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A. Proof of Lemma 1

We need the following lemma that characterizes the property of the extra-gradient descent.

Lemma 8 (Lemma 3.1 in (Nemirovski, 2005)). Let Z be a convex compact set in Euclidean space € with inner
product (-,-), let || - || be a norm on & and || - ||« be its dual norm, and let w(z) : Z — R be a a-strongly convex
function with respect to || - ||. The Bregman distance associated with w for points z,w € Z is defined as

B,(z,w) =w(z) —w(w) — (z — w, Vw(w)).
Let U be a convex and closed subset of Z, and let z_ € Z, let £, € £, and let v > 0. Consider the points

w = ar;genbl{in{hf —Vw(z_),y) +w(y)},

z4 = argmin{(yn — Vw(z-),y) + w(y)}-
yeUu
Then for all z € U one has
7 2 O 2 2
(w—2z,9m) < Bu(2,2-) =~ Bu(2,2+) + —lln —&lL = S{lIw — 2" + [|lz4 —w[}.

Proof of Lemma 1. We first state the inner loop in Algorithm 1 below.

fort=1to M do
Compute the average gradient at w¥ over B calls to the gradient oracle

1 &
g = ﬁzg‘(wf,i)
=1
Update
z; =Ilp (wf —1g})

Compute the average gradient at z¥ over B¥ calls to the gradient oracle

1 &
ff = ﬁzg(zf,i)
i=1
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Update

Wf+1 =lp (Wf - U?tk)

end for

To simplify the notation, we define
gi = VF(wF) and ff = VF(z}).

Let the two norms | - || and || - ||« in Lemma 8 be the vector £5 norm. Each iteration in the inner loop satisfies
the conditions in Lemma 8 by doing the mappings below:

1 _
U=Z=E+ D, w(z)(—inHz, a+ 1, v, z_<—w§7 £<—gf, 7)<—ftk7 W<—zf, z+<—wf+1, Z 4 W,.
Following Lemma 8, we have

<Z7]5C - W*7 nf'tk>

v el b Z g g Lt

R Ly G Py 0 B

ot el Do el gt g 18— 1) < et e~ St et
< [|wh —2w*||2 B [wf 2— w,||? 432 (Hgf e ftkllg) ¥ 302 L2 W — 2F||? — %wa ek

ot =l W Z el g (gt — gl 4 8 - £41°).

where in the fifth line we use the smoothness assumption

lgr — £ = IVF(wy) = VF(z;)]| < L]wf — 2]

From the property of A-strongly convex function and (11), we obtain

F(z;) = F(w.)

A
<(t,2f —w.) = Sllaf - w.
_ - A
=(£F,2f —wa) + (£ — £, 2 —w.) — 5||Zf —w.?
[wh = w2k, — w2 L ; ; A
< - +3n (gt —er|” + 15 —£F11%) + (£ — £, 28 — w.) — Tzt —we >
n 2n 2
Summing up over all t =1,2,..., M, we have
M
> F(zf) - MF(w.)
t=1

[wh — w. | - k k(12 - Tk _ ck|2 S kE _ sk k A o k 2
§T+3n legt —gl +Z||ft — £ +Z<ft — £,z _W*>_§Z”Zt — W%
t=1

t=1 t=1 t=1
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Dividing both sides by M and following Jensen’s inequality, we have

( zzt> w)

<1 MF - F
_MZ (z) — F(w.)

M

M
W*” 3"7 2 k k2 1 k 7k _k A k 2
<oyt (Z”gfgtl +Z\If £ (6 — T2 —we) = gpp 2 llak —we P

t:l

(12)
which gives the first inequality in Lemma 1.

Let E;_1[-] denote the expectation conditioned on all the randomness up to epoch k — 1 and E} '[] denote
the expectation conditioned on all the randomness up to the ¢ — 1-th iteration in the k-th epoch. Taking the
conditional expectation of (12), we have

=

M M
- W, 3 _ . 1 _
s”W;M;V 3 (Et_f o (e~ efl”) + 3B (I8 - fmﬂ) + 57 O Been [(6F — B af —w)]

(w.)

t=1
(13)
where we drop the last term, since it is negative. To bound E;_1 [||g} — gF||*], we have
1 & i 1 & i
Er_1 [”gf *gflﬂ =Ep1 HBk;g(WfaZ)gf =Er1 ﬁZ(g(WfaZ) *gf)
1 (&
:W ZEk: 1 |:Hg Wta gtH i| +Ek71 Z<EII‘/¢71 [Q(Wfﬂ)_gf] 7E271 [g(wfa])_gf}> (14)
i=1 i#j
Bk
. . 2 G?
> Bt [lewhi) —gf|] ) < 5
i=1
where we make use of the facts g(w¥,i) and g(w?,j) are independent when i # j, and
B [g(wr,i) —gf] =0, By [lg(wy, i) — g/ |I°] <E7 [lg(wy,d)l?] <G* vi=1,...,B".
Similarly, we also have
_ G2
By [ —££)%] < B (15)
Notice that ff is an unbiased estimate of ¥, thus
Ep_1 [(ff — .2} —w.)] = Epq [(E}" [£F — £F] .27 —w.)] =0. (16)
Substituting (14), (15), and (16) into (13), we get the second inequality in Lemma 1. O

B. Proof of Lemma 4
“k _ 1 B ook o
Recall that g = ¢ > ;_; &(wW}, 1), thus
B*

_ 1
Hgi“fgfllz sz Wta

=1
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Since ||g(wF,)|| < G, and E[g(wF,4)] = gF, we have with a probability at least 1 — ¢

It — & < o los 2
gt gt — \/ﬁ g 6 .
We obtain (8) by the union bound and setting ) /2 = M§$. The inequality in (9) can be proved in the same way.

C. Proof of Lemma 5

We first state the Bernstein’s inequality for martingales (Cesa-Bianchi & Lugosi, 2006), which is used in the
proof below.

Theorem 3. (Bernstein’s inequality for martingales). Let X1,...,X, be a bounded martingale difference se-
quence with respect to the filtration F = (F;)1<i<n and with | X;| < K. Let

ooy
j=1

be the associated martingale. Denote the sum of the conditional variances by

S2 =Y E[X7|Fi].
t=1
Then for all constants t, v > 0,

£2
PrL_maX S >t and22<1/] <exp< (y—i—Kt/3)>’

.....

and therefore,

Pr[ max S; > V2t —|—3Kt and 22 <y} <et.

=1,....n

To simplify the notation, we define

4MG
Z 12§ — w.|* <

c 4G 1 8M
= —F—10g —.
NZRS

In the analysis below, we consider two different scenarios, i.e., A < nG?/[AB*] and A > nG?/[\B"].

C.1. A < nG?/[AB¥]

On event E;, we can bound

) n . 1
Z; < I = £ llllzd — wll < JIEF — €717 + BIIZf w|* <

»P\d

1
C? + ~||zf — w.
n

Summing up over all t =1,2,..., M,

M
Mc2 Mc? | G?
Szp< T o Z lzF — w2 < B (17)
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C.2. A > nG?/[A\B¥]
Similar to the above proof, on event Fy, we bound

. - 1 . = 0 C?  0A
25| < |IEF = EF Mz — wall < ZIEF —EF11° + g — wal® < — + —,
0 4 0 4
where 6 can be any nonnegative real number. Denote the sum of conditional variances by

M M
22, =S B2 < 2 |z - wa? = C24,
t=1

t=1

where E?lH denote the expectation conditioned on all the randomness up to the ¢ — 1-th iteration in the k-th
epoch.

Notice that A in the upper bound for | ZF| and 2, is a random variable, thus we cannot directly apply Theorem 3.
To address this challenge, we make use of the peeling technique described in (Bartlett et al., 2005), and have

M
4/(C%* 0A
Pr (E ZF > 2V 2 AT + 3 <9 + )T)
t=1

M 2 2 2
oY avem e § (G 8 1T < a s )
t=1

9 4 )7 A\Bk ST
M
4002 64 c* | 04 nG? AMG?
_ k k 2 2
_Pr<tz_;zt 22m+3<0+4>7,mta)(|zt|§9+4,ZM§CA,)\Bk<A§ 2 >

M
4 (C? 0HA c?  hA nG? . nG? .
k k 2 2 i—1 i
E Zy > 2 CZAT+3<0 +4)T,mtax|2t|<0 +T’§M<CA’ﬁ2 <A<W2

n M 2 2 2 2 9 9
k 2 1G% i y 47007 0nGT ko C° L 0nGT o oG ;i
=2 <ZZt Z2\/(0 B )T+3 ( g T agEe ) TmaxlZil s S A R B s O g2

M
k nG? i 2 (C? QWGZ i k c? 07IG2 i 2 277G2 i
ZZt Z 2<C2Q>7—+3<0+4m2 T,HltaX|Zt <7+7727ZM<C 72

<) P
= ; & ABF =79 T ANBk =" B
<ne 7,
where
) 4M B*
n= 082 77>\ ’
and the last step follows the Bernstein’s inequality for martingales in Theorem 3. Setting
3\
0 = —
4t’
1 an
T = og —,
5
with a probability at least 1 — 0 /4 we have
M
>z
t=1
4 2 94 16C? A
<2VC2AT + 3 (Oe + 4) T=2VC?AT + 723 2 + )\T (18)

M 16C? 5 A ACT [ dn 4 o dn) | M
T _— = —
4 " oA 4 ) 9

4
<7 2 A ~ 71 - .
_)\CT+ + og5+ og 7 5

We complete the proof by combining (17) and (18).
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D. Proof of Lemma 7

We follow the logic used in the proof of Lemma 2.
It is straightforward to check that

. 2anG?
BY = anx2t~! = :
an v
When k = 1, with a probability (1 —§)'~! = 1, we have
M 2G* G?

Assume that with a probability at least (1 — S)k’l, Ay <V for some k > 1. We now prove the case for k + 1.
Notice that N defined in (4) is larger than n defined in (10). From Lemma 6, with a probability at least 1 — ¢,
we have

Aper = F(WhH) = F(w.)

F—w,|?  100G? M 2 M AN 4 AN
<||Wl gl + OOGnlog;Q 85 + G [1+6410g2 85 <1og 5 +§log2 5)}

- 2Mn Bk ABkM

A 400, s 8MV, 1 9 8M AN 4. 5 AN\ | Vi
<—+—1 —— + — |1 4641 — [ log — + =1 = —.
4 + «a 8 6 8 + @ +0slog ) ©8 ) + 9 o8 ) 8

Using the definition of « in (3), with a probability at least (1 — §)* we have,

1 1 1 1
A < Vit Vit -Vi==-Vi=Viis.
k+1_4k+8k+8k 5 Vk k+1

E. More Results for the Regularized Distance Metric Learning

0.7605 : 0.6755
---SGD
0.76l ——EP_GD||
—logT 0.675}
0.7595!
= ~* 0.6745/
= 0.759 =3
I L
0.7585! 0.674}
0.758 0.6735¢
10° 10° 10° 10' 10°
Time (s) Time (s)
(a) Mushrooms (b) Adult

Figure 3. Results for the regularized distance metric learning on the Mushrooms and Adult data sets. F'(Wr) is measured
on 10* testing pairs and the horizontal axis measures the training time. The experiments are repeated 10 times and the
averages are reported.



