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Abstract

We fix two typos in the statement of Theorem 4, and an error in Theorem 8. To be more
clear, we rewrite the proof of the lower bound.

1 Statement of Theorem 4
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2 Proof of the Lower Bound

We now show that for square loss, which is a special case of exponentially concave functions,
the minimax risk is O(d/T ). As a result, the online Newton step algorithm achieves the almost
optimal excess risk bound. The proof of the lower bound is built upon the distance-based Fano
inequality (Duchi and Wainwright, 2013).

Let P be a family of distributions on a sample space X , and let θ : P 7→ Θ be a function
mapping P to some parameter space Θ. Given a set of n samples Xn = {X1, . . . , Xn} drawn
i.i.d. from a distribution P ∈ P, let θ̂(Xn) be a measurable function of Xn, which is an estimate
of the unknown quantity θ(P ). Then, the minimax risk for the family P is given by

Mn (θ(P),Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP

[
Φ
(
ρ
(
θ̂(Xn), θ(P )

))]

where ρ : Θ×Θ 7→ R is a (semi)-metric on the parameter space, and Φ : R+ 7→ R+ is a nondecreasing
loss function. Our analysis is based on the following result from Duchi and Wainwright (2013).

Lemma 1 (Corollary 2 of Duchi and Wainwright (2013)). Let’s consider a discrete set V and each

element v ∈ V leads to a vector θv ∈ Θ that results in a distribution P ∈ P. Given a function

ρV : V × V 7→ R and a scalar t, we define the separation function

δ(t) := sup {δ|ρ(θv, θw) ≥ δ for all v,w ∈ V such that ρV(v,w) > t} .

1



We assume the canonical estimation setting: nature chooses a vector V ∈ V uniformly at random,

and conditioned on this choice V = v, a sample Xn of size n is drawn i.i.d. from the distribution

P ∈ P with parameter θv. Then, we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ

(
δ(t)

2

)(
1− I(Xn;V ) + log 2

log |V| − logNmax
t

)
, ∀t

where Nmax
t = maxv∈V{card{v′ ∈ V|ρV(v,v′) ≤ t}}.

In our case, we are interested the generalization error bound L(ŵ) − L(w∗). For square loss,
the stochastic optimization problem is given by

min
w∈W

L(w) = E
[
(Y −X⊤

w)2
]

where X is sampled from some underlying distribution PX , and given X = x the response Y
is sampled from an Gaussian distribution N (x⊤

w∗, 1), where w∗ ∈ R
d is the parameter vector.

Furthermore, we assume w∗ ∈ W. Then, it is easy to verify that the excess risk of a solution ŵ is

L(ŵ)− L(w∗) = E
[
(X⊤

ŵ −X⊤
w∗)

2
]
= (ŵ −w∗)

⊤E[XX⊤](ŵ −w∗) = ‖ŵ −w∗‖2C

where we define C = E[XX⊤]. Then, the semi-metric is naturally defined as

ρ(w,w′) = ‖w −w
′‖C

and Φ(z) = z2. Let PX,Y be a family of joint distributions of X and Y . Using these notations, the
minimax risk for the generalization error bound becomes

MT (θ(PX,Y ),Φ ◦ ρ) = inf
ŵ

sup
P∈PX,Y

EP

[∥∥ŵ((X,Y )T )−w(P ))
∥∥
C

]

where w(P ) is used to represent the parameter vector for distribution P , (X,Y )T = {(X1, Y1),
. . . , (XT , YT )} are T samples drawn from P and ŵ(·) is a measurable function of (X,Y )T .

To utilize Lemma 1, we introduce a discrete set V = {v ∈ {−1, 0, 1}d | ‖v‖0 = c1d} for some
constant c1 < 1, define wv = εv for ε > 0, and assume w∗ ∈ {εv : v ∈ V} ⊆ W. In our analysis,
we set t = c2d with c2 < c1, and define ρV(v,w) = ‖v−w‖0. Then, we lower bound the separation
function δ(·) by

δ (c2d) = sup {δ |ε‖v −w‖C ≥ δ for all v,w ∈ V such that ‖v −w‖0 > c2d}
=min {ε‖v −w‖C | for all v,w ∈ V such that ‖v −w‖0 > c2d}
≥min

{
ε‖z‖C

∣∣∣ for all z ∈ {−2,−1, 0,+1,+2}d such that c2d < ‖z‖0 ≤ 2c1d
}

≥ε
√
c2dmin {‖z‖C | for all ‖z‖2 ≥ 1, ‖z‖0 ≤ 2c1d}︸ ︷︷ ︸

:=µ

Using Lemma 1, we have

MT (θ(PX,Y ),Φ ◦ ρ) > c2dε
2µ2

(
1− I(V ; (X,Y )T ) + log 2

log |V| − logNmax
t

)
.
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In addition, we have
I(V ; (X,Y )T ) = TI(V ; (X,Y ))

and

I(V ; (X,Y )) = H(X,Y )−H(X,Y |V )

=H(X) +H(Y |X)−H(X|V )−H(Y |X,V ) = H(Y |X)−H(Y |X,V )

≤E

[
1

|V|2
∑

w∈V

∑

v∈V

Dkl

(
N (εX⊤

w, 1)‖N (εX⊤
v, 1)

)]

=
ε2

2
E
[
(V −W )⊤XX⊤(V −W )

]
=

ε2

2
E
[
tr
(
XX⊤(V −W )(V −W )⊤

)]
= ε2c1 tr(C)

where V and W are two independent random variables that are uniformly distributed on V , which
implies E[V V ⊤] = E[WW⊤] = c1I and E[VW⊤] = 0. Furthermore, it is easy to verify

log |V| − logNmax
t ≥ c3d

for some constant c3 > 0 when d is large enough and c2 is small enough. Combining the above
result, we have

MT (θ(PX,Y ),Φ ◦ ρ) ≥ c2dε
2µ2

(
1− Tε2c1 tr(C)

c3d

)
=

c2c3d

4Tc1
· dµ2

tr(C)

where we choose ε2 = c3d
2Tc1 tr(C) .

To show the minimax risk is of O(d/T ), we need to construct a matrix C such that tr(C) =
O(d) and µ2 is a sufficiently large constant. Furthermore, to ensure the optimization problem is
exponential concave instead of strongly convex, C should be singular. The existence of such a
matrix is guaranteed by the following theorem.

Theorem 1. When c1 is smaller enough, there exists a singular matrix C such that tr(C) = d and

µ2 ≥ 1/2.

Proof. We prove this theorem by utilizing the uniform uncertainty principle of subgaussian matri-
ces (Mendelson et al., 2008). Let R ∈ R

d×k be a random matrix with Rij sampled uniformly from
{±1}. Following Corollary 3.3 of Mendelson et al. (2008), with a probability at least 1− exp(−ck)

z
⊤RR⊤

k
z ≥ 1

2
‖z‖22 for all ‖z‖0 ≤

k

c′ log d

for some constant c, c′ > 0. By choosing C = RR⊤

k
and k = 2c′c1d log d, with a probability at least

1− exp(−2cc′c1d log d), we have

µ = min {‖z‖C | for all ‖z‖2 ≥ 1, ‖z‖0 ≤ 2c1d} ≥
√
2

2
.

Since the success probability 1−exp(−2cc′c1d log d) is strictly greater than 0, there must exist such
a matrix C. From our construction of R, it is easy to verify tr(C) = d and when c1 < 1/(2c′ log d),
we have k < d and thus C is singular.
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