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Abstract

Learning a statistical model for high-dimensional
data is an important topic in machine learning.
Although this problem has been well studied in
the supervised setting, little is known about its
unsupervised counterpart. In this work, we focus
on the problem of clustering high-dimensional
data with sparse centers. In particular, we ad-
dress the following open question in unsuper-
vised learning: “is it possible to reliably clus-
ter high-dimensional data when the number of
samples is smaller than the data dimensionali-
ty?” We develop an efficient clustering algorith-
m that is able to estimate sparse cluster centers
with a single pass over the data. Our theoreti-
cal analysis shows that the proposed algorithm
is able to accurately recover cluster centers with
only O(s log d) number of samples (data points),
provided all the cluster centers are s-sparse vec-
tors in a d dimensional space. Experimental re-
sults verify both the effectiveness and efficiency
of the proposed clustering algorithm compared to
the state-of-the-art algorithms on several bench-
mark datasets.
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1. Introduction
Data clustering, also known as unsupervised learning, is
an important task in machine learning. Since clustering is
closely related to density estimation, analyzing the number
of samples required for accurately recovering the underly-
ing distributions, referred to the problem of sample com-
plexity, is an important but challenging open problem (Sre-
bro, 2007).

Although numerous algorithms have been developed for
data clustering, only a few of them address the challenge
of clustering high-dimensional data. It is well known that
the number of samples needed for accurate density estima-
tion is at least exponential in the dimensionality (Tsybakov,
2008). Even in the case when data points are sampled
from a finite mixture of Gaussian distributions, the sample
complexity is still polynomial in dimensionality (Dasgup-
ta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2004;
Kannan et al., 2005; Srebro et al., 2006; Chaudhuri et al.,
2009). Given these theoretical results, we aim to examine
the following question in this study:

Is it possible to achieve accurate clustering results when
the data dimensionality is larger than the number of sam-
ples to be clustered?

In (Azizyan et al., 2013), the authors studied a special case
of this problem where data points were sampled from a
mixture of two isotropic Gaussians. The authors showed
that when the cluster centers are d dimensional s-sparse
vectors (i.e. there are no more than s non-zero entries), the
sample complexity can be reduced to O(s2 log d). In this
work, we examine this question in a more general setting
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where there are K clusters, K > 2. We show that when
data points are sampled from a mixture of K ≥ 2 spherical
Gaussians with s-sparse centers, only O(s log d) samples
are needed to reliably estimate the cluster centers. Our re-
sults indicate that it is indeed possible to reliably cluster
high-dimensional data even when the number of samples is
smaller than the dimensionality as long as the cluster cen-
ters are sparse.

To support our theoretical claim, we present an efficien-
t clustering algorithm that only needs to go through all the
data points once to obtain an accurate estimation of cluster
centers. This is in contrast to many clustering algorithms,
such as k-means (Lloyd, 1982) and mixture models (Lind-
sey, 1996), which require going through the data set mul-
tiple times before the final centers can be determined. To
take advantage of sparse cluster centers, similar to sparse
learning, an `1 regularizer is introduced to obtain a bet-
ter estimates of cluster centers. Our empirical study with
multiple high-dimensional data sets shows that the pro-
posed algorithm, despite its simplicity, yields better results
compared to state-of-the-art clustering algorithms for high-
dimensional data.

We finally comment on the applications of the proposed
clustering technique. Although most clustering studies as-
sume a sufficiently large number of data points, there are
many scenarios where the number of data points to be clus-
tered is significantly smaller than the dimensionality, and
at the same time, the cluster centers are likely to be sparse.
One example is document clustering, where the dimension-
ality, i.e., the number of distinct terms, can be significantly
larger than the number of documents to be clustered (Ertöz
et al., 2003; Cormack & Lynam, 2005; Keerthi & DeCoste,
2005). At the same time, the term frequencies usually fol-
low a power-law distribution, thus many terms in a given
cluster will only occur in one or two documents, giving
them very low weight in the cluster center (Sculley, 2010).
Another example is the clustering of genes based on their
sequence information (De Smet et al., 2002; Wang & Yang,
2005). In this application, each gene is represented by a
histogram vector of motifs, where the number of unique
motifs derived from the data can be sometimes larger than
the number of genes to be clustered and usually only a s-
mall number of motifs are biologically functional.

Besides the application to clustering high-dimensional da-
ta, the theoretical results presented in this work have pro-
found impact on the practice of data clustering. It implies
that when all the cluster centers are s-sparse, it is possible
to only utilizeO(s log d) data points for accurately estimat-
ing the cluster centers, suggesting a simple approach for
efficiently clustering billions of data points (i.e. estimate
the cluster centers using the randomly sampled O(s log d)
data points and then apply the estimated center to find the

appropriate cluster members for all the data points).

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work on high-dimensional clus-
tering, Gaussian mixture model and theoretical studies of
the k-means algorithm. In Section 3, we introduce the
proposed framework for clustering high-dimensional data.
Theoretical analysis of the proposed algorithm is presented
in Section 4. We summarize the results of our empirical
studies in Section 5. Section 6 concludes with the future
work.

2. Related work
In this section, we review the existing work on clustering
high-dimensional data, as well as theoretical analysis for
Gaussian mixture models and k-means algorithm, the two
of the most popular clustering algorithms.

Clustering high-dimensional data One common ap-
proach to high-dimensional clustering is to first perform di-
mensionality reduction using algorithms such as Principal
Component Analysis (PCA) and kernel PCA (Mika et al.,
1998) as a pre-processing step, followed by a standard clus-
tering method in the lower dimensional space. However,
Johnstone (2007) showed that when n < d, PCA fails be-
cause it is unable to distinguish signal from noise. Anoth-
er limitation of these dimensionality reduction approaches
is that they assume the data points from different clusters
share the same subspace, which may not hold in many real-
world applications. Subspace clustering (Agrawal et al.,
1998) addresses this limitation by trying to identify a low-
dimensional subspace for each cluster that captures most
of the data variance in the cluster. The main shortcom-
ing of subspace clustering is that it has to make a strong
assumption about data and is usually computationally ex-
pensive. Since the number of candidate subspaces is ex-
ponential in the dimensionality, a naive implementation of
subspace clustering algorithm will be computationally in-
feasible for high dimensional data. Several clustering al-
gorithms have been proposed to improve the computation-
al efficiency by exploring the property of sparsity. Pan &
Shen (2007) applied penalized mixture models to conduct
variable selection and clustering simultaneously. Witten &
Tibshirani (2010) developed a lasso-type penalty to perfor-
m feature selection in both k-means and hierarchical clus-
tering. Sun et al. (2012) explored adaptive group lasso for
data clustering. However, none of these approaches provide
a theoretical guarantee on how the sparsity assumption can
be used to enhance clustering performance.

Gaussian mixture model Assuming that data points are
sampled from a mixture of Gaussian distributions, a Gaus-
sian mixture model (GMM) can be used for clustering. The
most popular approach for learning a GMM is the EM algo-



A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

rithm (Figueiredo & Jain, 2002), which is not guaranteed to
find the global optimal. Over the past decade, many stud-
ies have examined the learnability of GMM. Among them,
pairwise methods (Dasgupta, 1999; Dasgupta & Schulman,
2000; Arora & Kannan, 2001) were first proposed to es-
timate the mixture distribution. However, these methods
require a larger distance between centers with increasing
dimensionality. To address this problem, spectral method-
s (Vempala & Wang, 2004; Achlioptas & McSherry, 2005;
Kannan et al., 2005; Brubaker & Vempala, 2008; Hsu &
Kakade, 2013) were introduced to estimate a mixture of
Gaussians with a mean separation that is independent of
data dimensionality. In (Belkin & Sinha, 2010; Kalai et al.,
2012), the authors use the method of moments to estimate
the Gaussian mixtures without requiring a large separation
between Gaussian components. However, a major limita-
tion of these studies is their high sample complexity, i.e.,
the number of samples required for accurately recovering
the underlying mixture components is at least polynomi-
al in dimensionality. Although this issue was addressed
in (Azizyan et al., 2013) under the assumption of sparse
cluster centers, the result is restricted to only two clusters,
significantly limiting its potential applications.

In addition to Gaussian mixture models, several studies
have addressed general mixture models. Dasgupta et al.
(2005) studied the question of learning mixtures of dis-
tributions with heavy-tails. In (Achlioptas & McSherry,
2005; Kannan et al., 2005), the authors showed that their re-
sults can also be applied to mixtures of log-concave distri-
butions. Moreover, Chaudhuri (2007); Blum et al. (2009)
examined the sample complexity problem associated with
learning mixtures of binary product distributions.

k-means The proposed algorithm is related to some of the
theoretical studies on the k-means algorithm. Chaudhuri
et al. (2009) presented a modified k-means algorithm that is
able to accurately recover the cluster centers for two clus-
ters when the number of samples is at least linear in the
dimensionality. Balcan et al. (2009a;b; 2013) showed it is
possible to efficiently find a solution that is close to the true
data partition if all c-approximations to the global optimal
solution of k-means only differ from the true partition on at
most ε fraction of data points. It is however unclear when
the assumption will hold in real-world applications.

3. High-dimensional Clustering as Iteratively
Refined Estimation

The proposed clustering algorithm for high-dimensional
data needs only one pass over the data points to be clus-
tered to estimate the cluster centers. LetD = {x1, . . . ,xn}
be the set of n data points to be clustered into K cluster-
s, where each xi ∈ Rd is a vector of d dimensions. To

accurately estimate the cluster centers, we develop an it-
eratively refined estimation procedure: it divides D into a
sequence of disjoint subsets whose sizes increase exponen-
tially over the sequence; the cluster centers computed from
the first subset will be used as the initial solution, and then
be refined by using the data points from the second subset,
and so on. Below, we first present our procedure for itera-
tively refined estimation of sparse cluster centers, and then
discuss its theoretical properties in the next section.

The proposed algorithm is an iterative procedure. Without
loss of generality, we assume n = T (2m − 1) for some
integers T and m. The proposed algorithm first randomly
divides the collection of n data points into m subsets, de-
noted by S1, . . . ,Sm, with |Si| = T2i−1. The initial guess
for cluster centers is denoted by ĉ11, . . . , ĉ

1
K .

Given the initial cluster centers, we iteratively update them.
At each iteration t, we use the data points in St, and iden-
tify, for each data point xt

i ∈ St, its closest cluster k̂ti by
k̂ti = arg max

j∈[K]

[ĉtj ]
>xt

i.

One major difference between the proposed algorithm and
the k-means algorithm is that we use a different subset of
data points at each iteration, which is the key to ensure that
the final cluster center estimates will be close to the optimal
cluster centers. While (Chaudhuri et al., 2009) also used
different subsets of data at each iteration, they keep the size
of subsets unchanged for all the iterations. Consequently,
they are only able to deal with two clusters. In contrast, we
increase the size of subset by a constant factor p > 1, and
are able to address the K clusters problem, K ≥ 2.

Given computed cluster memberships, our next step is to
update the cluster centers. To take advantage of the sparsi-
ty of cluster centers, we introduce an `1 regularizer in esti-
mating the new cluster centers. More specifically, given the
estimated cluster centers at iteration t, {ĉtk}Kk=1, we denote
by Ŝtk the subset of data points in St that are assigned to ĉtk.
Instead of computing the new center as the average of data
points in Ŝtk, we estimate the new cluster center ĉt+1

k at it-
eration t+1 by solving the following optimization problem

min
c∈Rd

λt‖c‖1 +
1

|Ŝtk|

∑
xt
i∈Ŝt

k

‖c− xt
i‖2, (1)

where λt > 0 is the regularization parameter at iteration
t. The optimal solution of the k-th cluster center in (1) is
given by

x̄t
k − sign(x̄t

k) min(|x̄t
k|,

λt

2
), (2)

where x̄t
k = 1

|Ŝt
k|

∑
xt
i∈Ŝt

k
xt
i is the average of data points

in St
k.

Algorithm 1 shows the detailed steps of this approach. Note
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Algorithm 1 Clustering as Iteratively Refined Estimation
of Sparse Cluster Centers
Input: The number of clusters K, size T , and λ1

1: Randomly divide the collection of n data points into
S1, . . . ,Sm, with |Si| = T2i−1.

2: Compute the initial cluster centers ĉ11, . . . , ĉ
1
K

3: for t = 1, . . . ,m do
4: //Find closest cluster for each data point in St
5: for i = 1, . . . , |St| do
6: Find the closet cluster k̂ti for xt

i ∈ St, i.e.,

k̂ti = arg max
j∈[K]

[ĉtj ]
>xt

i

7: end for

8: //Update cluster centers using data points in St
9: for k = 1, . . . ,K do

10: Set Ŝtk = {xt
i ∈ St : k̂ti = k} includes all the

data points assigned to cluster ĉtk
11: Update the k-th cluster center

ĉt+1
k = arg min

c∈Rd

λt‖c‖1 +
1

|Ŝtk|

∑
xt
i∈Ŝt

k

‖c− xt
i‖2

12: end for

13: λt+1 = λt/
√

2.
14: end for

Return The cluster centers ĉm+1
1 , . . . , ĉm+1

K

that in Algorithm 1, the regularization coefficient λt is re-
duced by a constant factor

√
2 at each iteration. This is sim-

ilar to other algorithms for sparse recovery (Wright et al.,
2009; Hale et al., 2008). We note that although the regular-
ization parameter is reduced over iterations, the estimated
cluster centers will be `1 sparse (instead of `0 sparsity), as
shown in (Jin et al., 2013). This is because at the beginning
of the iterations, we would expect the estimated centers to
be far away from the true cluster centers, and therefore only
the entries with large magnitude are kept. With more iter-
ations, we expect the estimated cluster centers to be close
to the true ones, and we thus need to reduce the threshold
(i.e., the regularization parameter). Since in each iteration,
λt is reduced by

√
2 and the sample size |St| is increased

by a factor of 2, λt is proportional to 1/(
√
|St|), which is

consistent with the classical theory on Lasso (Tibshirani,
1996). Finally, we choose to use `1 regularizer instead of
`1 constraint because of its computational efficiency.

4. Main Theoretical Result
In this analysis, we discuss the sample complexity of re-
covering sparse centers in Algorithm 1. We will focus on

the GMM model to make our analysis comparable to pre-
vious work. We however emphasize that according to our
empirical study, the proposed algorithm also works well for
a wide range of domains even when the assumption of nor-
mality does not hold. We will investigate in the future the
theoretical property of the proposed algorithm for mixture
model beyond GMM.

We assume that the data points inD are generated by a mix-
ture of K Gaussians with centers c1, . . . , cK and mixing
weights µ1, µ2, · · · , µK . Similar to most studies on clus-
tering, we assume that the number of clusters K is known
apriori. Following (Chaudhuri et al., 2009), we assume that
each cluster center is a unit vector, i.e., ‖ci‖ = 1,∀i ∈ [K].
We denoted by ρ the maximum overlap between different
clusters, i.e.,

ρ = max
i 6=j

c>i cj .

It is easy to verify that the minimum distance between any
two centers is

√
2(1− ρ). We note that the introduction of

ρ is closely related to the minimum separation requirement
used in the theoretical analysis of learning a GMM (Hug-
gins, 2011). Similar to GMM, we assume that each data
point xi is generated by the addition of a selected clus-
ter center cki

and an independent Gaussian random noise
gi ∼ N (0, σ2I), i.e., xi = cki + gi.

For simplicity, we first assume that the initial centers are
not too far away from the true centers. More specifically,
the maximum distance between the initial centers and the
true centers, defined as

∆1 = max
1≤i≤K

‖ĉ1i − ci‖,

should be smaller than

∆max :=
1− ρ

2
− σ

√
5 ln (3K).

Note that in order to ensure a sufficiently large value
for ∆max, σ has to be reasonably small, indicating that
the proposed algorithm will not work appropriately with
large noise. Similar restriction on clustering can be found
in (Vempala & Wang, 2004; Brubaker & Vempala, 2008;
Azizyan et al., 2013).

For clustering with sparse centers, we denote by ∆∗ the
solution to the following nonlinear equation

∆∗

6
√

2s
= c1 exp

(
− (1− 2∆∗ − ρ)2

8(1 + ∆∗)2σ2

)
(η0 + σ

√
lnn), (3)

where c1 is some universal constant. The definitions of
∆max and ∆∗ arise from our theoretical analysis; see the
detailed steps in the supplementary material. Following the
analysis of compressive sensing (Donoho, 2006), we de-
fine the incoherence measure η0 for all the cluster centers
{ck}Kk=1 as

η0 = max
1≤i≤K

‖ck‖∞,
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where ‖ck‖∞ measures the largest element in ck. Finally,
we define

µ0 = min
1≤i≤K

µi,

as the smallest mixing weight of K Gaussian mixtures.
Now, the performance of our algorithm can be character-
ized by the following theorem.

Theorem 1. Let ε ≤ 1/(6m) be a parameter that controls
the success probability. Assume

∆∗ ≤ ∆1 ≤ ∆max, (4)

∆1

2
√

2s
≤ λ1 ≤ c ∆1

2
√

2s
, (5)

T ≥max

(
18

µ0
ln

2K

ε
,

3c2η0
λ1

,

(
6c3σ

λ1

)2

(lnn+ ln d)

)
(6)

where c, c2 and c3 are some universal constants that are
defined in the supplementary material. Then, with a prob-
ability at least 1− 6mε, we have

∆m+1 = max
1≤i≤K

‖ĉm+1
i − ci‖ ≤ max

(
∆∗,

c∆1

√
2m

)
.

Based on Theorem 1, we have the following corollary re-
garding the convergence rate of the proposed algorithm.

Corollary 1. The convergence rate for ∆, the maximum
difference between the optimal cluster centers and the esti-
mated ones, is O(

√
(s log d)/n) before reaching the opti-

mal difference ∆∗.

The proof and detailed analysis are shown in the supple-
mentary file.

Remark First, the O(
√

(s log d)/n) convergence rate
implies that the sample complexity for accurately recov-
ering s-sparse cluster centers is O(s log d), which is sig-
nificantly lower than the dimensionality d. Similar re-
sults on sample complexity have also been obtained in
sparse supervised learning (e.g. Lasso regression (Tib-
shirani, 1996; Zhao & Yu, 2006) and compressive sens-
ing (Donoho, 2006)). Compared to the sample complexity
O(d) for accurately recovering cluster centers (Chaudhuri
et al., 2007; 2009), O(s log d) is a significant improvement
for high-dimensional data and sparse cluster centers. Com-
pared to the minimax sample complexity O(s2 log d) de-
veloped in (Azizyan et al., 2013), our sample complexity
has a lower dependence on s. However, we note that our
sample complexity is developed for recovering cluster cen-
ters, while the sample complexity developed in (Azizyan
et al., 2013) is for unsupervised classification error.

Second, ∆∗ is defined as the best recovery accuracy that
can be achieved by the proposed algorithm. To bound ∆∗,

using the condition ∆∗ ≤ (1− ρ)/2, we have

∆∗ ≤ 6
√

2c1exp

(
−(1− 2∆∗ − ρ)2

2(3− ρ)2σ2

)
(
√
sη0+

√
sσ
√

lnn)

In the case when σ
√
d = Ω(1), namely the length of the

random vector gi is on the same order as the cluster center,
we have ∆∗ ≤ O(exp(−O(d)), which is a small value for
high-dimensional data. We note that the residual error ∆∗
cannot be removed even with increasing number of sam-
ples. This is mostly due to the greedy nature of our algo-
rithm, i.e. each data point is assigned to the closest cluster,
even when it is separated by a similar distance from all the
clusters. In contrast, for GMM, it is possible to recover the
cluster centers with arbitrary accuracy provided sufficiently
large number of samples.

5. Experiments
In this section, we first conduct experiments with simulat-
ed data to verify that the initial centers computed by hier-
archical clustering algorithm are not too far away from the
true centers. We then compare the proposed clustering al-
gorithm to several clustering algorithms that are used for
high-dimensional data on several benchmark datasets.

According to our analysis, we need to ensure that the ini-
tial centers are not too far away from the true centers (i.e.,
∆1 ≤ ∆max). To satisfy this condition, we find the initial
cluster centers by applying a hierarchical clustering algo-
rithm (Murtagh, 1984) to a small subset of data, a practice
commonly used in many clustering algorithms such as k-
means (Jain et al., 1999). In more detail, we first randomly
sample [5K log n] instances, and run the hierarchical clus-
tering algorithm against the sampled data instances. Since
the sample size used by the hierarchical clustering is rela-
tively small, its running time is miniscule when compared
to clustering the entire dataset.

Experimental Results We first conduct experiments
with simulated data to verify that the initial centers deter-
mined by hierarchical clustering algorithm are not too far
away from the true centers, i.e., they satisfy ∆1 ≤ ∆max.
To this end, for a fixed dimensionality d, we create 2 d-
dimensional binary sparse cluster centers c1 and c2. In the
representation of each cluster center, we randomly select
1, 000 entries from the d dimensional vector, and set their
values to be 1; the remaining entries are set to 0. We further
normalize the centers onto the sphere of a unit ball. In ad-
dition, for each cluster center ci, we generate 10, 000 data
points by adding Gaussian noise (sampled fromN (0, σ2I)
with σ = 0.002) to the cluster center ci. A hierarchi-
cal clustering algorithm is applied to the randomly sam-
pled data points to compute the initial cluster centers. We
vary dimensionality d in range {20,000, 50,000, 100,000,
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Table 1. A comparison of ∆1 and ∆max with different dimension-
ality d. The number of samples n is set to 10, 000.

d 20K 50K 100K 200K 400K
∆1 0.097 0.161 0.236 0.338 0.459

∆max 0.474 0.484 0.488 0.492 0.493

200,000, 400,000}. Table 1 shows the magnitudes of ∆1

and ∆max with different values of d. We observe that in
all the cases, ∆1 < ∆max holds, verifying that the hierar-
chical clustering algorithm is a promising way to select the
initial cluster centers.

We now report experimental results on four real-world
high-dimensional benchmark datasets where the dimen-
sionalities are significantly larger than the numbers of sam-
ples. Below, we briefly describe each of the testbeds.

• Yale database1 contains 165 grayscale face images of
15 people. For each people, 11 images were taken
with one per different facial expressions or configu-
rations. Each image has size 64 × 64, leading to a
4, 096-dimensional vector.

• Reuters-21578 dataset2 contains 21, 578 documents
in 135 categories. After discarding the documents be-
longing to multiple categories, 8, 293 documents are
left and they belong to 65 imbalanced clusters.

• TDT2 dataset contains the top 30 categories, in terms
of size, of TDT2 corpus3. These 30 categories are
comprised of 9, 394 documents in a 36, 771 dimen-
sional space.

• TREC 05 dataset (Cormack & Lynam, 2005) contains
823, 470 binary variables describing the presence of
word tokens in 92, 189 email messages. All the emails
belong to one of the two classes: spam or non-spam.

Table 2 summarizes the statistics of all the testbeds used in
our study.

We compare the proposed clustering algorithm to the fol-
lowing five clustering approaches that are applicable to
high-dimensional data. They are (a) KM, the k-means al-
gorithm (Lloyd, 1982), (b) PCAKM, that first applies P-
CA to project data points to a low-dimensional space, with
95% of variance kept, before applying the k-means algo-
rithm, (c) LDA, the latent Dirichlet allocation (LDA) al-

1http://vision.ucsd.edu/content/
yale-face-database

2http://www.daviddlewis.com/resources/
testcollections/reuters21578/

3http://projects.ldc.upenn.edu/TDT2/
data-release.html

Table 2. Description of Datasets

Name #Instances #Features #Clusters
Yale 165 4, 096 15
Reuters-21578 8, 293 18, 933 65
TDT2 9, 394 36, 771 30
TREC 05 92, 189 823, 470 2

gorithm (Blei et al., 2003), (d) LSC, the large scale spec-
tral clustering with landmark-based representation (Chen
& Cai, 2011), and (e) RegKM (Sun et al., 2012), a group
lasso regularized k-means algorithm. Some of the state-
of-the-art subspace clustering algorithms (e.g. sparse sub-
space clustering (SCC) (Elhamifar & Vidal, 2009) and gen-
eralized principal component analysis (GPCA) (Vidal et al.,
2005)) were not included in our comparative study because
of their very high computational cost for high-dimensional
data. We refer to the proposed clustering algorithm as
High-dimensional Clustering with Sparse Centers, or HD-
SC for short. The proposed clustering algorithm as well
as all the baseline algorithms are implemented in Matlab
and all the experiments are performed on a Xeon 2.40 GHz
processor with 16 GB memory. Each experiment is repeat-
ed five times, and the clustering performance as well as
the running time averaged over five trials are reported. We
mark the results as N/A if an algorithm did not output the
results within 5 hours.

Table 3 summarizes the performance of the proposed clus-
tering algorithm HDSC and the baseline algorithms. We
first observe that the proposed clustering algorithm HDSC
is significantly more efficient than all the baseline cluster-
ing algorithms on all the four datasets. For example, HD-
SC clusters the TDT2 database in less than 1 second. As
a comparison, all of the five baseline algorithms take more
than 40 seconds to partition this dataset. Although we note
that the running time of spectral clustering can be signif-
icantly reduced by applying randomized methods (Halko
et al., 2011), it usually works only in the case of approx-
imate low rank matrices. Unfortunately, this assumption
does not hold for document data, whose eigenspectrums
usually have a long tail. In addition, compared to the stan-
dard k-means algorithm, the proposed HDSC algorithm is
at least 50 times more efficient, due to the fact that HD-
SC only needs one pass over data points for cluster center
estimation. In addition to efficiency, we also observe that
HDSC outperforms the baseline methods in three out of
four benchmark datasets. We note that although PCAKM
improves the performance of standard k-means by dimen-
sionality reduction, it still takes the longest running time
and yields worse results than the proposed algorithm and
LSC. This result indicates that blind dimensionality reduc-
tion may not be optimal for clustering high-dimensional da-
ta with sparse cluster centers. Overall, the empirical result-

http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://projects.ldc.upenn.edu/TDT2/data-release.html
http://projects.ldc.upenn.edu/TDT2/data-release.html
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Table 3. Average performance of the proposed algorithm (HDSC) and the baseline algorithms (KM (Lloyd, 1982), PCAKM, LDA (Blei
et al., 2003), LSC (Chen & Cai, 2011), and RegKM (Sun et al., 2012)) on four benchmark datasets

Datasets HDSC KM PCAKM LDA LSC RegKM

Yale NMI 0.51 0.49 0.50 0.49 0.51 0.49
CPU time (s) 0.06 5.8 7.4 6.7 2.9 3.0

Reuters-21578 NMI 0.43 0.40 0.41 0.41 0.42 0.40
CPU time (s) 0.5 29 79 66 21 32

TDT2 NMI 0.66 0.62 0.65 0.66 0.68 0.65
CPU time (s) 0.9 52 221 115 47 101

TREC 05 NMI 0.22 0.16 N/A 0.21 0.20 0.19
CPU time (s) 7.8 412 N/A 932 614 671

s demonstrate both the efficiency and effectiveness of the
proposed algorithm for high-dimensional data clustering.

6. Conclusions
In this paper, we propose a framework for efficient clus-
tering of high dimensional data with sparse cluster centers.
The key idea is to cast the high-dimensional data clustering
problem into the problem of recovering the optimal cluster
centers, and iteratively estimating the cluster centers using
disjoint subsets with exponentially increasing number of
data points. This is a key step to ensure that the estimated
cluster centers will be close to the optimal cluster centers.
To satisfy the assumption that the true cluster centers are s-
parse with no more than s non-zero elements, we introduce
an `1 regularizer when updating the cluster centers. We
show that with a high probability, the proposed clustering
algorithm can accurately recover the optimal cluster cen-
ters by only going through O(s log d) data instances. This
logarithmic dependence on data dimensionality is a signif-
icant improvement over state of the art, making the pro-
posed clustering algorithm both efficient and effective for
high-dimensional clustering problem. Our empirical stud-
ies with several real-world high-dimensional datasets show
the promising performance of the proposed clustering algo-
rithm. We plan to further improve the algorithm for stream-
ing data where all the data points can not be stored in the
memory.
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A. Proof of Theorem 1
Our analysis is based on induction. Let ĉ1, . . . , ĉK be the
K cluster centers obtained at the t-th iteration. Define ∆t

to be the maximum difference between the estimated clus-
ter centers and the true ones, i.e.,

∆t = max
i∈[K]

‖ĉi − ci‖.

We denote by Ck the support of ck. Let s = max |Ck| be
the maximal number of non-zero entries in all the sparse
centers.

We develop the following lemma to guarantee the correct-
ness of the induction step.

Lemma 1. Let ∆t be the maximum difference between the
optimal cluster centers and the ones estimated at iteration
t, and ε ∈ (0, 1) be the failure probability. Assume

∆t ≤∆max, (7)

|St| ≥18

µ0
ln

2K

ε
, (8)

λt ≥c1 exp

(
− (1− 2∆t − ρ)2

8(1 + ∆t)2σ2

)
(η0 + σ

√
ln |St|)

+
c2η0
|St|

+ c3σ

√
ln |St|+

√
ln d√

|St|
, (9)

for some universal constants c1, c2 and c3. Then with a
probability 1− 6ε, we have

∆t+1 ≤ 2
√
sλt.

The detailed proof of this Lemma can be found in the sup-
plementary materials.

To prove Theorem 1, we need to show that if
{∆1, . . . ,∆m} ≥ ∆∗, (9) is always true. Consequently,
we can apply Lemma 1 in each epoch, leading to

∆m+1 ≤ 2
√
sλm = 2

√
s

√
2λ1√
2m

(5)
=

c∆1

√
2m

.

We show that (9) is true by induction. Given the definition
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of ∆∗ and ∆1 ≥ ∆∗, it naturally follows that

c1 exp

(
− (1− 2∆1 − ρ)2

8(1 + ∆1)2σ2

)
(η0 + σ

√
lnn)

(3)
≤ ∆1

6
√

2s

(5)
≤ λ1

3
.

(10)

From the definition of T in (6), we have

c2η0
T

+ c3σ

√
lnT +

√
ln d√

T
≤ 2λ1

3
. (11)

Following (10) and (11), we know (9) holds for t = 1.

Assume that with a probability at least 1− 6(t− 1)ε,

λt ≥c1 exp

(
− (1− 2∆t − ρ)2

8(1 + ∆t)2σ2

)
(η0 + σ

√
lnn)

+
c2η0
|St|

+ c3σ

√
ln |St|+

√
ln d√

|St|
,

holds for some t ≥ 1. Then, based on Lemma 1, with a
probability at least 1− 6tε, we have

∆t+1 ≤ 2
√
sλt. (12)

Given the definition of ∆∗, we know that for any ∆t+1 ≥
∆∗, we have

c1 exp

(
− (1− 2∆t+1 − ρ)2

8(1 + ∆t+1)2σ2

)
(η0 + σ

√
lnn)

≤∆t+1

6
√

2s

(12)
≤ λt

3
√

2
=
λt+1

3
.

(13)

Similar to (11), we have

c2η0
|St+1|

+ c3σ

√
ln |St+1|+

√
ln d√

|St+1|

≤ 1√
2t

(
c2η0
T

+ c3σ

√
lnn+

√
ln d√

T

)
(6)
≤ 2λt+1

3
.

(14)

Combining (13) and (14), we have, with a probability at
least 1− 6tε, (9) holds for t+ 1.
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