
Adaptive Regret of Convex and Smooth Functions

Lijun Zhang 1 Tie-Yan Liu 2 Zhi-Hua Zhou 1

Abstract
We investigate online convex optimization in
changing environments, and choose the adaptive
regret as the performance measure. The goal is
to achieve a small regret over every interval so
that the comparator is allowed to change over
time. Different from previous works that only
utilize the convexity condition, this paper furt-
her exploits smoothness to improve the adaptive
regret. To this end, we develop novel adaptive
algorithms for convex and smooth functions, and
establish problem-dependent regret bounds over
any interval. Our regret bounds are comparable
to existing results in the worst case, and become
much tighter when the comparator has a small
loss.

1. Introduction
Online convex optimization (OCO) is a powerful learning
framework which has both theoretical and practical appeals
(Zinkevich, 2003). Given a convex decision set W , the
learner is required to select a decision wt ∈ W in each
round t. Then, a convex loss function ft : W 7→ R is
revealed, and the learner suffers loss ft(wt). The goal is
to minimize the cumulative loss of the online learner, or
equivalently the regret defined as

Regret =

T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w)

which is the difference of losses between the learner and the
optimal solution in hindsight. In the past decades, various
algorithms for minimizing the regret have been developed
(Shalev-Shwartz, 2011; Hazan, 2016).

OCO is a natural choice for changing environments in the
sense that the loss arrives dynamically. However, in the

1National Key Laboratory for Novel Software Techno-
logy, Nanjing University, Nanjing, China 2Microsoft Rese-
arch Asia, Beijing, China. Correspondence to: Lijun Zhang
<zhanglj@lamda.nju.edu.cn>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

real-world application, we are also facing another dynamic
challenge—the optimal solution may change continuously.
For example, in online recommendation, w models the inte-
rest of users, which could evolve over time. In this scenario,
regret is no longer a suitable measure of performance, since
the online learner is compared against a fixed decision. So,
the traditional regret is also referred to as static regret to
emphasize that the comparator is static.

To cope with changing environments, the notion of adaptive
regret has been proposed and received considerable interests
(Hazan & Seshadhri, 2007; Daniely et al., 2015; Zhang et al.,
2018b). The key idea is to minimize the “local” regret

Regret
(
[r, s]

)
=

s∑
t=r

ft(wt)− min
w∈W

s∑
t=r

ft(w)

of every interval [r, s] ⊆ [T]. Requiring a low regret over
any interval essentially means the online learner is evaluated
against a changing comparator. For convex functions, the
state-of-the-art algorithm achieves anO(

√
(s− r) log s) re-

gret over any interval [r, s] (Jun et al., 2017), which is close
to the minimax regret over a fixed interval (Abernethy et al.,
2008). In the studies of static regret, it is well-known that
the regret bound can be improved when additional curvatu-
res, such as smoothness, are present (Srebro et al., 2010).
Thus, it is natural to ask whether smoothness can also be ex-
ploited to enhance the adaptive regret. This paper provides
an affirmative answer by developing adaptive algorithms for
convex and smooth functions that enjoy tighter bounds.

We remark that directly combining the regret of convex and
smooth functions with existing adaptive algorithms does
not give a tight adaptive regret, because of the following
technical challenges.

• The regret bound for convex and smooth functions re-
quires to know the loss of the optimal decision (Srebro
et al., 2010), which is generally unavailable.

• Existing adaptive algorithms have some components,
including a meta-algorithm and a set of intervals, that
cannot utilize smoothness.

To address the above challenges, we first introduce the scale-
free online gradient descent (SOGD), a special case of the
scale-free mirror descent (Orabona & Pál, 2018), and de-
monstrate that SOGD is able to exploit smoothness auto-
matically and does not need any prior knowledge. Then,

Adaptive Regret of Convex and Smooth Functions

we develop a Strongly Adaptive algorithm for Convex and
Smooth functions (SACS), which runs multiple instances of
SOGD over a set of carefully designed intervals, and combi-
nes them with an expert-tracking algorithm that can benefit
from small losses. Let Lsr = minw∈W

∑s
t=r ft(w) be the

minimal loss over an interval [r, s]. Our theoretical analy-
sis demonstrates that the regret of SACS over any interval
[r, s] is O(

√
Lsr log s · log(s− r)), which could be much

smaller than the existing O(
√

(s− r) log s) bound when
Lsr is small. Finally, to further improve the performance,
we propose a novel way to construct problem-dependent
intervals, and attain an O(

√
Lsr logLs1 · logLsr) bound.

2. Related Work
Adaptive regret has been studied in the settings of prediction
with expert advice (PEA) and online convex optimization
(OCO). Existing algorithms are closely related in the sense
that adaptive algorithms designed for OCO are usually built
upon those designed for PEA.

In an early study of PEA, Littlestone & Warmuth (1994)
develop one variant of weighted majority algorithm
for tracking the best expert. One intermediate result,
i.e., Lemma 3.1 of Littlestone & Warmuth (1994) provi-
des a mistake bound for any interval, which is analogous
to the adaptive regret. The concept of adaptive regret is
formally introduced by Hazan & Seshadhri (2007) in the
context of OCO. Specifically, Hazan & Seshadhri (2007)
introduce the adaptive regret

A-Regret(T) = max
[r,s]⊆[T]

Regret
(
[r, s]

)
(1)

which is the maximum regret over any contiguous interval,
and propose a new algorithm named follow the leading
history (FLH), which contains 3 parts:

• An expert-algorithm, which is able to minimize the
static regret of a given interval;

• A set of intervals, each of which is associated with
an expert-algorithm that minimizes the regret of that
interval;

• A meta-algorithm, which combines the predictions of
active experts in each round.

For exponentially concave (abbr. exp-concave) functions,
Hazan & Seshadhri (2007) use online Newton step (Hazan
et al., 2007) as the expert-algorithm. For the construction
of intervals, they consider two different approaches. In
the first approach, the set of intervals is {[t,∞], t ∈ N}
which means an expert will be initialized at each round t
and live forever. In the second approach, the set of intervals
is {[t, et], t ∈ N}, meaning the expert that becomes active
in round t will be removed after et. Here, et denotes the
ending time of the interval started from t, and its value is set
according to a data streaming algorithm. Hazan et al. (2007)

develop a meta-algorithm based on Fixed-Share (Herbster
& Warmuth, 1998), and allow the set of experts to change
dynamically.

FLH with the first set of intervals attains anO(d log T) adap-
tive regret, where d is the dimensionality, but is inefficient
since it maintains t experts in round t. In contrast, FLH with
the second set of intervals achieves a higher O(d log2 T)
bound, but is efficient because it only keepsO(log t) experts
in the t-th round. Thus, we observe that the intervals control
the tradeoff between the adaptive regret and the computatio-
nal cost. György et al. (2012) and Zhang et al. (2018b) have
developed new ways to construct intervals which can trade
effectiveness for efficiency explicitly. Furthermore, when
the function is strongly convex, the dependence on d in the
upper bound disappears (Zhang et al., 2018b).

For convex functions, Hazan et al. (2007) modify the FLH
algorithm by replacing the expert-algorithm with any low-
regret method for convex functions, and introducing a para-
meter of step size in the meta-algorithm. In this case, the effi-
cient and inefficient versions of FLH achieveO(

√
T log3 T)

and O(
√
T log T) adaptive regret bounds, respectively.1

One limitation of this result is that it does not guarantee to
perform well on small intervals, because the upper bounds
are meaningless for intervals of size O(

√
T).

The adaptive regret of PEA setting is studied by Adamskiy
et al. (2012). Let Lt,i be the loss of the i-th expert in round
t, and Lt be the loss of the learner, which is generally a
convex combination of Lt,i’s. In this case, the regret over
interval [r, s] in (1) becomes

Regret
(
[r, s]

)
=

s∑
t=r

Lt −min
i

s∑
t=r

Lt,i.

They pointed out that the meta-algorithm of Hazan et al.
(2007) can be reduced to the Fixed-Share algorithm with
a special configuration of parameters. Although Fixed-
Share is designed to minimize the tracking regret, Adamskiy
et al. (2012) show that it can also minimize the adaptive re-
gret. Combining Hoeffding bound (Cesa-Bianchi & Lugosi,
2006, Lemma 2.2) and (1a) of Adamskiy et al. (2012), it
is easy to prove that the adaptive regret of Fixed-Share is
O(
√
T logNT), where N is the number of experts.2 Unfor-

tunately, it also does not respect short intervals well.

To ensure a good performance on every interval, Daniely
et al. (2015) propose the notion of strongly adaptive regret

SA-Regret(T, τ) = max
[s,s+τ−1]⊆[T]

Regret
(
[s, s+ τ − 1]

)
1As pointed out by Hazan & Seshadhri (2009), online gradient

descent with constant step size (Zinkevich, 2003) can also be used
to minimize the adaptive regret of convex functions, and the bound
is O(

√
T).

2We need to use Hoeffding bound to convert the mix loss
defined by Adamskiy et al. (2012) to the traditional weighted loss.

Adaptive Regret of Convex and Smooth Functions

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
I0 [] · · ·
I1 [] [] [] [] [] [] [] [] [] [] [] · · ·
I2 [] [] [] [] [] · · ·
I3 [] [] · · ·
I4 [· · ·

Figure 1. Geometric covering (GC) intervals of Daniely et al. (2015). In the figure, each interval is denoted by [].

which emphasizes the dependency on the interval length
τ , and investigate both the PEA and OCO settings. The
main contribution of that paper is a new meta-algorithm for
combining experts, namely strongly adaptive online learner
(SAOL), which is similar to the multiplicative weights met-
hod (Arora et al., 2012). Furthermore, they also propose a
different way to construct the set of intervals as

I =
⋃

k∈N∪{0}

Ik

where for all k ∈ N ∪ {0}

Ik =
{

[i · 2k, (i+ 1) · 2k − 1] : i ∈ N
}
.

Following Jun et al. (2017), we refer to I as geometric
covering (GC) intervals and present a graphical illustration
in Fig. 1. It is obvious to see that each Ik is a partition of
N \ {1, · · · , 2k − 1} to consecutive intervals of length 2k.

In the PEA setting, by using multiplicative weights as the
expert-algorithm, Daniely et al. (2015) establish a strongly
adaptive regret of O(

√
τ logN + log T

√
τ). In the OCO

setting, by using online gradient descent as the expert-
algorithm, Daniely et al. (2015) establish a strongly adaptive
regret of O(log T

√
τ). Those rates are further improved by

Jun et al. (2017), who develop a new meta-algorithm named
as sleeping coin betting (CB). The strongly adaptive re-
grets of PEA and OCO are improved to O(

√
τ logNT) and

O(
√
τ log T), respectively. Recently, Wang et al. (2018) de-

monstrate that for minimizing the adaptive regret of convex
functions, we can use surrogate loss to reduce the number
of gradient evaluations per round from O(log T) to 1.

Finally, we note that adaptive regret is closely related to
the tracking regret in PEA (Herbster & Warmuth, 1998;
György et al., 2012; Cesa-bianchi et al., 2012) and dynamic
regret in OCO (Hall & Willett, 2013; Jadbabaie et al., 2015;
Mokhtari et al., 2016; Yang et al., 2016; Zhang et al., 2017;
2018a). Specifically, from adaptive regret, we can derive a
tight bound for the tracking regret (Jun et al., 2017) and a
special form of dynamic regret (Zhang et al., 2018b).

3. Main Results
We first investigate how to utilize smoothness to improve
the static regret, then develop a strongly adaptive algorithm

for convex and smooth functions, and finally propose data-
dependent intervals to further strengthen the performances.
All the proofs can be found in the full paper (Zhang et al.,
2019).

3.1. Scale-free Online Gradient Descent (SOGD)

We introduce common assumptions used in our paper.

Assumption 1 The domainW is convex, and its diameter
is bounded by D, i.e.,

max
w,w′∈W

‖w −w′‖2 ≤ D. (2)

Assumption 2 All the online functions are convex and non-
negative.

Assumption 3 All the online functions are H-smooth over
W , that is,

‖∇ft(w)−∇ft(w′)‖ ≤ H‖w −w′‖ (3)

for all w,w′ ∈ W , t ∈ [T].

Note that in Assumption 2, we require the online function
to be nonnegative outside the domainW . This is a precon-
dition for establishing the self-bounding property of smooth
functions, which can be exploited to deliver a tight regret
bound. Specifically, Srebro et al. (2010) consider online
gradient descent with constant step size:

wt+1 = ΠW
[
wt − η∇ft(wt)

]
, ∀t ≥ 1

where w1 ∈ W and ΠW [·] denotes the projection onto the
nearest point inW , and prove the following regret bound
(Srebro et al., 2010, Theorem 2).

Theorem 1 Let B ≥ 0 and L ≥ 0 be two constants, set the
step size in OGD as

η =
1

HB2 +
√
H2B4 +HB2L

,

and w1 = 0. Under Assumptions 2 and 3, we have

T∑
t=1

ft(wt)−
T∑
t=1

ft(w) ≤ 4HB2 + 2
√
HB2L

for any w ∈ W such that ‖w‖
2

2 ≤ B2, and
∑T
t=1 ft(w) ≤

L.

Adaptive Regret of Convex and Smooth Functions

The above theorem indicates that under the smoothness
condition, the regret bound could be tighter if the cumulative
loss of the comparator w is small, Specifically, when L =
o(T), the regret bound becomes o(

√
T), thus improves the

minimax rate of online convex optimization (Abernethy
et al., 2008). However, one limitation of Theorem 1 is that
the step size depends on the bound L on the loss in hindsight.

The standard way to address the above problem is the “dou-
bling trick” (Cesa-Bianchi & Lugosi, 2006), but it requires
the online learner to evaluate the minimal cumulative loss
on the fly, which is computationally expensive. Instead, we
make use of the scale-free mirror descent algorithm of Ora-
bona & Pál (2018) and set the step size of the t-th iteration
as

ηt =
α√

δ +
∑t
i=1 ‖∇fi(wi)‖2

(4)

where the parameter δ > 0 is introduced to avoid being
divided by 0, and α > 0 is used to fine-tune the upper
bound. We note that the step size in (4) is similar to the
self-confident tuning originally proposed for online linear
regression (Auer et al., 2002), and later extended to self-
bounded functions (Shalev-Shwartz, 2007, Theorem 2). The
new algorithm is named as scale-free online gradient descent
(SOGD), and summarized in Algorithm 1.

Next, we prove the regret bound of SOGD in the following
theorem, which demonstrates that SOGD can make use of
smoothness automatically.

Theorem 2 Set δ > 0 and α = D/
√

2 in Algorithm 1.
Under Assumptions 1, 2 and 3, SOGD satisfies

T∑
t=1

ft(wt)−
T∑
t=1

ft(w)

≤8HD2 +D

√√√√2δ + 8H

T∑
t=1

ft(w)

for any w ∈ W .

Remark: First, comparing Theorem 2 with Theorem 1,
we observe that the regret bound of SOGD is of the same
order as that of SGD with optimal parameters. Second,
because the step size of SOGD is automatically tuned during
the learning process, it is equipped with an anytime regret
bound, i.e., its regret bound holds for any T . This nice
property of SOGD will be utilized to simplify the design of
adaptive algorithms.

3.2. A Strongly Adaptive Algorithm

Similar to previous studies (Hazan & Seshadhri, 2007; Da-
niely et al., 2015; Jun et al., 2017), our strongly adaptive

Algorithm 1 Scale-free online gradient descent (SOGD)
1: Input: parameters δ and α
2: Initialize w1 ∈ W arbitrarily
3: for t = 1 to T do
4: Submit wt and then receive function ft(·)
5: Suffer loss ft(wt) and set ηt as (4)
6: Update the decision according to

wt+1 = ΠW
[
wt − ηt∇ft(wt)

]
7: end for

algorithm contains 3 components: an expert-algorithm, a
set of intervals, and a meta-algorithm.

3.2.1. THE PROCEDURE

For the expert-algorithm, we choose the scale-free online
gradient descent (SOGD) in Algorithm 1, since it can utilize
smoothness to improve the regret bound. For the set of
intervals, we can directly re-use the GC intervals of Daniely
et al. (2015). However, because an instance of SOGD will
be created for each interval and SOGD has an anytime regret
bound, we can further simplify GC intervals based on the
following observation: For intervals with the same starting
point, we only need to keep the longest one, since the expert
associated with this interval can replace others.

Take the set of intervals {[4, 4], [4, 5], [4, 7]} in Fig. 1 as an
example, and denote the expert associated with interval I
as EI . The expert E[4,7] performs exactly the same as the
expert E[4,4] in round 4, and exactly the same as the expert
E[4,5] in rounds 4 and 5. Thus, we can use E[4,7] to replace
E[4,4] and E[4,5] in any place (algorithm or analysis) they
appear. Mathematically, our compact geometric covering
(CGC) intervals are defined as

C =
⋃

k∈N∪{0}

Ck (5)

where for all k ∈ N ∪ {0}

Ck =
{

[i · 2k, (i+ 1) · 2k − 1] : i is odd
}
.

A graphical illustration of CGC intervals is given in Fig. 2.
Comparing Fig. 1 with Fig. 2, the main difference is that
CGC only adds 1 interval in each round, while CG may add
multiple intervals in each round.

Finally, we need to specify the meta-algorithm. One may
attempt to use the SAOL of Daniely et al. (2015) or the
sleeping CB of Jun et al. (2017). However, neither of them
meets our requirements, because their meta-regret depends
on the length of the interval and cannot benefit from small
losses of experts. Instead, we choose a recently develo-
ped expert-tracking procedure—AdaNormalHedge (Luo &
Schapire, 2015) as the meta-algorithm because

Adaptive Regret of Convex and Smooth Functions

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
C0 [] [] [] [] [] [] [] [] [] [] [] [] · · ·
C1 [] [] [] [] [] [] · · ·
C2 [] [] [] · · ·
C3 [] · · ·
C4 [· · ·

Figure 2. Compact geometric covering (CGC) intervals. In the figure, each interval is denoted by [].

(i) it achieves a small regret when the comparator has a
small loss, thus can be naturally combined with SOGD
which enjoys a similar property;

(ii) it supports the sleeping expert problem, and thus the
number of experts can vary over time.

The key ingredients of AdaNormalHedge are a potential
function:

Φ(R,C) = exp

(
[R]2+
3C

)
where [x]+ = max(0, x) and Φ(0, 0) is defined to be 1, and
a weight function with respect to this potential:

w(R,C) =
1

2

(
Φ(R+ 1, C + 1)− Φ(R− 1, C + 1)

)
.

In the t-th round, AdaNormalHedge assigns a weight pt,i to
an expert Ei according to

pt,i ∝ w(Rt−1,i, Ct−1,i)

where Rt−1,i is the regret with respect to Ei over the first
t− 1 iterations, and Ct−1,i is the sum of the absolute value
of the instantaneous regret over the first t− 1 iterations.

Putting everything together, we present our Strongly Adap-
tive algorithm for Convex and Smooth functions (SACS)
in Algorithm 2. For each interval [i, j] ∈ C, we will cre-
ate an expert E[i,j] which is active during the interval [i, j].
Note that in our CGC intervals, the starting point of each
interval is unique. So, to simplify notations, we use Ei as a
shorthand of E[i,j].

On the t-round, we first create an expert Et by running an
instance of SOGD (Step 2) and add it to the set of active
experts, denoted by St (Step 3). In Step 4, we receive the
prediction wt,i of each Ei ∈ St, and assign the following
weight to Ei

pt,i =
w(Rt−1,i, Ct−1,i)∑

Ei∈St w(Rt−1,i, Ct−1,i)
(6)

where

Rt−1,i =

t−1∑
u=i

fu(wu)− fu(wu,i),

Ct−1,i =

t−1∑
u=i

|fu(wu)− fu(wu,i)| .

Algorithm 2 Strongly Adaptive algorithm for Convex and
Smooth functions (SACS)

1: for t = 1 to T do
2: Initialize an expert Et by invoking SOGD in Algo-

rithm 1 and set Rt−1,t = Ct−1,t = 0
3: Add Et to the set of active experts

St = St−1 ∪ {Et}

4: Receive the prediction wt,i of each expert Ei ∈ St,
and calculate its weight pt,i according to (6)

5: Submit wt defined in (7) and then receive ft(·)
6: Remove experts whose ending times are t

St = St \ {Ei|[i, t] ∈ C}

7: For each Ei ∈ St, update

Rt,i =Rt−1,i + ft(wt)− ft(wt,i),

Ct,i =Ct−1,i + |ft(wt)− ft(wt,i)|

8: Pass ft(·) to each expert Ei ∈ St
9: end for

In Step 5, SACS submits the weighted average of wt,i

wt =
∑
Ei∈St

pt,iwt,i (7)

as the output, and suffers loss ft(wt). In Step 6, we remove
all the experts whose ending times are t, and in Step 7, we
update the parameters of each remaining expert. Finally, we
pass the loss function ft(·) to all experts in St so that they
can update their predictions for the (t+ 1)-th round (Step
8).

3.2.2. THEORETICAL GUARANTEES

In the following, we present theoretical guarantees of SACS.
To simplify our presentations, we assume all the convex
functions are bounded by 1.

Assumption 4 The value of each function belongs to [0, 1],
i.e.,

0 ≤ ft(w) ≤ 1, ∀w ∈ W, t ∈ [T].

As long as the loss functions are bounded, they can always

Adaptive Regret of Convex and Smooth Functions

be scaled and restricted to [0, 1].

We start with the meta-regret of SACS with respect to an
expert Ei.

Lemma 1 Under Assumptions 2 and 4, for any interval
[i, j] ∈ C, and any t ∈ [i, j], SACS satisfies

t∑
u=i

[fu(wu)− fu(wu,i)] ≤ c(t) +

√√√√2c(t)

t∑
u=i

fu(wu,i)

where c(t) = 3 ln(4t2).

Remark: First, compared with the meta-regret of SAOL
(Daniely et al., 2015) and sleeping CB (Jun et al., 2017), the
main advantage of SACS is that its upper bound depends
on the cumulative loss of the expert, which could be much
tighter when the problem is easy. Second, the theoretical
guarantee of SACS is an anytime regret bound, since the
upper bound holds for any t ∈ [i, j].

Combining Lemma 1 with the regret bound of SOGD in
Theorem 2, we immediately obtain the following regret
bound of SACS over any interval [i, j] ∈ C.

Lemma 2 Under Assumptions 1, 2, 3 and 4, for any in-
terval [i, j] ∈ C, any t ∈ [i, j], and any w ∈ W , SACS
satisfies

t∑
u=i

[fu(wu)− fu(w)] ≤ a(t) +

√√√√b(t)

t∑
u=i

fu(w)

where

a(t) =
9

2
ln(4t2) + 18HD2 + 2D

√
2δ (8)

and
b(t) = 24 ln(4t2) + 16HD2. (9)

By utilizing the special structure of the interval set C, we
extend Lemma 2 to any interval [r, s] ⊆ [T].

Theorem 3 Under Assumptions 1, 2, 3 and 4, for any inter-
val [r, s] ⊆ [T] and any w ∈ W , SACS satisfies

s∑
t=r

[ft(wt)− ft(w)]

≤va(s) +

√√√√vb(s)

s∑
t=r

ft(w)

=O

√√√√(s∑

t=r

ft(w)

)
log s · log(s− r)

where v ≤ dlog2(s− r+ 2)e, a(·) and b(·) are respectively
defined in (8) and (9).

Remark: In the literature, the best adaptive regret for con-
vex functions is O(

√
(s− r) log s) of Jun et al. (2017).

Although our upper bound in Theorem 3 has an additio-
nal dependence on

√
log(s− r), it replaces the interval

length s− r with the cumulative loss over that interval, i.e.,∑s
t=r ft(w). As a result, our bound could be much tighter

when the comparator has a small loss. Whether the additi-
onal

√
log(s− r) factor can be removed remains an open

problem to us, and we leave it as a future work.

3.3. Problem-dependent Intervals

We can refer to our result in Theorem 3 as a problem-
dependent bound, since the dominant factor

√∑s
t=r ft(w)

depends on the problem, which has a similar spirit with the
data-dependent bound of Adagrad (Duchi et al., 2011). One
unsatisfactory point of Theorem 3 is that the logarithmic
factor log s · log(s− r), although non-dominant, is problem-
independent. In this section, we discuss how to make SACS
fully problem-dependent.

The problem-independent factor appears because CGC in-
tervals, as well as CG intervals, are problem-independent.
To address this limitation, we propose a problem-dependent
way to generate intervals dynamically. The basic idea is to
run an instance of SOGD, and restart the algorithm when
the cumulative loss is larger than some threshold. The time
points when SOGD restarts will be used as the starting
rounds of intervals.

Specifically, we set s1 = 1 and run an instance of SOGD.
Let s1 + α be the round such that the cumulative loss beco-
mes larger than a threshold C. Then, we set s2 = s1 +α+1
and restart SOGD in round s2. Repeating this process, we
can generate a sequence of points s1, s2, s3, . . . which is
referred to as markers. Our problem-dependent geometric
covering (PGC) intervals are constructed based on markers:

Ĩ =
⋃

k∈N∪{0}

Ĩk

where for all k ∈ N ∪ {0}

Ĩk =
{

[si·2k , s(i+1)·2k − 1] : i ∈ N
}
.

Similarly, we can also compact PGC intervals by removing
overlapping intervals with the same starting point. The
compact problem-dependent geometric covering (CPGC)
intervals are given by

C̃ =
⋃

k∈N∪{0}

C̃k (10)

where for all k ∈ N ∪ {0}

C̃k =
{

[si·2k , s(i+1)·2k − 1] : i is odd
}
.

Adaptive Regret of Convex and Smooth Functions

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 · · ·

Ĩ0 [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [· · ·
Ĩ1 [] [] [] [] [] [] [] [· · ·
Ĩ2 [] [] [] [· · ·
Ĩ3 [] [· · ·
Ĩ4 [· · ·

Figure 3. Problem-dependent geometric covering (PGC) intervals. In the figure, each interval is denoted by [].

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 · · ·
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 · · ·

C̃0 [] [] [] [] [] [] [] [] · · ·
C̃1 [] [] [] [] · · ·
C̃2 [] [] · · ·
C̃3 [] · · ·
C̃4 [· · ·

Figure 4. Compact problem-dependent geometric covering (CPGC) intervals. In the figure, each interval is denoted by [].

We provide graphical illustrations of PGC intervals and
CPGC intervals in Fig. 3 and Fig. 4, respectively.

To see the difference between problem-independent and
problem-dependent intervals, let’s compare Fig. 1 of GC
intervals and Fig. 3 of PGC intervals. We have the following
observations.

• In the former one, intervals belong to the same level,
i.e., Ik, are of the same length, while in the latter
one, intervals belong to the same level, i.e., Ĩk, are of
different lengths.

• In the former one, an interval is created for each round.
By contrast, in the latter one, an interval is created only
at markers. Thus, the number of problem-dependent
intervals is smaller than that of problem-independent
intervals.

We then incorporate CPGC intervals into our SACS algo-
rithm, and summarize the procedure in Algorithm 3. The
new algorithm is a bit more complex than the original one in
Algorithm 2 because we need to construct CPGC intervals
on the fly.

Next, we explain the main differences. To generate CPGC
intervals dynamically, we introduce a Boolean variable
NewInterval to indicate whether a new interval should
be created, m to denote the total number of intervals created
so far, and n to denote the index of the latest interval. In
each round t, if NewInterval is true, we will create a new
expertEt, add it to the active set, and then reset the indicator
(Steps 5 to 7). We also increase the total number of intervals
by 1 in Step 8, and note that the m-th marker sm = t. Let
m = i · 2k, where i is odd and k ∈ N. According to the
definition of CPGC intervals, Et = Esm is active during
the interval [si·2k , s(i+1)·2k − 1]. So, it should be remo-

ved before the s(i+1)·2k -th round. However, the value of
s(i+1)·2k is unknown in the t-th round, so we cannot tag the
ending time to Et. As an alternative, we record the value of
(i+ 1) · 2k, denoted by gt (Step 9), and remove Et when m
is going to reach gt (Step 18).

To generate the next marker sm+1, we keep track of the
index of the latest expert (Step 10), and record its cumula-
tive loss (Steps 11 and 15). When the cumulative loss is
larger than the threshold C (Step 16), we set the indicator
NewInterval to be true (Step 17) and remove all the ex-
perts whose ending times are sm+1 − 1 (Step 18). All the
other steps are identical to those in Algorithm 2.

We present theoretical guarantees of Algorithm 3. As before,
we first prove the meta-regret.

Lemma 3 Suppose

C ≥ 20HD2 + 2D
√

2δ. (11)

Under Assumptions 2 and 4, for any interval [i, j] ∈ C̃, and
any t ∈ [i, j], SACS with CPGC intervals satisfies

t∑
u=i

[fu(wu)− fu(wu,i)] ≤ c̃(t) +

√√√√2c̃(t)

t∑
u=i

fu(wu,i)

where

c̃(t) ≤ 3 ln

(
1 +

4

C

t∑
u=1

fu(w)

)
+ 3 ln

5 + 3 ln(1 + t)

2
.

(12)

Remark: Following previous studies (Chernov & Vovk,
2010; Luo & Schapire, 2015), we treat the double lo-
garithmic factor in c̃(t) as a constant. Compared with

Adaptive Regret of Convex and Smooth Functions

Algorithm 3 SACS with CPGC intervals
1: Input: Parameter C
2: Initialize indicator NewInterval = true, the total

number of intervals m = 0, the index of the latest
interval n = 0

3: for t = 1 to T do
4: if NewInterval is true then
5: Initialize an expert Et by invoking SOGD in Algo-

rithm 1 and set Rt−1,t = Ct−1,t = 0
6: Add Et to the set of active experts

St = St−1 ∪ {Et}

7: Reset the indicator NewInterval = false
8: Update the total number of intervals m = m+ 1
9: Set gt = j such that [m, j − 1] ∈ C

10: Record the index of the latest expert n = t
11: Initialize the cumulative loss Lt−1 = 0
12: end if
13: Receive the prediction wt,i of each expert Ei ∈ St,

and calculate its weight pt,i according to (6)
14: Submit wt defined in (7) and then receive ft(·)
15: Update the cumulative loss of the latest expert En

Lt = Lt−1 + ft(wt,n)

16: if Lt > C then
17: Set the indicator NewInterval = true
18: Remove experts whose ending times are t+ 1

St = St \ {Ei|gi = m+ 1}

19: end if
20: For each Ei ∈ St, update

Rt,i =Rt−1,i + ft(wt)− ft(wt,i),

Ct,i =Ct−1,i + |ft(wt)− ft(wt,i)|

21: Pass ft(·) to each expert Ei ∈ St
22: end for

Lemma 1, the main advantage is that c(t) is replaced with a
problem-dependent term c̃(t).

Based on Lemma 3 and Theorem 2, we prove a counterpart
of Lemma 2, which bounds the regret over any interval in C̃.

Lemma 4 Under condition (11) and Assumptions 1, 2, 3
and 4, for any interval [i, j] ∈ C̃, any t ∈ [i, j], and any
w ∈ W , SACS with CPGC intervals satisfies

t∑
u=i

[fu(wu)− fu(w)] ≤ ã(t) +

√√√√b̃(t)

t∑
u=i

fu(w)

where

ã(t) =
3

2
c̃(t) + 18HD2 + 2D

√
2δ, (13)

b̃(t) =8c̃(t) + 16HD2, (14)

and c̃(t) conforms to (12).

Finally, we extend Lemma 4 to any interval [r, s] ⊆ [T].

Theorem 4 Under condition (11) and Assumptions 1, 2, 3
and 4, for any interval [r, s] ⊆ [T] and any w ∈ W , SACS
with CPGC intervals satisfies

s∑
t=r

[ft(wt)− ft(w)]

≤2(C + 1) +
3

2
c̃(s) + vã(s) +

√√√√vb̃(s)

s∑
t=r

ft(w)

=O

√√√√(s∑

t=r

ft(w)

)
log

s∑
t=1

ft(w) · log

s∑
t=r

ft(w)

where

v ≤

⌈
log2

(
2 +

4

C

s∑
t=r

ft(w)

)⌉
ã(·), b̃(·) and c̃(·) are respectively defined in (13), (14), and
(12).

Remark: Compared with the upper bound in Theorem 3,
we observe that the problem-independent term log s·log(s−
r) is improved to log

∑s
t=1 ft(w) · log

∑s
t=r ft(w). As

a result, our SACS with CPGC intervals becomes fully
problem-dependent.

4. Conclusion and Future Work
In this paper, we propose a Strongly Adaptive algorithm
for Convex and Smooth functions (SACS), which com-
bines the strength of online gradient descent (OGD), ge-
ometric covering (GC) intervals, and AdaNormalHedge.
Let Lsr(w) be the cumulative loss of a comparator w over
an interval [r, s]. Theoretical analysis shows that the re-
gret of SACS over any [r, s] with respect to any w is
O(
√
Lsr(w) log s · log(s− r)), which could be much smal-

ler than the state-of-the-art result (Jun et al., 2017) when
Lsr(w) is small. Furthermore, we propose to construct
problem-dependent intervals, and improve the regret bound
to O(

√
Lsr(w) logLs1(w) · logLsr(w)).

One future work is to extend our results to exp-concave
functions. Note that the static regret of exp-concave functi-
ons can be improved by smoothness (Orabona et al., 2012).
Thus, it is possible to improve the adaptive regret of exp-
concave functions by combining the regret bound of Ora-
bona et al. (2012) and our problem-dependent intervals.

Adaptive Regret of Convex and Smooth Functions

Acknowledgements
This work was partially supported by the National Key R&D
Program of China (2018YFB1004300), NSFC (61751306),
JiangsuSF (BK20160658), YESS (2017QNRC001), Micro-
soft Research Asia, and the Collaborative Innovation Center
of Novel Software Technology and Industrialization.

References
Abernethy, J., Bartlett, P. L., Rakhlin, A., and Tewari, A.

Optimal stragies and minimax lower bounds for online
convex games. In Proceedings of the 21st Annual Confe-
rence on Learning Theory, pp. 415–423, 2008.

Adamskiy, D., Koolen, W. M., Chernov, A., and Vovk, V.
A closer look at adaptive regret. In Proceedings of the
23rd International Conference on Algorithmic Learning
Theory, pp. 290–304, 2012.

Arora, S., Hazan, E., and Kale, S. The multiplicative weig-
hts update method: a meta-algorithm and applications.
Theory of Computing, 8(6):121–164, 2012.

Auer, P., Cesa-Bianchi, N., and Gentile, C. Adaptive and
self-confident on-line learning algorithms. Journal of
Computer and System Sciences, 64(1):48–75, 2002.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006.

Cesa-bianchi, N., Gaillard, P., Lugosi, G., and Stoltz, G.
Mirror descent meets fixed share (and feels no regret). In
Advances in Neural Information Processing Systems 25,
pp. 980–988, 2012.

Chernov, A. and Vovk, V. Prediction with advice of
unknown number of experts. In Proceedings of the 26th
Conference on Uncertainty in Artificial Intelligence, pp.
117–125, 2010.

Daniely, A., Gonen, A., and Shalev-Shwartz, S. Strongly
adaptive online learning. In Proceedings of the 32nd
International Conference on Machine Learning, pp. 1405–
1411, 2015.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159,
2011.

György, A., Linder, T., and Lugosi, G. Efficient tracking of
large classes of experts. IEEE Transactions on Informa-
tion Theory, 58(11):6709–6725, 2012.

Hall, E. C. and Willett, R. M. Dynamical models and
tracking regret in online convex programming. In Procee-
dings of the 30th International Conference on Machine
Learning, pp. 579–587, 2013.

Hazan, E. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157–325,
2016.

Hazan, E. and Seshadhri, C. Adaptive algorithms for online
decision problems. Electronic Colloquium on Computati-
onal Complexity, 88, 2007.

Hazan, E. and Seshadhri, C. Efficient learning algorithms
for changing environments. In Proceedings of the 26th
Annual International Conference on Machine Learning,
pp. 393–400, 2009.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret
algorithms for online convex optimization. Machine Le-
arning, 69(2-3):169–192, 2007.

Herbster, M. and Warmuth, M. K. Tracking the best expert.
Machine Learning, 32(2):151–178, 1998.

Jadbabaie, A., Rakhlin, A., Shahrampour, S., and Sridha-
ran, K. Online optimization: Competing with dynamic
comparators. In Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics, pp.
398–406, 2015.

Jun, K.-S., Orabona, F., Wright, S., and Willett, R. Impro-
ved strongly adaptive online learning using coin betting.
In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, pp. 943–951, 2017.

Littlestone, N. and Warmuth, M. K. The weighted majority
algorithm. Information and Computation, 108(2):212–
261, 1994.

Luo, H. and Schapire, R. E. Achieving all with no para-
meters: Adanormalhedge. In Proceedings of The 28th
Conference on Learning Theory, pp. 1286–1304, 2015.

Mokhtari, A., Shahrampour, S., Jadbabaie, A., and Ribeiro,
A. Online optimization in dynamic environments: Im-
proved regret rates for strongly convex problems. In
Proceedings of the 55th IEEE Conference on Decision
and Control, pp. 7195–7201, 2016.

Orabona, F. and Pál, D. Scale-free online learning. Theore-
tical Computer Science, 716:50–69, 2018.

Orabona, F., Cesa-Bianchi, N., and Gentile, C. Beyond loga-
rithmic bounds in online learning. In Proceedings of the
15th International Conference on Artificial Intelligence
and Statistics, pp. 823–831, 2012.

Shalev-Shwartz, S. Online Learning: Theory, Algorithms,
and Applications. PhD thesis, The Hebrew University of
Jerusalem, 2007.

Adaptive Regret of Convex and Smooth Functions

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107–194, 2011.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low-
noise and fast rates. In Advances in Neural Information
Processing Systems 23, pp. 2199–2207, 2010.

Wang, G., Zhao, D., and Zhang, L. Minimizing adaptive
regret with one gradient per iteration. In Proceedings
of the 27th International Joint Conference on Artificial
Intelligence, 2018.

Yang, T., Zhang, L., Jin, R., and Yi, J. Tracking slowly
moving clairvoyant: Optimal dynamic regret of online
learning with true and noisy gradient. In Proceedings of
the 33rd International Conference on Machine Learning,
pp. 449–457, 2016.

Zhang, L., Yang, T., Yi, J., Jin, R., and Zhou, Z.-H. Im-
proved dynamic regret for non-degenerate functions. In
Advances in Neural Information Processing Systems 30,
pp. 732–741, 2017.

Zhang, L., Lu, S., and Zhou, Z.-H. Adaptive online learning
in dynamic environments. In Advances in Neural Infor-
mation Processing Systems 31, pp. 1330–1340, 2018a.

Zhang, L., Yang, T., Jin, R., and Zhou, Z.-H. Dynamic
regret of strongly adaptive methods. In Proceedings of
the 35th International Conference on Machine Learning,
2018b.

Zhang, L., Liu, T.-Y., and Zhou, Z.-H. Adaptive re-
gret of convex and smooth functions. ArXiv e-prints,
arXiv:1904.11681, 2019.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning, pp. 928–
936, 2003.

