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Abstract
This paper focuses on convex constrained opti-
mization problems, where the solution is subject
to a convex inequality constraint. In particular,
we aim at challenging problems for which both
projection into the constrained domain and a lin-
ear optimization under the inequality constraint
are time-consuming, which render both projected
gradient methods and conditional gradient meth-
ods (a.k.a. the Frank-Wolfe algorithm) expen-
sive. In this paper, we develop projection reduced
optimization algorithms for both smooth and
non-smooth optimization with improved conver-
gence rates under a certain regularity condition
of the constraint function. We first present a gen-
eral theory of optimization with only one pro-
jection. Its application to smooth optimization
with only one projection yields O(1/ε) iteration
complexity, which improves over the O(1/ε2)
iteration complexity established before for non-
smooth optimization and can be further reduced
under strong convexity. Then we introduce a lo-
cal error bound condition and develop faster al-
gorithms for non-strongly convex optimization at
the price of a logarithmic number of projections.
In particular, we achieve an iteration complex-
ity of Õ(1/ε2(1−θ)) for non-smooth optimization
and Õ(1/ε1−θ) for smooth optimization, where
θ ∈ (0, 1] appearing the local error bound con-
dition characterizes the functional local growth
rate around the optimal solutions. Novel applica-
tions in solving the constrained `1 minimization
problem and a positive semi-definite constrained
distance metric learning problem demonstrate
that the proposed algorithms achieve significant
speed-up compared with previous algorithms.
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1. Introduction
In this paper, we aim at solving the following convex con-
strained optimization problem:

min
x∈Rd

f(x), s.t. c(x) ≤ 0, (1)

where f(x) is a smooth or non-smooth convex function and
c(x) is a lower-semicontinuous and convex function. The
problem can find applications in machine learning, signal
processing, statistics, marketing optimization, and etc. For
example, in distance metric learning one needs to learn a
positive semi-definite (PSD) matrix such that similar ex-
amples are close to each other and dissimilar examples are
far from each other (Weinberger et al., 2006; Xing et al.,
2003), where the positive semi-definite constraint can be
cast into a convex inequality constraint. Another example
arising in compressive sensing is to minimize the `1 norm
of high-dimensional vector subject to a measurement con-
straint (Candès & Wakin, 2008). Although general interior-
point methods can be applied to solve the problem with lin-
ear convergence, they suffer from exceedingly high com-
putational cost per-iteration. Another solution is to em-
ploy the projected gradient (PG) method (Nesterov, 2004)
or the conditional gradient (CG) method (Frank & Wolfe,
1956), where the PG method needs to compute the pro-
jection into the constrained domain at each iteration and
CG needs to solve a linear optimization problem under
the constraint. However, for many constraints (e.g., PSD,
quadratic constraints) both projection into the constrained
domain and the linear optimization under the constraint are
time-consuming, which restrict their capabilities to solving
these problems.

Recently, there emerges a new direction towards address-
ing the challenge of expensive projection that is to reduce
the number of projections. In the seminal paper (Mahdavi
et al., 2012), the authors have proposed two algorithms with
only one projection at the end of iterations for non-smooth
convex and strongly convex optimization, respectively. The
idea of both algorithms is to move the constraint function
into the objective function and to control the violation of
constraint for intermediate solutions. While their devel-
oped algorithms enjoy an optimal convergence rate for non-
smooth optimization (i.e., O(1/ε2) iteration complexity)



Convex Constrained Optimization with Reduced Projections and Improved Rates

and a close-to-optimal convergence rate for strongly con-
vex optimization (i.e., Õ(1/ε) 1), there still lack of theory
and algorithms with reduced projections and faster rates
for smooth convex optimization and for convex optimiza-
tion without strong convexity assumptions.

In this paper, we make significant contributions by devel-
oping a richer theory of convex constrained optimization
with reduced projections and faster rates. To be specific,

• we develop a general framework and theory of opti-
mization with only one projection, where any favorable
smooth or non-smooth convex optimization algorithms
can be employed to solve the intermediate augmented
unconstrained objective function. We discuss in full de-
tails the applicability of the proposed algorithms to prob-
lems with polyhedral, quadratic or PSD constraints.

• Applying the general theory to smooth convex opti-
mization 2 with Nesterov’s accelerated gradient meth-
ods yields an iteration complexity of O(1/ε) with only
one projection. In addition, when equipped with an opti-
mal algorithm for strongly convex optimization the gen-
eral theory implies the optimal iteration complexity of
O(1/ε) for strongly convex optimization with only one
projection. For smooth and strongly convex optimiza-
tion, the general theory implies an iteration complexity
of O(1/εβ) where β ∈ (1/2, 1) with only one projection
and a sufficiently large number of iterations.

• Building on the general framework and theory, we fur-
ther develop an improved theory with faster convergence
rates for non-strongly convex optimization at the price
of a logarithmic number of projections. In particular, we
show that under a mild local error bound condition, the
iteration complexities can be reduced to Õ(1/ε2(1−θ))

for non-smooth optimization and Õ(1/ε1−θ) for smooth
optimization, where θ ∈ (0, 1] is a constant in the local
error bound condition that characterizes the local growth
rate of functional values. To our knowledge, these are the
best convergence results with only a logarithmic number
of projections for non-strongly convex optimization. We
also demonstrate their effectiveness for solving compres-
sive sensing and distance metric learning problems.

2. Related Work
The issue of high projection cost in projected gradient
descent has received increasing attention in recent years.
Most studies are based on the Frank-Wolfe technique that
eschews the projection in favor of a linear optimization
over the constrained domain (Jaggi, 2013; Hazan & Kale,
2012; Lacoste-Julien et al., 2013; Garber & Hazan, 2015).
It happens that for many bounded domains (e.g., bounded

1where Õ() suppresses a logarithmic factor.
2where the constraint function is assumed to be smooth.

balls for vectors and matrices, a PSD constraint with a
bounded trace norm) the linear optimization over the con-
strained domain is much cheaper than projection into the
constrained domain (Jaggi, 2013). However, there still ex-
ist many constraints that render both projection into the
constrained domain and linear optimization under the con-
straint are comparably expensive. Examples include poly-
hedral constraints, quadratic constraints and a PSD con-
straint 3.

To tackle these complex constraints, the idea of optimiza-
tion with a reduced number of projections was explored in
several studies since (Mahdavi et al., 2012). In a recent pa-
per (Chen et al., 2016), the authors show that for stochastic
strongly convex optimization, the optimal convergence rate
can be achieved using a logarithmic number of projections.
In contrast, the developed theory in this paper implies that
only one projection is sufficient to achieve the optimal con-
vergence rate for strongly convex optimization, and a log-
arithmic number of projections can be used to accelerate
convergence rates for non-strongly convex optimization.
Cotter et al. (2016) proposed a stochastic algorithm for
solving heavily constrained problems with many constraint
functions by extending the work of (Mahdavi et al., 2012).
Nonetheless, their focus is not to improve the convergence
rates. Zhang et al. (2013) studied the smooth and strongly
convex optimization and they proposed a stochastic algo-
rithm withO(κ log(T )) projections and proved anO(1/T )
convergence rate, where κ is the condition number and T
is the total number of iterations. Nonetheless, if the con-
dition number is high the number of projections could be
very large. In addition, their algorithm utilizes the mini-
batch to avoid frequent projections in stochastic optimiza-
tion, which is different from the present paper.

We note that several recent works also exploit different
forms of error bound conditions to improve the conver-
gence (Wang & Lin, 2014; So, 2013; Hou et al., 2013; Zhou
et al., 2015; Yang & Lin, 2016; Xu et al., 2016). Most
notably, the technique used in our work is closely related
to (Yang & Lin, 2016). However, for constrained optimiza-
tion problems the methods in (Yang & Lin, 2016) still need
to conduct projections at each iteration.

Finally, we comment on the differences between the pro-
posed methods and the classical penalty methods that also
move the constraint into the objective using a penalty func-
tion (Bertsekas, 1996). The major differences are that (i)
the classical penalty methods typically require solving each
subproblem exactly while our methods do not require that;
and (ii) the classical penalty methods typically guarantee
asymptotic convergence while our methods have explicit
convergence rates.

3Indeed, a linear optimization over a PSD constraint is ill-
posed because the PSD domain is unbounded.
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3. Preliminaries
Let Ω = {x ∈ Rd : c(x) ≤ 0} denote the constrained do-
main, Ω∗ denote the optimal solution set and f∗ denote the
optimal objective value. We denote by ∇f(x) the gradient
and by ∂f(x) the subgradient of a smooth or non-smooth
function, respectively. When f(x) is a non-smooth func-
tion, we consider the problem as non-smooth constrained
optimization. When both f(x) and c(x) are smooth, we
consider the problem as smooth constrained optimization.
A function f(x) is L-smooth if it has a Lipschitz continu-
ous gradient, i.e., ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, where
‖ · ‖ denotes the Euclidean norm. A function f(x) is µ-
strongly convex if it satisfies f(x) ≥ f(y) + ∂f(y)>(x−
y) + µ

2 ‖x− y‖2.

In the sequel, dist(x,Ω) denotes the distance of x to a set
Ω, i.e., dist(x,Ω) = minu∈Ω ‖x−u‖. Let [s]+ be a hinge
operator that is defined as [s]+ = s if s ≥ 0, and [s]+ = 0
if s < 0.

Throughout the paper, we make the the following assump-
tions to facilitate the development of our algorithms and
theory.

Assumption 1. For a convex minimization problem (1), we
assume (i) there exists a positive value ρ > 0 such that

min
c(x)=0

v∈∂c(x),v 6=0

‖v‖ ≥ ρ, (2)

or more generally there exists a constant ρ > 0 for any
x ∈ Rd, such that x\ = arg minu∈Rd,c(u)≤0 ‖u − x‖2
satisfies

‖x\ − x‖ ≤ [c(x)]+/ρ. (3)

(ii) there exists a strictly feasible solution such that c(x) <
0; (iii) both f(x) and c(x) are defined everywhere and are
Lipschitz continuous with their Lipschitz constants denoted
by G and Gc, respectively.
We make several remarks about the assumptions. The in-
equality in (2) is introduced in (Mahdavi et al., 2012),
which is to ensure the distance from the final solution be-
fore projection to constrained domain Ω is not too large.
Note that the inequality in (3) is a more general condition
than (2) as seen from the following lemma.

Lemma 1. For any x ∈ Rd, let x\ = arg minc(u)≤0 ‖u−
x‖2. If (2) holds, then (3) holds.

The above lemma is implicit in the proof of (Mahdavi et al.,
2012). We will provide more discussions about Assump-
tion 1(i) - the key assumption, and exhibit the value of ρ for
a number of commonly seen constraints (e.g., polyhedral,
quadratic and PSD constraints). To make the presentation
more fluent, we postpone these discussions to Section 6.
The strict feasibility assumption (ii) allows us to explore
the KKT condition of the projection problem shown below.

Assumption (iii) imposes mild Lipschitz continuity condi-
tions on both f(x) and c(x).

Traditional projected gradient descent methods need
to solve the following projection at each iteration
ΠΩ[x] = arg minc(u)≤0 ‖u − x‖2. Conditional gradi-
ent methods (a.k.a. the Frank-Wolfe technique) need to
solve the following linear optimization at each iteration
minu∈Rd,c(u)≤0 u

>∇f(x). For many constraint functions
(see Section 6), solving the projection problem and the lin-
ear optimization could be very expensive.

4. A General Theory of Optimization with
only one projection

In this section, we extend the idea of only one projection
proposed in (Mahdavi et al., 2012) to a general theory, and
then present optimization algorithms with only one projec-
tion for non-smooth and smooth optimization, respectively.
To tackle the constraint, we introduce a penalty function
hγ(x) parameterized by γ, which obeys the following cer-
tificate: there exist constants C ≥ 0 and λ > G/ρ such
that

hγ(x) ≥ λ[c(x)]+,∀x
hγ(x) ≤ Cγ, ∀x such that c(x) ≤ 0.

(4)

From the above condition, it is clear that γ ≥ 0. It is no-
table that the penalty function hγ(x) will also depend on
λ; however it will be set to a constant value, thus the de-
pendence on λ is omitted. We will construct such a penalty
function hγ(x) for non-smooth and smooth optimization in
next two subsections. We propose to optimize the follow-
ing augmented objective function

min
x∈Rd

Fγ(x) = f(x) + hγ(x). (5)

We can employ any applicable optimization algorithms to
optimize Fγ(x) pretending that there is no constraint, and
finally obtain a solution x̂T that is not necessarily feasi-
ble. In order to obtain a feasible solution, we perform one
projection to get x̃T = ΠΩ(x̂T ). The following theorem
allows us to convert the convergence of x̂T for Fγ(x) to
that of x̃T for f(x).

Theorem 1. LetA be any iterative optimization algorithm
applied to minx Fγ(x) with T iterations, which starts with
x1 and returns x̂T as the final solution, such that the fol-
lowing convergence of x̂T holds for any x ∈ Rd

Fγ(x̂T )− Fγ(x) ≤ BT (γ;x,x1), (6)

where BT (γ;x,x1) → 0 when T → ∞. Suppose that
Assumption 1 hold, then

f(x̃T )− f(x∗) ≤
λρ

λρ−G
(Cγ +BT (γ;x∗,x1)), (7)

where x̃T = ΠΩ[x̂T ] and x∗ is an optimal solution to (1).
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Remark: It is worth mentioning that we omit some con-
stant factors in the convergence bound BT (γ;x,x1) that
are irrelevant to our discussions. The notationBT (γ;x,x1)
emphasizes that it is a function of γ and depends on x1

and a target solution x and it will be referred to as BT . In
the next several subsections, we will see that by carefully
choosing the penalty function hγ(x) we are able to provide
nice convergence for smooth and non-smooth optimization
with only one projection. In the above theorem, we assume
the optimization algorithm A is deterministic. However, a
similar result can be easily extended to a stochastic opti-
mization algorithm A.

Proof. First, we consider c(x̂T ) ≤ 0, which implies that
x̂T = x̃T . Due to the certificate of hγ(x), Fγ(x̃T ) ≥
f(x̃T ) and Fγ(x∗) ≤ f(x∗) + Cγ. Hence f(x̃T ) ≤
Fγ(x̂T ) ≤ Fγ(x∗) + BT (γ;x1,x∗) ≤ f(x∗) + Cγ +
BT (γ;x1,x∗). Then (7) follows due to λρ/(λρ−G) ≥ 1.
Next, we assume c(x̂T ) > 0. Inequality (6) implies that

f(x̂T ) +λ[c(x̂T )]+ ≤ f(x∗) +Cγ+BT (γ;x∗,x1). (8)

By Assumption 1(i), we have [c(x̂T )]+ ≥ ρ‖x̂T − x̃T ‖.
Combined with (8) we have

λρ‖x̂T − x̃T ‖ ≤ f(x∗)− f(x̂T ) + Cγ +BT (γ;x∗,x1)

≤ G‖x̂T − x̃T ‖+ Cγ +BT (γ;x∗,x1),

where the last inequality follows that fact f(x∗)−f(x̂T ) ≤
f(x∗)−f(x̃T ) +f(x̃T )−f(x̂T ) ≤ G‖x̂T − x̃T ‖ because
the Lipschitz property and f(x∗) ≤ f(x̃T ). Therefore we
have

‖x̂T − x̃T ‖ ≤
Cγ +BT (γ;x∗,x1, )

λρ−G
.

Finally, we obtain

f(x̃T )− f(x∗) ≤ f(x̃T )− f(x̂T ) + f(x̂T )− f(x∗)

≤ G‖x̂T − x̃T ‖+ Cγ +BT (γ;x∗,x1)

≤ λρ

λρ−G
(Cγ +BT (γ;x∗,x1)).

4.1. Non-smooth Optimization
Since an optimal convergence rate for general non-smooth
optimization with only one projection has been attained
in (Mahdavi et al., 2012), in this subsection we present an
optimal convergence result for strongly convex problems.
For non-smooth optimization, we can choose

h(x) = λ[c(x)]+,

and hence γ = 0. We will use deterministic subgradi-
ent descent as an example to demonstrate the convergence
for f(x), though many other optimization algorithms de-
signed for non-smooth optimization are applicable (e.g.,

the stochastic subgradient method). The update of subgra-
dient descent method is given by the following

xt+1 = xt − ηt∂F (xt), t = 1, . . . , T, (9)

where ηt is an appropriate step size. If f(x) is µ-strongly
convex, the step size can be set as ηt = 1/(µt) and
the final solution can be computed by the α-suffix aver-
aging x̂T = 1

αT

∑T
t=(1−α)T+1 xt with α > 0 (Rakhlin

et al., 2012), or by the polynomial decay averaging with
x̂t = (1− s+1

s+t )x̂t−1 + s+1
s+txt and s ≥ 1 (Shamir & Zhang,

2013). Both schemes can attain BT = O(1/(µT )) for
the convergence of F (x) when f(x) is µ-strongly convex.
Combining this with Theorem 1, we have the following
convergence result with the proof omitted due to its sim-
plicity.

Corollary 2. Suppose that Assumption 1 holds and f(x) is
µ-strongly convex. Set F (x) = f(x) + λ[c(x)]+ with λ ≥
G/ρ. Let (9) run for T iterations with ηt = 1/(µt). Let x̂T
be computed by α-suffix averaging or the polynomial decay
averaging. Then with only one projection x̃T = ΠΩ(x̂T ),
we achieve

f(x̃T )− f∗ ≤
λρ

λρ−G
(G+ λGc)

2O(1)

µT
.

Remark: We note that the O(1/(µT )) is also achieved for
strongly convex optimization in (Zhang et al., 2013; Chen
et al., 2016) but with a logarithmic number of projections.
In contrast, Corollary 2 implies only one projection is suf-
ficient to achieve the optimal convergence for strongly con-
vex optimization.

4.2. Smooth Optimization
For smooth optimization, we consider both f(x) and c(x)
to be smooth 4. Let the smoothness parameter of f(x) and
c(x) be Lf and Lc, respectively. In order to ensure the
augmented function Fγ(x) to be still a smooth function,
we construct the following penalty function

hγ(x) = γ ln (1 + exp (λc(x)/γ)) . (10)

The following proposition shows that hγ(x) is a smooth
function and obeys the condition in (4).

Proposition 1. Suppose c(x) is Lc-smooth and Gc-
Lipschitz continuous. The penalty function in (10) is a
(λLc +

λ2G2
c

4γ )-smooth function and satisfies (i) hγ(x) ≥
λ[c(x)]+ and (ii) hγ(x) ≤ γ ln 2, ∀x such that c(x) ≤ 0.

Then Fγ(x) is a smooth function and its smoothness pa-

rameter is given by LF = Lf +λLc+
λ2G2

c

4γ . Next, we will

4it can be extended to when f(x) is non-smooth but its proxi-
mal mapping can be easily solved.
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establish the convergence for f(x) using Nesterov’s opti-
mal accelerated gradient (NAG) methods. The update of
one variant of NAG can be written as follows

xt+1 = yt −∇Fγ(yt)/LF

yt+1 = xt+1 + βt+1(xt+1 − xt),
(11)

where the value of βt can be set to different values de-
pending on whether f(x) is strongly convex or not (see
Corollary 3). Previous work have established the conver-
gence of x̂T = xT for Fγ(x), in particular BT = O(LFT 2 )
for smooth non-strongly convex optimization and BT =

O
(
LF exp(−T

√
µ
LF

)
)

for smooth and strongly convex
optimization. By combining these results with Theorem 1
and appropriately setting γ, we can achieve the following
convergence of x̃T for f(x).
Corollary 3. Suppose that Assumption 1 holds,
dist(y0,Ω∗) ≤ D, f(x) is Lf -smooth and c(x) is
Lc-smooth. Set Fγ(x) = f(x) + hγ(x) with λ > G/ρ
and hγ(x) being (10). Let (11) run for T iterations and
x̃T = ΠΩ(xT ).

• If f(x) is convex, we can set γ = λGcD

(T+1)
√

2 ln 2
, βt =

τt−1−1
τt

, where τt =
1+
√

1+4τ2
t−1

2 with τ0 = 1, and achieve

f(x̃T )−f∗ ≤
λρ

λρ−G

[
λGcD

√
2 ln 2

T + 1
+

(Lf + λLc)D
2

(T + 1)2

]
• If f(x) is µ-strongly convex, we can set γ = 1

T 2α with

α ∈ (1/2, 1) and βt =
√
LF−

√
µ√

LF+
√
µ

, and achieve

f(x̃T )− f∗ ≤ O
(

1

T 2α
+

1

T 4α

)
,

as long as T ≥
(
Lf+λLc+λ

2G2
c/4

µ

) 1
2(1−α)

(4α lnT )
1

1−α .

Remark: The convergence results above indicate an
O(1/ε) iteration complexity for smooth optimization and
O(1/ε1/(2α)) with α ∈ (1/2, 1) for smooth and strongly
convex optimization with only one projection. All omitted
proofs can be found in (Yang et al., 2017).

5. Improved Convergence for Non-strongly
Convex Optimization

In this section, we will develop improved convergence for
non-strongly convex optimization at a price of a logarith-
mic number of projections by considering an additional
condition on the target problem. To facilitate the presen-
tation, we first introduce some notations. The ε-sublevel
set Sε and ε-level set Lε of the problem (1) are denoted by
Sε = {x ∈ Ω : f(x) ≤ f∗ + ε}, and Lε = {x ∈ Ω :
f(x) = f∗ + ε}, respectively. Let x†ε denote the closest
point in the ε-sublevel set Sε to x ∈ Ω, i.e.,

x†ε = arg min
u∈Ω
‖u− x‖2, s.t. f(u) ≤ f∗ + ε. (12)

Let x∗ denote the closest optimal solution in Ω∗ to x, i.e.,
x∗ = arg minu∈Ω∗ ‖u− x‖2.

In this section, we will make the following additional as-
sumption about the problem (1).
Assumption 2. For a convex minimization problem (1), we
assume (i) there exist x0 ∈ Ω and ε0 ≥ 0 such that f(x0)−
minx∈Ω f(x) ≤ ε0; (ii) Ω∗ is a non-empty convex compact
set; (iii) the optimization problem (1) satisfies a local error
bound condition, i.e., there exist θ ∈ (0, 1] and σ > 0 such
that for any x ∈ Sε we have dist(x,Ω∗) ≤ σ(f(x) −
f∗)

θ where Ω∗ denotes the optimal set and f∗ denotes the
optimal value.
Remark: we would like to remark that the new assumption
only imposes mild conditions on the problem. In particular,
Assumption 2 (i) supposes there is a lower bound of the op-
timal value f∗, which usually holds in machine learning ap-
plications where the objective function if non-negative; As-
sumption 2 (ii) ensures that Sε is also bounded (Rockafel-
lar, 1970), therefore the σ in the local error bound is finite,
which can be easily satisfied for a norm regularized or con-
straint problems; the local error bound condition holds for
a broad family of functions (e.g., semi-algebraic functions
or real subanalytic functions (Jerome Bolte, 2015; Yang &
Lin, 2016)). In Section 7, we will also demonstrate several
applications of the improved algorithms proposed in this
section by establishing the local error bound condition.

Although the local error bound condition is much weaker
than the strong convexity assumption, below we will pro-
pose novel algorithms leveraging this condition with faster
convergence and only a logarithmic number of projections.

5.1. Non-smooth Optimization
To establish an improved convergence for non-smooth opti-
mization, we develop a new algorithm shown in Algorithm
1 based on subgradient descent (GD) method, to which
we refer as LoPGD. The algorithm runs for K epochs and
each epoch employs GD for minimizing F (x) = f(x) +
λ[c(x)]+ with a feasible solution xk−1 ∈ Ω as a starting
point and t iterations of updates. At the end of each epoch,
the averaged solution x̂k is projected into the constrained
domain Ω and the solution xk will be used as the starting
point for next epoch. The step size ηk is decreased by half
every epoch starting from a given value η1. The theorem
below establishes the iteration complexity of LoPGD and
also exhibits the values of K, t and η1. To simplify nota-
tions, we let p = λρ

λρ−G and Ḡ = G+ λGc.
Theorem 4. Suppose Assumptions 1 and 2 hold. Let η1 =
ε0

2pḠ2 , K = dlog2(ε0/ε)e and t = 4σ2p2Ḡ2

ε2(1−θ)
in Algorithm 1,

where θ and σ are constants appearing in the local error
bound condition. Then f(xK)− f∗ ≤ 2ε.
Remark: Since the projection is only conducted at the
end of each epoch and the total number of epochs is at
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Algorithm 1 LoPGD
1: INPUT: K ∈ N+ , t ∈ N+, η1

2: Initialization: x0 ∈ Ω, ε0
3: for k = 1, 2, . . . ,K do
4: Let xk1 = xk−1

5: for s = 1, 2, . . . , t− 1 do
6: Update xks+1 = xks − ηk∂F (xks)
7: end for
8: Let x̂k =

∑t
s=1 x

k
s/t

9: Let xk = ΠΩ[x̂k] and ηk+1 = ηk/2
10: end for

Algorithm 2 LoPNAG
1: INPUT: K ∈ N+ , t1, . . . , tK ∈ N+, γ1

2: Initialization: x0 ∈ Ω, ε0
3: for k = 1, 2, . . . ,K do
4: Let yk0 = xk−1

5: for s = 0, 1, 2, . . . , tk − 1 do
6: Update xks+1 = yks − 1

Lk
∇Fγk(xks)

7: Update yks+1 = xks+1 + βs+1(xks+1 − xks)
8: end for
9: Let x̂k = xktk , xk = ΠΩ[x̂k] and γk+1 = γk/2

10: end for

most K = dlog2(ε0/ε)e, so the total number of projec-
tions is only a logarithmic number K. The iteration com-
plexity in Theorem 4 is Õ(1/ε2(1−θ)) that improves the
standard result of O(1/ε2) without strong convexity. With
θ = 1/2, we can achieve Õ(1/ε) iteration complexity with
only O(log(1/ε)) projections.

5.2. Smooth Optimization
Similar to non-smooth optimization, we also develop a new
algorithm based on NAG shown in Algorithm 2, where
Fγ(x) is defined using hγ(x) in (10), Lk = LFγk is the
smoothness parameter of Fγk and βs = τs−1−1

τs
, s = 1, . . . ,

is a sequence with τs updated as in Corollary 3. We refer
to this algorithm as LoPNAG. The key idea is to use to a
sequence of reducing values for γk instead of using a small
value as in Corollary 3, and solve each augmented uncon-
strained problem Fγk(x) approximately with one projec-
tion. The theorem below exhibits the iteration complexity
of LoPNAG and reveals the values ofK, γ1 and t1, . . . , tK .
To simplify notations, we let L̄ = Lf + λLc.

Theorem 5. Suppose Assumptions 1 and 2 hold
and f(x) is Lf -smooth and c(x) is Lc-smooth.
Let γ1 = ε0

6p ln 2 , K = dlog2(ε0/ε)e and tk =
σ

ε1−θ
max{λGcp

√
18 ln 2,

√
12(Lf + λLc)ε0/2k−1}

in Algorithm 2, where θ and σ are constants appearing in
the local error bound condition. Then f(xK)− f∗ ≤ 2ε.

Remark: It is not difficult to show that the total number
of iterations is bounded by Õ(1/ε1−θ), which improves the
one in Corollary 3 without strong convexity. If f(x) is a

simple non-smooth function whose proximal mapping can
be easily computed (e.g., `1 norm), we can replace step
6 in Algorithm 2 by a proximal mapping to handle f(x),
which gives the same convergence result in Theorem 5. An
example is presented in Section 7 for compressive sensing
with θ = 1/2.

6. Discussion of Assumption 1 (i)
One might note that a key condition for developing the the-
ory with reduced projections is Assumption 1 (i). Although
Mahdavi et al. (2012) has briefly mentioned that the con-
dition can be satisfied for a PSD cone or a Polytope (a
bounded polyhedron), their discussion lacks of details in
particular on the value of ρ in (2) or (3). Below, we discuss
the condition in details about three types of constraints.

Polyhedral constraints. First, we show that when c(x)
is a polyhedral function, i.e., its epigraph is a polyhedron
(not necessarily bounded), the inequality (3) is satisfied. To
this end, we explore the polyhedral error bound (PEB) con-
dition (Gilpin et al., 2012; Yang & Lin, 2016). In particu-
lar, if we consider an optimization problem, minx∈Rd h(x),
where the epigraph of h(x) is polyhedron. Let H∗ denote
the optimal set and h∗ denote the optimal value of the prob-
lem above. The PEB says that there exists ρ > 0 such that
for any x ∈ Rd

dist(x,H∗) ≤ (h(x)− h∗)/ρ. (13)

To show that the inequality (3) holds for a polyhedral
function c(·), we can consider the optimization problem
minx∈Rd [c(x)]+. The optimal set of the above problem
is given by H∗ = {x ∈ Rd : c(x) ≤ 0}. For any x
such that c(x) > 0, let x\ = arg minc(u)≤0 ‖u − x‖2
be the closest point in the optimal set to x. There-
fore if c(·) is a polyhedral function so does [c(x)]+, by
the PEB condition (13) there exists a ρ > 0 such that
‖x − x\‖ ≤ ([c(x)]+ − minx[c(x)]+)/ρ = [c(x)]+/ρ.
Let us consider a concrete example, where the problem has
a set of affine inequalities c>i x − bi ≤ 0, i = 1, . . . ,m.
There are two methods to encode this into a single con-
straint function c(x) ≤ 0. The first method is to use
c(x) = max1≤i≤m c>i x − bi, which is a polyhedral func-
tion and therefore satisfies (3). The second method is to
use c(x) = ‖[Cx − b]+‖, where [a]+ = max(0,a) and
C = (c1, . . . , cm)>. Thus [c(x)]+ = ‖[Cx − b]+‖. The
inequality (3) is then guaranteed by Hoffman’s bound and
the parameter ρ is given by the minimum non-zero eigen-
value of C>C (Wang & Lin, 2014). Note that the pro-
jection onto a polyhedron is a linear constrained quadratic
programming problem, and the linear optimization over a
polyhedron is a linear programming problem. Both have
polynomial time complexity that would be high if m and d
are large (Karmarkar, 1984; Kozlov et al., 1980).
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Quadratic constraint. A quadratic constraint can take
the form of ‖Ax − y‖2 ≤ τ , where A ∈ Rm×d and
y ∈ Rm. Such a constraint appears in compressive sens-
ing (Candès & Wakin, 2008)5, where the goal is to re-
construct a sparse high-dimensional vector x from a small
number of noisy measurements y = Ax + ε ∈ Rm with
m� d. The corresponding optimization problem is

minx∈Rd ‖x‖1, s.t. ‖Ax− y‖2 ≤ τ. (14)

where τ ≥ ‖ε‖2 is an upper bound on the magnitude of the
noise. To check the Assumption 1(i), we note that c(x) =
‖Ax−y‖2−τ and∇c(x) = A>(Ax−y). Let us consider
that A has a full row rank 6 and denote by v = Ax − y,
then on the boundary c(x) = 0 we have ‖v‖ =

√
τ and

‖A>v‖ ≥
√
τλmin(AA>), where λmin(AA>) > 0 is the

minimum eigenvalue of AA> ∈ Rm×m. Therefore the
Assumption 1(i) is satisfied with ρ =

√
τλmin(AA>). It

is notable that the projection and the linear optimization
under the quadratic constraint require solving a quadratic
programming problem and therefore could be expensive.

PSD constraint. A PSD constraintX � 0 forX ∈ Rd×d
can be written as an inequality constraint −λmin(X) ≤ 0,
where λmin(X) denotes the minimum eigen-value of X .
The subgradient of c(X) = −λmin(X) when λmin(X) =
0 is given by Conv{−uu>|‖u‖ = 1, Xu = 0}, i.e., the
convex hull of the outer products of normalized vectors in
the null space of the matrix X . In (Yang et al., 2017), we
show that if the dimension of the null space of X is r with
1 ≤ r ≤ d, the norm of the subgradient of c(X) on the
boundary c(X) = 0 is lower bounded by ρ = 1√

r
≥ 1√

d
.

Finally, we note that computing a subgradient of [c(X)]+
only needs to compute one eigen-vector corresponding to
the smallest eigen-value. In contrast, both projection and
linear optimization under a PSD constraint could be very
expensive for high-dimensional problems. In particular, the
projection onto a PSD domain needs to conduct a singular
value decomposition. The linear optimization over a PSD
cone is ill-posed due to that PSD cone is not compact (the
solution is either 0 or infinity). One may add an artificial
constraint on the upper bound of the eigen-values. Accord-
ing to (Jaggi, 2013), the time complexity for solving this
linear optimization problem approximately up to an accu-
racy level ε′ is O(Nd1.5/ε′

2.5
) with N being the number

of non-zeros in the gradient and ε′ decreasing iteratively
required in the Frank-Wolfe method, which could be much
more expensive especially for high-dimensional problems
and in later iterations than computing the first eigen-pairs
at each iteration in our methods.

5Here we use the square constraint to make it a smooth func-
tion so that the proposed algorithms for smooth optimization are
applicable by using proximal gradient mapping to handle the `1
norm.

6which is reasonable because m � d.

7. Applications
7.1. Compressive Sensing
We first consider a compressive sensing problem in (14).
Becker et al. (2011) proposed an optimization algorithm
based on the Nesterov’s smoothing and the Nesterov’s op-
timal method for the smoothed problem, known as NESTA.
It needs to perform the projection into the domain ‖Ax −
y‖2 ≤ τ at every iteration and has an iteration complexity
of O(1/ε). In contrast, the presented algorithm with only
one projection in Section 4.2 using Nesterov’s accelerated
proximal gradient method (Beck & Teboulle, 2009) to solve
the unconstrained problem enjoys an iteration complexity
ofO(1/ε). Moreover, we present a theorem below showing
that the problem (14) satisfies the local error bound con-
dition with θ = 1/2, and hence the presented LoPNAG
enjoys an Õ(1/

√
ε) iteration complexity with only a loga-

rithmic number of projections.

Theorem 6. Let f(x) = ‖x‖1, c(x) = ‖Ax − y‖2 − τ ,
Ω∗ denote the optimal set and f∗ be the optimal solution
to (14). Assume that there exists x0 such that ‖Ax0−y‖2 <
τ and 0 6∈ Ω∗. Then for any ε > 0, x ∈ Rd such that
c(x) ≤ 0 and f(x) ≤ f∗ + ε, there exists 0 < σ < ∞
such that dist(x,Ω∗) ≤ σ(f(x) − f∗)

1/2. Hence, LoP-
NAG can have an iteration complexity of Õ(1/

√
ε) with

only O(log(1/ε)) projections.

Next, we demonstrate the effectiveness of the LoPNAG for
solving the compressive sensing problem in (14) by com-
paring with NESTA. We generate a synthetic data for test-
ing. In particular, we generate a random measurement ma-
trix A ∈ Rm×d with m = 1000 and d = 5000. The en-
tries of the matrix A are generated independently with the
uniform distribution over the interval [−1,+1]. The vector
x∗ ∈ Rd is generated with the same distribution at 100 ran-
domly chosen coordinates. The noise ε ∈ Rm is a dense
vector with independent random entries with the uniform
distribution over the interval [−ζ, ζ], where ζ is the noise
magnitude and is set to 0.01. Finally the vector y was ob-
tained as y = Ax∗ + ε.

We use the Matlab package of NESTA 7. For fair compari-
son, we also use the projection code in the NESTA package
for conducting projection. To handle the unknown smooth-
ness parameter in the proposed algorithm, we use the back-
tracking technique (Beck & Teboulle, 2009). The param-
eter γ is initially set to 0.001 and decreased by half every
5000 iterations after a projection and the target smoothing
parameter in NESTA is set to 10−5. For the value of λ in
LoPNAG, we tune it from its theoretical value to several
smaller values and choose the one that yields the fastest
convergence. We report the results in Table 7.1, which
include different number of iterations, the corresponding

7http://statweb.stanford.edu/˜candes/
nesta/

http://statweb.stanford.edu/~candes/nesta/
http://statweb.stanford.edu/~candes/nesta/
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Table 1. LoPNAG vs. NESTA for solving the compressive sensing problem.
LoPNAG NESTA

Iters - Projs Rec. Err. Objective Time (s) Iters - Projs Rec. Err. Objective Time (s)
5000 - 1 0.018017 52.042878 18.04 1000 - 2000 0.137798 52.703275 48.49
10000 - 2 0.018038 52.042418 35.88 3000 - 6000 0.018669 52.050051 93.84
15000 - 3 0.018043 52.042358 53.09 5000 - 10000 0.018659 52.050046 245.23
20000 - 4 0.018043 52.042358 70.24 8000 - 16000 0.018657 52.050045 404.72
25000 - 5 0.018043 52.042358 87.32 10000 - 20000 0.018657 52.050044 501.65

Table 2. LoPGD vs. OPGD and PGD for solving the considered distance metric learning problem.
LoPGD OPGD PGD

Iters - Projs Objective Time (h) Iters - Projs Objective Time (h) Iters - Projs Objective Time (h)
1000 - 1 0.0953 0.22 1000 - 1 0.1707 0.20 1000 - 1000 0.1491 7.97
2000 - 2 0.0695 0.43 2000 - 1 0.1583 0.40 2000 - 2000 0.1278 15.46
4000 - 4 0.0494 0.87 4000 - 1 0.1469 0.80 4000 - 4000 0.1072 29.39
6000 - 6 0.0428 1.33 6000 - 1 0.1398 1.22 6000 - 6000 0.0957 43.36
8000 - 8 0.0405 1.89 8000 - 1 0.1343 1.64 8000 - 8000 0.0879 57.43

number of projections, the recovery error of the found so-
lution compared to the underlying true sparse solution, the
objective value (i.e., the `1 norm of the found solution) and
the running time. Note that each iteration of NESTA re-
quires two projections because it maintains two extra se-
quence of solutions. From the results, we can see that LoP-
NAG converges significantly faster than NESTA. Even with
only one projection, we are able to obtain a better solution
than that of NESTA after running 10000 iterations.

7.2. High-dimensional Distance Metric Learning
Consider the following distance metric learning problem:

min
A�0

1

2|E|
∑

(i,j)∈E

(1−yij−‖xi−xj‖2A)2 + τ‖A‖off
1 , (15)

where E denotes all pairs of training examples, yij = 1
indicates xi,xj belong to the same class and yij = −1
indicates they belong to different classes, ‖z‖2A = z>Az
and ‖A‖off

1 =
∑
i 6=j |Aij |. We note that such a formu-

lation is useful for high dimensional problems due to the
`1 regularizer. A similar formulation with different forms
of loss function has been adopted in literature (Qi et al.,
2009). We consider the square loss because it gives us
faster convergence with a logarithmic number of projec-
tions by LoPGD. Due to the presence of the non-smooth
PSD constraint and the `1 regularizer, Nesterov’s accel-
erated proximal gradient methods can not be applied ef-
ficiently to solving (15) and the augmented unconstrained
problem. Nevertheless, we can apply the proposed LoPGD
method for solving the problem with a logarithmic number
of projections. Regarding the constant θ in the local error
bound condition for (15), it still remains an open problem.
Nonetheless, a local error bound condition with θ = 0.5
might be established under certain regularity condition of
the problem (Zhou & So, 2015; Cui et al., 2017). For ex-
ample, Cui et al. (2017) provided a direct analysis of a lo-
cal error bound condition with θ = 0.5 for a class of con-
strained convex symmetric matrix optimization problems

regularized by nonsmooth spectral functions (including the
indicator function of a PSD constraint). They established
sufficient conditions (Theorem 16) for a local error bound
condition with θ = 0.5 to hold, which reduces to a regular-
ity condition for (15) depending on the optimal solutions of
the problem. A thorough analysis of the regularity condi-
tion is much more involved and left as an open problem.

Next, we demonstrate the empirical performance of
LoPGD for solving (15). We use the colon-cancer data
available on libsvm web portal, which has 2000 features
and 62 examples. Fourty examples are used as training
examples to generate 780 pairs to learn the distance met-
ric. The regularization parameter is set to τ = 0.001. We
compare LoPGD, gradient descent method with only one
projection (referred to as OPGD), and standard projected
GD (referred to PGD). The step size in PGD and OPGD
is set to η0/

√
t, where t is the iteration index. We use the

same tuned initial step size for all algorithms. The number
of iterations per-epoch in LoPGD is set to 1000. The pe-
nalization parameter λ in both OPGD and LoPGD is tuned
and set to 10. In Table 2, we report the objective values, the
#of iterations/projections, and running time across the first
8000 iterations. We can see that LoPGD converges dramat-
ically faster than PGD and also much faster than OPGD.

8. Conclusion
We have developed a general theory of optimization with
only one projection for a family of inequality constrained
convex optimization problems. It yields an improved iter-
ation complexity for smooth optimization compared with
non-smooth optimization. By exploring the local error
bound condition, we further develop new algorithms with a
logarithmic number of projections and achieve better con-
vergence for both smooth and non-smooth optimization
without strong convexity assumption. Applications in com-
pressive sensing and distance metric learning demonstrate
the effectiveness of the proposed improved algorithms.
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