation performance of LTA and its five
variants with different designs being disabled.

- LTA-GMVAE, which removes the data generation model from
LTA. At this time, we augment the initial lists by training the
ranking agent in the teacher model to rearrange the initial lists.

- LTA-Rand-Level, which disables the generation agent in the
teacher model. We simply use random relevance levels to gener-
ate new items.

- LTA-Rand-Order, which disables the ranking agent in the
teacher model, and we randomly replace the items in the initial
lists with new generated items to produce augmented lists.

- LTA-Attention, which uses attention model introduced by Pei
et al. [22] instead of LSTM cells in the teacher model to extract
features from the input lists. For fair comparisons, we match the
number of parameters of the attention model and LSTM cell.

- LTA-Simple-State, which removes the features for the combina-
tion of data and re-ranking model that mentioned in section 5.2
from the state representation 𝑠𝑡 .
For the five variants, we keep all hyper-parameters the same as

the optimal settings of LTA. Fig. 4 shows the performance of our
proposed LTA and the five variants on Microsoft 10k and Yahoo!
set 1. To save space, we omit the results on Microsoft 30k and the
results of ERR@K and Precision@K which show the same trend.
We have the following observations:
• Regarding the design of our data generation model, LTA per-
forms better than LTA-GMVAE by 6.34% and 4.56% onNDCG@10
in MS 10K and Yahoo! set 1, which shows the effectiveness of the
informative data. This finding is consistent with prior work [35],
which also verifies the importance of new generated informative
data for handling data imbalance in LTR.

• Compared with LTA-Rand-Level in MS 10K, LTA achieves 3.43%,
4.17%, and 6.63% improvements on NDCG@5, NDCG@10, and
NDCG@15, respectively. These results signify the effectiveness
of the generation agent, which is attributed to its ability to de-
termine what types of data should be generated in a principled
manner instead of heuristics. Besides, compared with LTA-Rand-
Order in MS 10K, LTA achieves 3.87%, 4.65%, and 7.05% improve-
ments on NDCG@5, NDCG@10, and NDCG@15, respectively.
These results demonstrate the necessity of the ranking agent,
which is able to capture the relationship between items and ar-
range them properly to produce augmented lists. Existing studies
on the re-ranking problem also demonstrate the critical role of
the sequence of input lists [3, 5].

• Regarding the structure of our models, our method significantly
outperforms LTA-Attention by 9.88% and 7.56% on NDCG@10
in MS 10K and Yahoo! set 1, respectively. This indicates the

0.380

0.385

0.390

0.395

0.400

5 10 15 20 25 30
0.360

0.365

ND
CG

@
10

Initial input list size n
Number of GM components m

Number of new items k
Original

0.708

0.710

0.712

0.714

0.716

0.718

0.720

5 10 15 20 25 30
0.692

0.694

ND
CG

@
10

(a) MS 10K.

0.380

0.385

0.390

0.395

0.400

5 10 15 20 25 30
0.360

0.365

ND
CG

@
10

Initial input list size n
Number of GM components m

Number of new items k
Original

0.708

0.710

0.712

0.714

0.716

0.718

0.720

5 10 15 20 25 30
0.692

0.694

ND
CG

@
10

(b) Yahoo! set 1.

Figure 5: The performance of LTA on MS 10K and Yahoo! set
1 with different hyper-parameters.

LSTM structure we employed in our model is a better choice for
modeling the sequence relationship between items than attention
models.

• When the teacher model is trained with a simpler state represen-
tation, the performance of LTA in MS 10K drops by 8.64%, 9.41%
and 10.12% on NDCG@5, NDCG@10, and NDCG@15, respec-
tively. These results indicate that the feature, which represents
the combination of both data and re-ranking model, enables the
teacher model to learn a better augmentation policy.

6.4 Hyper-parameter Studies (RQ3)
We study how important hyper-parameters affect the performance,
more specifically, the size of initial input lists, the number of GM
components in the data generation model, and the number of new
generated items for each initial list.

6.4.1 Size of initial input lists 𝑛. We fix other hyper-parameters
and adjust the size of initial input lists from [10,15,20,25,30]. As
shown in Fig. 5, the performances of LTA become better when 𝑛

increases from 10 to 20 and are stable when 𝑛 increase from 20 to
30. This is probably because when 𝑛 is relatively small, the increase
of 𝑛 would introduce more relevant items in the inputs for the
teacher model and give the model more chance to learn a good
augmentation policy. When 𝑛 is large enough, however, increasing
𝑛 only brings irrelevant items into the input lists.

6.4.2 Number of GM components𝑚. Weadjust𝑚 from [5,10,15,20,25]
and observe that LTA achieves the best performance on MS 10K
and Yahoo! set 1 with 10 and 20 components, respectively. On both
datasets, further increasing GM components degrades the perfor-
mance. These results suggest that the optimal𝑚 varies, depending
on the features of the dataset.

6.4.3 Number of new generated items𝑘 . We tune𝑘 in range [2,5,8,10].
It can be observed that for both datasets the improvement increases
when 𝑘 increases from 2 to 5. The performance improvement is
negligible when 𝑘 exceeds a certain value. In both cases, using 𝑘 = 5
is beneficial.

6.5 In-depth Analyses (RQ4)
In this section, we conduct in-depth analyses to shed some light
on how our framework improves the performance compared with
other baseline methods. Our analyses focus on two questions: (1)
What is the quality of the item features generated by our data

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1485



Query type 1
Query type 2
Query type 3
Query type 4
Query type 5

Query type 6
Query type 7
Query type 8
Query type 9
Query type 10

(a) AAE latent vectors.

Query type 1
Query type 2
Query type 3
Query type 4

(b) AAE generated features.
Query type 1
Query type 2
Query type 3
Query type 4
Query type 5

Query type 6
Query type 7
Query type 8
Query type 9
Query type 10

(c) GMVAE latent vectors.

Query type 1
Query type 2
Query type 3
Query type 4

(d) GMVAE generated features.

Figure 6: The arrangement of latent vectors and generated
features (projected using t-SNE) of AAE and GMVAE. Due to
limited space, we include four query types in (b) and (d).

generation model? (2) What kind of initial list received more im-
provements from our teacher model? For analysis purposes, we use
the initial lists ranked by SVMrank on Microsoft 10k and employ
PRM as the re-ranking model.

6.5.1 Visual Inspection of GMVAE Generations. Our data genera-
tion model can discover different query types in an unsupervised
manner during training, and then generate new item features given
specific query types and relevance levels. From section 6.2, we can
see that our data generation model achieves better performance
than that based on AAE. To better understand these results, we
employ t-SNE, a cluster-preserving algorithm, to visualize the ar-
rangement of the latent vectors extracted by the encoders and
generated features from AAE and GMVAE in Fig. 6.

One can observe that the latent vectors and generated features
from GMVAE are well-separated. Moreover, the generated features
produced by GMVAE from the same query type are in 5 well-
separated clusters, corresponding 5 different relevance levels. On
the other side, for the AAE, we observe that the cluster boundaries
of both latent vectors and generated features from the same query
type are unclear. These results demonstrate the effectiveness of our
data generation model based on GMVAE, which can discover query
types in a principled way and generate high-quality item features
with different query types and relevance levels.

6.5.2 Performance of Different Initial Lists Types. We divide queries
into two groups: majority queries mean those queries with more
than 𝑁 lists, otherwise minority queries mean those queries with
less than 𝑁 lists. For simplicity, we make these two groups have the
same size and set the threshold 𝑁 accordingly. For initial lists, we
divide them into two groups: balanced lists mean those lists with
balanced relevance levels, otherwise imbalanced lists mean those
lists with imbalanced relevance levels. Here we employ the entropy
of relevance levels to measure the degree of balance, and set the
entropy threshold to make these two groups have the same size.

MAQ-BL MAQ-IL MIQ-BL MIQ-IL
0.32

0.34

0.36

0.38

0.40

0.42

ND
CG

@
10

4.92%
8.77% 9.14%

11.30%

Originial
LTA

(a) MS 10K.

MAQ-BL MAQ-IL MIQ-BL MIQ-IL
0.64

0.66

0.68

0.70

0.72

0.74

ND
CG

@
10

2.82%

3.01%
3.62%

4.88%

Originial
LTA

(b) Yahoo! set 1.
Figure 7: Augmentation performance of LTA on MS 10K
and Yahoo! set 1 grouped by four input list types: ma-
jority queries-balanced lists (MAQ-BL), majority queries-
imbalanced lists (MAQ-IL), minority queries-balanced lists
(MIQ-BL), and minority queries-imbalanced lists (MIQ-IL).

Then we cross query groups and list groups, dividing all initial lists
into four types: majority queries-balanced lists (MAQ-BL), minority
queries-balanced lists (MIQ-BL), majority queries-imbalanced lists
(MAQ-IL), and minority queries-imbalanced lists (MIQ-IL). We then
perform the evaluation on each type of lists. Fig. 7 shows the per-
formance of the re-ranking models that are trained on original lists
and LTA-augmented lists, respectively, where red arrows indicate
the improvement percentages.

We observe that LTA improves the performance of minority
queries-imbalanced lists (MIQ-IL) by the largest margin. Onminority
queries-balanced lists (MIQ-BL) and majority queries-imbalanced
lists (MAQ-IL), LTA also achieves significant improvements. From
these results, we conclude that the improvements of our framework
over the original models are mainly from the augmentation for
minority queries and imbalanced lists. These results show the strong
ability of our framework in mitigating data imbalance regarding
both queries and relevance levels.

7 CONCLUSION
In this work, we investigate the data augmentation for re-ranking
models. To address the data imbalance issues, we propose Learning
to Augment (LTA) approach, which consists (1) a well-performed
data generation model based on GMVAE that can generate high-
quality informative data; and (2) an end-to-end trainable teacher
model that consists of two agents to decide how to generate new
data and how to produce augmented lists, respectively. We conduct
experiments on three datasets, providing extensive results and
analyses on the effectiveness and rationality of LTA.

There are many directions to explore in future. First, we plan to
investigate more useful features as the state representation (section
5.2) to improve the performance of the teacher model. Second, we do
not consider an online augmentation policy currently, and we plan
to take it into account. Third, we will extend our generic learning
paradigm to a wide range of LTR scenarios, such as session-based
recommendations [32], which has attracted increasing attention in
recent years.

8 ACKNOWLEDGMENTS
This work was partially supported by the Open Research Projects of
Zhejiang Lab (NO. 2021KB0AB02), and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1486



REFERENCES
[1] Arvind Agarwal, Hema Raghavan, Karthik Subbian, Prem Melville, Richard D

Lawrence, David C Gondek, and James Fan. 2012. Learning to rank for robust
question answering. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management. 833–842.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a
deep listwise context model for ranking refinement. In Proceedings of the 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 135–144.

[3] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Michael Bender-
sky, and Marc Najork. 2019. Learning groupwise multivariate scoring functions
using deep neural networks. In Proceedings of the 42nd ACM SIGIR International
Conference on Theory of Information Retrieval. 85–92.

[4] Rukshan Batuwita and Vasile Palade. 2010. Efficient resampling methods for
training support vector machines with imbalanced datasets. In Proceedings of the
2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[5] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,
Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-ranking and slate
optimization with rnns. arXiv preprint arXiv:1810.02019 (2018).

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and JasonWeston. 2009. Cur-
riculum learning. In Proceedings of the 26th International Conference on Machine
Learning. 41–48.

[7] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd International Conference on Machine learning. 89–96.

[8] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[9] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen Hon.
2006. Adapting ranking SVM to document retrieval. In Proceedings of the 29th
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 186–193.

[10] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACM International
Conference on Information and Knowledge Management. 621–630.

[11] David Cossock and Tong Zhang. 2008. Statistical analysis of Bayes optimal subset
ranking. IEEE Transactions on Information Theory 54, 11 (2008), 5140–5154.

[12] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In Interna-
tional workshop on multiple classifier systems. Springer, 1–15.

[13] Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh
Salimbeni, Kai Arulkumaran, and Murray Shanahan. 2016. Deep unsuper-
vised clustering with gaussian mixture variational autoencoders. arXiv preprint
arXiv:1611.02648 (2016).

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Proceedings of the 27th International Conference on Neural Information
Processing Systems. 2672–2680.

[15] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[16] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 217–226.

[17] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[18] Ping Li, Qiang Wu, and Christopher Burges. 2007. McRank: Learning to rank
using multiple classification and gradient boosting. In Proceedings of the 20th
International Conference on Neural Information Processing Systems. 897–904.

[19] Yang Li, Yadan Luo, Zheng Zhang, Shazia Sadiq, and Peng Cui. 2019. Context-
aware attention-based data augmentation for poi recommendation. In Proceedings
of the 35th International Conference on Data Engineering Workshops (ICDEW).
IEEE, 177–184.

[20] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. 2015.
Recommender system application developments: a survey. Decision Support
Systems 74 (2015), 12–32.

[21] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. 2013. The whens and hows
of learning to rank for web search. Information Retrieval 16, 5 (2013), 584–628.

[22] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking for
recommendation. In Proceedings of the 13th ACM Conference on Recommender
Systems. 3–11.

[23] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[24] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In Proceedings of
the 32nd IEEE Conference on Computer Vision and Pattern Recognition. 7008–7024.

[25] J Ben Schafer, Joseph A Konstan, and John Riedl. 2001. E-commerce recommen-
dation applications. Data Mining and Knowledge Discovery 5, 1 (2001), 115–153.

[26] Mark D Smucker, James Allan, and Ben Carterette. 2007. A comparison of
statistical significance tests for information retrieval evaluation. In Proceedings of
the 16th ACM International Conference on Information and KnowledgeManagement.
623–632.

[27] Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin,
and Ben Coppin. 2015. Deep reinforcement learning with attention for slate
markov decision processes with high-dimensional states and actions. arXiv
preprint arXiv:1512.01124 (2015).

[28] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík,
John Langford, Damien Jose, and Imed Zitouni. 2017. Off-Policy Evaluation for
Slate Recommendation. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 3635–3645.

[29] Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Brian MacWhinney, and Chris Dyer.
2016. Learning the curriculum with bayesian optimization for task-specific word
representation learning. arXiv preprint arXiv:1605.03852 (2016).

[30] Suzan Verberne, Hans van Halteren, Daphne Theijssen, Stephan Raaijmakers,
and Lou Boves. 2011. Learning to rank for why-question answering. Information
Retrieval 14, 2 (2011), 107–132.

[31] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In
Proceedings of the 29th International Conference on Neural Information Processing
Systems. 2692–2700.

[32] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet Orgun, and
Defu Lian. 2019. A survey on session-based recommender systems. arXiv preprint
arXiv:1902.04864 (2019).

[33] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[34] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
International Conference on Machine learning. 1192–1199.

[35] Qian Yu andWai Lam. 2019. Data augmentation based on adversarial autoencoder
handling imbalance for learning to rank. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 411–418.

[36] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
Proceedings of the 12th ACM Conference on Recommender Systems. 95–103.

[37] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally Optimized Mutual
Influence Aware Ranking in E-Commerce Search. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence. 3725–3731.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1487


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Data Generation Model
	4.1 Architecture
	4.2 Training and Generation

	5 Teacher Model
	5.1 Structure
	5.2 Interaction and Optimization

	6 Experiments
	6.1 Experimental Settings
	6.2 Overall Performance (RQ1)
	6.3 Ablation Studies (RQ2)
	6.4 Hyper-parameter Studies (RQ3)
	6.5 In-depth Analyses (RQ4)

	7 Conclusion
	8 Acknowledgments
	References



