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Abstract—Deep neural network (DNN) as a popular machine
learning model is found to be vulnerable to adversarial attack.
This attack constructs adversarial examples by adding small
perturbations to the raw input, while appearing unmodified to
human eyes but will be misclassified by a well-trained classifier.
In this paper, we focus on the black-box attack setting where
attackers have almost no access to the underlying models. To
conduct black-box attack, a popular approach aims to train
a substitute model based on the information queried from
the target DNN. The substitute model can then be attacked
using existing white-box attack approaches, and the generated
adversarial examples will be used to attack the target DNN.
Despite its encouraging results, this approach suffers from poor
query efficiency, i.e., attackers usually needs to query a huge
amount of times to collect enough information for training an
accurate substitute model. To this end, we first utilize state-of-the-
art white-box attack methods to generate samples for querying,
and then introduce an active learning strategy to significantly
reduce the number of queries needed. Besides, we also propose
a diversity criterion to avoid the sampling bias. Our extensive
experimental results on MNIST and CIFAR-10 show that the
proposed method can reduce more than 90% of queries while
preserve attacking success rates and obtain an accurate substitute
model which is more than 85% similar with the target oracle.

Index Terms—Deep Neural Network, Active Learning

I. INTRODUCTION

Deep neural networks (DNNs) have achieved great suc-

cesses in a variety of domains [1]. However, recent studies

have shown that DNNs may be easily fooled by adversarial

examples [2]. For example, in the context of image classi-

fication, an adversarial example is an image that is visually

indistinguishable to the original image but can mislead the

DNN model to output incorrect labels. In addition to im-

age classification, attacks to other DNN-related tasks have

also been actively investigated, such as semantic segmen-

tation [3], machine translation [4], visual QA [5], image

captioning [6], speech recognition [7], medical prediction [8],

and autonomous driving [9].

Depending on how much information the attackers have

access to, adversarial attack can be broadly classified into two

categories: white-box attack and black-box attack. The adver-

sary in the white-box setting has full access to the target DNN

model [2], [10], [11]. In the black-box setting, adversaries

can only access the input and output of the underlying DNN

but not its internal configurations and parameters [12], [13].

Recent studies have shown that both of these two categories

of attacks can reach a extremely high success rate of attack.

Although a lot of defense methods [14]–[16] were designed to

increase the robustness of the model, the white-box attack [17]

can still conquer the model with nearly 100% success rate by

estimating the gradient through approximation or expectation

[18].
Compared to the white-box setting, the black-box setting is

much more practical since a majority of real-world learning

systems do not allow white-box access due to security reasons.

Most of existing black-box attack methods are based on

the transferability phenomenon [13], where an adversary first

trains a substitute model and then crafts adversarial examples

against it, hoping that the generated adversarial examples

can also successfully attack the underlying black-box models.

Black-box attack can also bypass most defense methods that

change the model structure to increase robustness for the

reason that it is isolated from the target model. The black-

box variants of JSMA [19] and of the Carlini & Wagner

attack [10] both obtain over 95% success rate on adversarial

examples. However, a key limitation of these approaches is that

training a substitute network requires a large number of queries

to collect sufficient information. For example, the number of

queries in [13] increases almost exponentially with respect to

the number of iterations.
In this paper, we address this issue by employing the

active learning strategy. Specifically, we first utilize the state-

of-the-art white-box attack methods to generate adversarial

examples. We then improve the query-efficiency of transfer-

based framework by actively selecting the most informative

samples. Furthermore, we propose a diversity criterion to avoid

the bias caused by active learning. We summarize our main

contributions as follows:

• We propose to use more advanced methods for data

augmentation in transfer-based framework, and verify that

C&W attack method [10] and Deepfool [11] are more

effective than the raw Jacobian-based method [13].

• We propose to use active learning strategy to select the

most informative samples for querying. To avoid the bias

caused by active learning, we further introduce a diversity

criterion to ensure that the sampled queries are both

informative and diverse.
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• We conduct extensive experiments to evaluate our

method. Our empirical results show that the proposed

approach can significantly reduce the number of queries

while preserve the success rate of attack.

II. RELATED WORK

In this section, we briefly review the existing methods of

adversarial attack and active learning.

A. Adversarial Attack Methods

Adversarial attack methods can be broadly classified into

two main categories: (i) white-box attacks, which utilize the

specific information of the target model to construct pertur-

bations for attack, including FGSM, JSMA, Deepfool and

C&W [2], [10], [11], [20]; (ii) black-box attacks, which are

isolated from the parameters and settings of the target model

and can be roughly divided into three types, i.e., score-based

attacks, decision-based attacks and transfer-based attacks [12],

[13], [19], [21], [22]. Score-based attacks rely on the predicted

scores (e.g. class probabilities or logits) to estimate the un-

derlying gradients. Decision-based attacks adopt an iterative

algorithm to craft the perturbations. Transfer-based attacks

depend on the transitivity of adversarial examples between

different machine learning models. The previous work of

transfer-based attacks [13], which applies Jacobian-based data

augmentation and reservoir sampling method, achieves a fair

attack effect, but it still suffers the problem of huge number

of queries.

B. Active Learning

Active learning is a widely used framework in which

the learner is able to select the most informative unlabeled

examples for human annotation [23]. The learning algorithm

actively engages an oracle to request information in addition to

the original training set. The learner employs a query strategy

to select instances for labeling. The main purpose of active

learning is to reduce the total cost of labeling. It can be

roughly divided into three scenarios: query synthesis, selective

sampling and pool-based active learning [24]–[26].

Pool-based active learning is a practical scenario, where

learners can choose from the pool of unlabeled data for

labeling. There are three typical pool-based strategies, i.e., ran-

dom select method, least confidence method [27] and margin

based method [25], [28]. Random select method is a baseline

selection method, where unlabeled data are selected randomly

at each iteration without any active query criterion. Least

confidence method is proposed to select the samples which

are the least confident based on the posterior probabilities for

all the classes. Margin based method selects the samples by

minimizing a loss function using the margin of instance.

III. METHODOLOGY

In this section, we first present a passive learning framework

which replaces the Jacobian-based method with other white-

box attack approaches. Then, we introduce active learning into

this framework to reduce the number of queries.

A. A Passive Learning Framework

The transfer-based framework [13] firstly collects a very

small set S0 of inputs which are representatives of the input

domain. Then it designs a network architecture F , which will

be trained as the substitute model. The adversary applies a

data augmentation technique on the current training set Sρ to

produce a larger training set Sρ+1 with more synthetic training

points. The purpose of data augmentation is to learn about

the decision boundary which is hidden in the deep neural

networks.

Our passive learning framework is summarized in Algorithm

1. The key operation is Step 5, in which we use certain method

to craft samples for query.

Algorithm 1 Substitute DNN Training

INPUT: target oracle Õ, a maximum number ρmax of training

epochs, and an initial training set S0.

OUTPUT: a trained substitute model F .

1: Define architecture F ;

2: for ρ = 0; ρ < ρmax; ρ++ do
3: D ← D ∪ {(x, Õ(x))|x ∈ Sadd};
4: train F with D;

5: craft Sadd;

6: Sρ+1 ← Sρ ∪ Sadd;

7: end for

We denote Õ(x) as the output of the target oracle Õ queried

with instance x. The original method for crafting samples is

the Jacobian-based method which constructs a sample along

the direction of the gradient of the current substitute model and

gradually learns the shape of the oracle’s decision boundary.

However, samples crafted by recent white-box attack methods

contain more information about the decision boundary than

those crafted by Jacobian-based augmentation. Instead of sim-

ply taking a fixed step along the direction of the gradient, these

methods can adopt adaptive steps to make the constructed

samples cross the decision boundary or directly solve an

optimization problem to generate samples. So we use more

advanced white-box attack methods to implement Step 5 of

Algorithm 1, stated below.

• FGSM [2]: Sadd = {x + λ · sign(∇xF (x))|x ∈ Sρ},
where λ is the hyper-parameter.

• Iterative Gradient Sign (IGS) [29]:

Sadd = {x+ clipε(α · sign(∇xF (x)))},
where clipε(·) performs a per-dimension clipping to

constrain the result in the �∞ ε-neighbourhood of input

x.

• Fast Gradient Value (FGV) [30]:

Sadd = {x+ λ · ∇xF (x)|x ∈ Sρ}.
• JSMA [20]: Here we construct adversarial examples by

modifying a limited number of pixels of the input image

within the constrain of �2-norm.

• Deepfool [11]:
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Sadd =
{
x+
|Fl| × |∇xFl(x)|
‖∇xFl(x)‖22

×sign(∇xFl(x))|x ∈ Sρ

}
,

where Fl is the l-th dimension of F (·).
• C&W [10]: For each instance x in Sρ, we solve an

optimization problem:

min ‖δδδ‖2 + c · g(x+ δδδ)

s. t. x+ δδδ ∈ [0, 1]n,

where g(x) = max(maxi �=l(Z(x)i) − Z(x)t,−κ), Z(·)
presents the softmax function and κ is a constant to

control the confidence. In our framework, we choose

�2-norm to constrain the size of the perturbation. The

solutions to these optimization problems constitute Sadd.

All these methods propose to generate adversarial samples

across the decision boundary of the substitute model so that

each round of black-box attack can accurately correct the

model’s parameters to make it more similar to the target oracle.

B. Active Learning Strategy

The above framework first trains a substitute DNN, then

generates adversarial examples from the substitute DNN. How-

ever, it needs to query the oracle too many times, which is

not allowed in real applications. So, we propose to use active

learning to reduce the number of queries. The new procedure

is summarized in Algorithm 2.

Algorithm 2 Substitute DNN training with active learning

INPUT: target oracle Õ, a maximum number ρmax of training

epochs, and an initial training set S0.

OUTPUT: a trained substitute model F .

1: Define architecture F ;

2: for ρ = 0; ρ < ρmax; ρ++ do
3: if ρ = 0 then
4: D ← {(x, Õ(x))|x ∈ Sρ};
5: else
6: Dadd ← {(x, Õ(x))|x ∈ Sadd};
7: D ← [D,Dadd];
8: end if
9: train F with D;

10: craft Sadd;

11: Use Active Learning strategy to generate a new Sadd;

12: Sρ+1 ← Sρ ∪ Sadd;

13: end for

In Step 10, Sadd can be crafted by any method mentioned

above. The major difference is that in Step 11, we use active

learning strategy to select the most informative samples in

the Sadd. The motivation of introducing active learning is

that different samples contribute differently to the learning

process, i.e., if we add samples that can be classified by the

current model with high confidence to the training set, then the

decision boundary changes little. So, we use active learning

strategy to select samples that help determine the decision

boundary. This paper applies Random Select, Max Entropy

and Margin based methods.

• Random Select method (RS): We randomly select k
samples out of the initial set as the new Sadd, where

k is the number of queries in each iteration.

• Max Entropy method (ME): We calculate H(x) =
−∑

y∈Y F (x) logF (x) for each instance x in Sρ, then

we select k samples with largest entropy as Sadd.

• Margin based method (MB): For each instance x in Sadd,

we denote the first and the second highest values of F (x)
by h1 and h2, and then set Disx = h1 − h2. We take k
samples with smallest Disx as Sadd.

Random Select method is considered as the baseline

method. Max Entropy method uses information entropy as a

measure of the amount of information contained in a sample.

From a geometric point of view, this method gives priority to

samples near the boundary, e.g., the confidence of samples far

from the decision boundary is so high that we do not need

to query the target oracle for their labels. Meanwhile, Margin

based method achieves a similar benefit. Disx indicates the

confidence of the substitute DNN about the unlabeled instance.

The lower confidence it shows, the harder this instance seems

to the current model.

Although active learning strategy can select a small set of

informative samples, it may introduce bias into the training

set. For example, all the selected samples may concentrate in

a small region of the input space. To address this limitation,

we propose to increase the diversity of samples in each round

of active learning. In this way, we are able to select samples

that are informative and evenly distributed. We represent the

diversity of a sample x by the distance between x and Sρ,

i.e., minx′∈Sρ
‖x−x′‖. We can integrate this criterion with all

the active learning strategies above by considering the ranking

of the instance selected by active learning methods and the

ranking of the diversity simultaneously.

Among the active learning methods mentioned above, Ran-

dom Select method treats all the samples in Sadd as equal, so

the ranking of each sample is the same. On the other hand,

Max Entropy method and Margin based method calculate a

score for each sample which implies a ranking. We combine

the ranking of active learning strategies with that of the

diversity to select a sample set for querying:

• RS + diversity: rank each instance x in Sadd according to

minx′∈Sρ
‖x− x′‖, and select the top k largest samples.

• ME + diversity: rank each instance x according to
{
R
(
−

∑
y∈Y F (x) logF (x)

)
+R

(
minx′∈Sρ

‖x− x′‖
)}

, and

select the top k smallest samples.

• MB + diversity: rank each instance x according to{
r
(
Disx

)
+ R

(
minx′∈Sρ ‖x − x′‖

)}
, and select the

top k smallest samples.

Here, we use R to denote the ranking sorted from large to

small, and r to denote the ranking sorted from small to large.
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FGSM IGS FGV Deepfool C&W JSMA
itr query Acc Simi Acc Simi Acc Simi Acc Simi Acc Simi Acc Simi
0 100 0.4528 0.4521 0.4417 0.4764 0.4577 0.4253 0.4259 0.4009 0.4533 0.4197 0.4532 0.4107
1 200 0.3401 0.5628 0.2895 0.5684 0.3483 0.5853 0.3257 0.4894 0.3792 0.3577 0.2974 0.6173
2 400 0.2085 0.7521 0.2642 0.7648 0.2412 0.7451 0.2161 0.7415 0.2373 0.7504 0.2384 0.7936
3 800 0.2201 0.7706 0.2061 0.7684 0.1989 0.7701 0.1753 0.7679 0.2156 0.7564 0.1936 0.8362
4 1600 0.2253 0.7865 0.2427 0.7962 0.1783 0.8136 0.1242 0.8628 0.1688 0.8328 0.1873 0.8635
5 3200 0.1439 0.8330 0.1426 0.8286 0.1209 0.8460 0.0832 0.8969 0.1196 0.8572 0.1639 0.8935
6 6400 0.1289 0.8623 0.1317 0.8530 0.1374 0.8595 0.0801 0.8739 0.0693 0.9166 0.1373 0.9126
7 12800 0.0906 0.8682 0.0810 0.8778 0.1326 0.8877 0.0639 0.9283 0.0617 0.9310 0.1299 0.9263
8 25600 0.0652 0.8821 0.0656 0.8940 0.0752 0.9053 0.0625 0.9419 0.0563 0.9217 0.1108 0.9183

TABLE I: Results of using FGSM, Iterative Gradient Sign (IGS), JSMA, Fast Gradient Value (FGV), Deepfool and C&W to

craft samples for querying on MNIST. The evaluation metrics are Acc and Simi. The results on this table are averaged over

10 runs.
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Fig. 1: Black-box attack by combining C&W and active learning strategy on MNIST (ME: Max Entropy method, MB: Margin

based method, RS: Random Select method, diversity: our proposed active learning strategy). The curves on this Fig are averaged

over 10 runs.

IV. EXPERIMENT

In this section, we first compare the performance of different

data augmentation methods within the passive learning frame-

work. Then, we validate the performance of our algorithm

which considers active learning and diversity of the query set

simultaneously.

A. Setup

We evaluate the performance of our algorithm on three

datasets, i.e., MNIST [31], Fashion-MNIST [32] and CIFAR-

10 [33]. We random select 100 samples as the initial training

set (with 10 samples from each class) for each dataset. We

assume adversaries can collect such a limited sample set from

the oracle task.

The metric we used to evaluate the attack pattern is divided

into two parts: Accuracy of the target oracle (Acc) and

Similarity (Simi). Acc is an indicator of the success rate of

attacks (the lower, the better). We use FGSM to generate

adversarial examples over the substitute model and denote the

accuracy of oracle when tested with these adversarial examples

as Acc. Simi represents the similarity between our substitute

model and the oracle (the higher, the better). We query the
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Fig. 2: Black-box attack by combining Deepfool and active learning strategy on MNIST (ME: Max Entropy method, MB:

Margin based method, RS: Random Select method, diversity: our proposed active learning strategy). The curves on this Fig

are averaged over 10 runs.

oracle with the entire dataset and treat the result as a new

dataset. We denote the accuracy of the substitute model when

tested with this dataset by Simi.

For dataset MNIST, we use a pre-trained CNN model with

accuracy 99.24% as the target oracle and a simple CNN

model which contains a convolutional layer of 32 convolution

kernels, a max-pooling layer, and a fully-connected layer as

the substitute network. The structure of the target oracle is

invisible to our algorithms. Due to the limitation of space, we

only present results over MNIST and more settings and results

can be found in the full version of our paper 1.

B. Passive Learning Framework

We construct the samples with different white-box attack

methods and compare the performance of the substitute models

trained thereby. In black-box attack, the number of queries is

the main cost. The more we query, the more likely to cause

the target oracle’s attention. The experimental results on the

MNIST dataset are shown in Table 1, from which we observe

that when using C&W or Deepfool method to craft query

samples, the iteration we need for an effective attack is less

than FGSM and other methods. We can also verify that with

the same number of queries, the substitute model trained by

data generated with C&W or Deepfool method has a higher

attack success rate and a higher similarity with the oracle.

The reason for the better performance of C&W and Deep-

fool is that these methods solve an optimization problem to

craft samples which can cross the boundary of the current

model. In contrast, other methods like FGSM construct sam-

ples from the original samples along the direction of the

gradient towards the decision boundary but may not cross

the boundary. This confirms our thought that there is more

information about the boundary within the samples crafted

by solving optimization problems than samples crafted by

gradient based attack methods.

1http://lamda.nju.edu.cn/lipc/papers/ICDM2018.pdf

C. Active Learning Strategy

Since C&W and Deepfool show a better performance than

other methods in previous experiments, we combine these two

methods with different active learning strategies in this part.

Fig. 1 shows the performance of the active learning method,

as well as our improved version that takes the diversity of

samples into consideration, where the parameter k is set to be

10. The Raw algorithm in Fig. 1 follows the setting in [13]

which doubles the number of queries in the first few iterations

each time, and then uses reservoir sampling method [34] which

is a Random Selection strategy in the later few iterations to

make the number of queries grow linearly.

As we can see in Fig. 1(a), the Acc of each active learning

method is lower than that of the Raw algorithm except RS

method. The reason is that the Raw algorithm queries more

samples than the RS method in the first few iterations. How-

ever, as the number of iterations increases, the effects of Raw

algorithm and RS method become comparable. Furthermore,

in all cases, Acc of our improved version is lower than that of

the original active learning method. For example, to achieve

10% Acc, the original Max Entropy algorithm queries over

1600 times, our improved version only queries 600 times,

while the Raw algorithm queries more than 10000 times. The

curves of Simi in Fig. 1(b) also validate our motivation that

the diversity of sample set can effectively identify different

parts of the decision boundary. We observe that Simi increases

much more quickly when we take diversity into consideration.

For example, to achieve 85% Simi, the original Max Entropy

algorithm queries over 600 times, while the improved version

only needs 200 times. This situation suggests that, the distor-

tions in the decision boundary of our substitute models are

more similar to that of oracle and considering the diversity of

query set can help modify the decision boundary better than

only using active learning strategy.

In summary, while the original active learning algorithm

(Max Entropy method and Margin based method) can be used
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to reduce the number of queries significantly, our improved

version can further boost the performance.

In Fig. 2, we change the method from C&W to Deepfool

(Deepfool achieve as good performance as C&W in the exper-

iments of the previous passive learning framework) and report

the performance of our improved algorithm which considers

active learning strategy and diversity simultaneously. Again,

the results show that the combination of active learning and

the diversity of samples indeed reduces the number of queries

in transfer-based black-box attack significantly. For example,

when the number of queries reaches up to 400, the Acc of

Max Entropy algorithm is 10% lower than that of the Raw

algorithm, and the Simi is 20% higher.

V. CONCLUSION AND FUTURE WORK

In this paper, we have tested a number of white-box attack

methods and found that C&W attack and Deepfool yield the

overall best performance. In addition, we introduced active

learning to address the query-efficiency issue occurred in

transfer-based attack. To alleviate the bias caused by active

learning, we propose to maximize the diversity of query set

and our empirical study verifies its effectiveness. In the future,

we will apply our method to a variety of machine learning

models, rather than neural networks and apply more advanced

active learning strategy.
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