
Projection-free Distributed Online Convex Optimization
with O(

√
T ) Communication Complexity

Yuanyu Wan 1 Wei-Wei Tu 2 Lijun Zhang 1

Abstract
To deal with complicated constraints via locally
light computations in distributed online learning,
a recent study has presented a projection-free
algorithm called distributed online conditional
gradient (D-OCG), and achieved an O(T 3/4) re-
gret bound, where T is the number of prediction
rounds. However, in each round, the local learners
of D-OCG need to communicate with their neigh-
bors to share the local gradients, which results in
a high communication complexity of O(T ). In
this paper, we first propose an improved variant
of D-OCG, namely D-BOCG, which enjoys an
O(T 3/4) regret bound with only O(

√
T ) commu-

nication complexity. The key idea is to divide
the total prediction rounds into

√
T equally-sized

blocks, and only update the local learners at the
beginning of each block by performing iterative
linear optimization steps. Furthermore, to handle
the more challenging bandit setting, in which only
the loss value is available, we incorporate the clas-
sical one-point gradient estimator into D-BOCG,
and obtain similar theoretical guarantees.

1. Introduction
Conditional gradient (CG) (Frank & Wolfe, 1956) is a
simple yet efficient offline algorithm for solving high-
dimensional problems with complicated constraints. To
find a feasible solution, instead of performing the time-
consuming projection step, CG utilizes the linear optimiza-
tion step, which can be carried out much more efficiently.
For example, in the matrix completion problem (Hazan &
Kale, 2012), where the feasible set consists of all matrices
with bounded trace norm, the projection step needs to com-
pute the singular value decomposition (SVD) of a matrix.
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In contrast, the linear optimization step in CG only requires
computing the top singular vector pair of a matrix, which is
at least an order of magnitude faster than the SVD. Due to
the emergence of large-scale problems, online conditional
gradient (OCG) (Hazan & Kale, 2012; Hazan, 2016) was
proposed for online convex optimization (OCO), which is
viewed as a multi-round game between a learner and an ad-
versary (Zinkevich, 2003). Different from CG that requires
all data related to the objective function are given before-
hand, this online variant can efficiently update the learner
based on only a single data point in each round.

Recently, Zhang et al. (2017) further proposed D-OCG by
extending OCG into a more practical scenario—distributed
setting. It is well motivated by many distributed applications
such as multi-agent coordination and distributed tracking in
sensor networks (Li et al., 2002; Xiao et al., 2007; Nedić
et al., 2009; Duchi et al., 2011). Specifically, the distributed
setting is formulated as a set of local learners connected by
an undirected graph, and each local learner can only com-
municate with its neighbors. The key idea of D-OCG is to
maintain OCG for each local learner, and update it accord-
ing to the local gradient as well as that received from its
neighbors in each round. Compared with projection-based
distributed algorithms (Ram et al., 2010; Hosseini et al.,
2013), D-OCG significantly reduces the time cost for solv-
ing high-dimension problems with complicated constraints.
Moreover, D-OCG is more scalable than OCG, since it can
utilize many locally light computation resources to handle
large-scale problems. However, because the local learners
of D-OCG communicate with their neighbors to share the
local gradients in each round, it suffers a high communica-
tion complexity of O(T ), where T is the total number of
rounds.

In this paper, we first propose distributed block online condi-
tional gradient (D-BOCG), an improved variant of D-OCG,
which reduces the communication complexity fromO(T ) to
O(
√
T ). To this end, we borrow the delayed update mecha-

nism and the iterative linear optimization steps which have
been employed to improve projection-free bandit convex
optimization (Garber & Kretzu, 2019), and apply them to
the distributed setting considered here. Specifically, accord-
ing to the delayed update mechanism, we divide the total
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T rounds into
√
T equally-sized blocks and only update

the local learners at the beginning of each block. In this
way, the local learners only need to communicate with their
neighbors once for each block, which immediately implies
the total communication complexity is O(

√
T ). However,

since the number of updates is decreased, only performing
1 linear optimization step as D-OCG for each update will
increase the regret. To keep the same regret bound as that of
D-OCG with less number of updates, we perform iterative
linear optimization steps for each update. Theoretical anal-
ysis demonstrates that our D-BOCG achieves an O(T 3/4)
regret bound with the number of linear optimization on the
same order as that required by D-OCG.

Furthermore, to handle the more challenging bandit setting,
we propose distributed block bandit conditional gradient
(D-BBCG) by combining D-BOCG with the classical one-
point gradient estimator (Flaxman et al., 2005), which can
approximate the gradient with a single loss value. Similar to
D-BOCG, the communication complexity of our D-BBCG
is still O(

√
T ). Our theoretical analysis reveals that D-

BBCG enjoys a high-probability regret bound of Õ(T 3/4)1

with the number of linear optimization on the same order as
that required by D-OCG and D-BOCG.

2. Related Work
In this section, we briefly review the existing projection-free
algorithms for OCO and its distributed variant.

2.1. Projection-free Algorithms for OCO

OCO is a general framework for online learning, which
covers a variety of problems such as online portfolio selec-
tion (Blum & Kalai, 1999; Agarwal et al., 2006), online
routing (Awerbuch & Kleinberg, 2004; 2008), online metric
learning (Jain et al., 2008; Tsagkatakis & Savakis, 2011)
and learning with expert advice (Cesa-Bianchi et al., 1997;
Freund et al., 1997). It is generally viewed as a repeated
game between a leaner and an adversary. In each round
t, the learner first chooses a decision x(t) from a convex
decision set K ⊂ Rd. Then, the adversary reveals a convex
function ft(x) : K → R, which incurs a loss ft(x(t)) to
the learner. The goal of the learner is to minimize the regret
with respect to any fixed optimal decision, which is defined
as

RT =

T∑
t=1

ft(x(t))−min
x∈K

T∑
t=1

ft(x).

OCG (Hazan & Kale, 2012; Hazan, 2016) is the first
projection-free algorithm for OCO, which enjoys the re-
gret bound of O(T 3/4) and updates as the following linear

1We use the Õ notation to hide constant factors as well as
polylogarithmic factors in T .

optimization step

v = argmin
x∈K

{
∇Ft(x(t))>x

}
x(t+ 1) = x(t) + st(v − x(t))

(1)

where Ft(x) = η
∑t−1
k=1∇fk(x(k))>x + ‖x− x(1)‖22, st

and η are two parameters. Recently, projection-free al-
gorithms with O(

√
T ) regret were proposed for special

decision sets such as polytope (Garber & Hazan, 2016)
and smooth set (Levy & Krause, 2019). For smooth loss
functions, a concurrent work (Hazan & Minasyan, 2020)
proposed a randomized projection-free algorithm which
achieves an expected regret bound of O(T 2/3).

Furthermore, OCG has been extended to handle the more
challenging bandit setting, where only the loss value is
available to the learner. Due to the lack of the gradient,
Chen et al. (2019) proposed to combine OCG with the one-
point gradient estimator (Flaxman et al., 2005) which can
approximate the gradient with a single loss value, and es-
tablished an expected regret bound of O(T 4/5) which is
worse than the O(T 3/4) regret bound of OCG. Later, Gar-
ber & Kretzu (2019) proposed to divide the total rounds into
several equally-sized blocks and perform iterative linear
optimization steps at the beginning of each block, which im-
proves the expected regret bound fromO(T 4/5) toO(T 3/4).
Additionally, we note that Chen et al. (2018) developed
a projection-free algorithm for another interesting setting
where the learner is allowed to access to the stochastic gra-
dients.

2.2. Projection-free Algorithms for Distributed OCO

According to previous studies (Hosseini et al., 2013; Zhang
et al., 2017), distributed OCO is a variant of OCO over a
network defined by an undirected graph G = (V,E), where
V = [n] is the node set and E ⊂ V × V is the edge set.
Different from OCO where only exists 1 learner, in the
distributed OCO, each node i ∈ V is a local learner, and
can only communicate with its immediate neighbors

Ni = {j ∈ V |(i, j) ∈ E} .

In each round t, each local learner i ∈ V chooses a decision
xi(t) ∈ K, and then it receives a convex loss function
ft,i(x) : K → R chosen by the adversary. Moreover, the
global loss function ft(x) is defined as the sum of local loss
functions

ft(x) =

n∑
j=1

ft,j(x).

The goal of each local learner i ∈ V is to minimize the regret
measured by the global loss with respect to the optimal fixed
decision, which is defined as

RT,i =

T∑
t=1

ft(xi(t))−min
x∈K

T∑
t=1

ft(x).
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Since the local loss function ft,i(x) is only available to
the local learner i, to achieve this global goal for all local
learners, it is necessary to utilize both their local gradients
and those received from their neighbors.

Therefore, to make OCG distributed, Zhang et al. (2017)
first introduce a non-negative weight matrix P ∈ Rn×n and
redefine Ft(x) in OCG as

Ft,i(x) = ηzi(t)
>x + ‖x− x1(1)‖22 (2)

for each local learner i by replacing
∑t−1
k=1∇fk(x(k)) with

zi(t), where zi(1) = 0 and

zi(t+ 1) =
∑
j∈Ni

Pijzj(t) +∇ft,i(xi(t)). (3)

Note that zi(t) is a weighted sum of historical local gradi-
ents and those received from the neighbors, which could be
viewed as an approximation for the sum of global gradients
and is critical for minimizing the global regret.

Then, they proposed D-OCG updating as follows

for each local learner i ∈ V do

vi = argmin
x∈K

{
∇Ft,i(xi(t))>x

}
xi(t+ 1) = xi(t) + st(vi − xi(t))

end for

(4)

which enjoys RT,i = O(T 3/4). However, in each round t,
each local learner i needs to compute zi(t+ 1) by commu-
nicating with its neighbors, which results in a high commu-
nication complexity of O(T ).

3. Main Results
In this section, we first introduce necessary preliminaries
including common assumptions, definitions and a basic
algorithmic ingredient. Then, we present our projection-
free distributed online algorithm called D-BOCG for the
full information setting, as well as its theoretical guarantee.
Finally, we extend D-BOCG to the bandit setting.

3.1. Preliminaries

Following previous studies on OCO (Hazan & Kale, 2012;
Garber & Kretzu, 2019) and the distributed OCO (Zhang
et al., 2017), we first introduce the following assumptions.

Assumption 1 At each round t, each local loss function
ft,i(x) is G-Lipschitz over K, i.e.,

|ft,i(x)− ft,i(y)| ≤ G‖x− y‖2

for any x ∈ K,y ∈ K.

Assumption 2 At each round t, each local loss function
ft,i(x) is bounded over K, i.e.,

|ft,i(x)| ≤M

for any x ∈ K.

Assumption 3 The convex decision set K is full dimen-
sional and contains the origin. Moreover, there exist two
constants r,R > 0 such that

rBd ⊆ K ⊆ RBd

where Bd denotes the unit Euclidean ball centered at the
origin in Rd.

Assumption 4 The non-negative weight matrix P ∈ Rn×n
is symmetric and doubly stochastic, which satisfies

• Pij > 0 only if (i, j) ∈ E;

•
∑n
j=1 Pij =

∑
j∈Ni Pij = 1,∀i ∈ V ;

•
∑n
i=1 Pij =

∑
i∈Nj Pij = 1,∀j ∈ V .

The non-negative weight matrix P in Assumption 4 will
be utilized to model the communication between the local
learners in the distributed OCO, and we will use σ2(P ) to
denote the second largest eigenvalue of P .

Moreover, we recall the standard definitions for smooth and
strongly convex functions (Boyd & Vandenberghe, 2004).

Definition 1 Let f(x) : K → R be a function over K. It is
called β-smooth over K if for all x ∈ K,y ∈ K

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖22.

Definition 2 Let f(x) : K → R be a function over K. It is
called α-strongly convex over K if for all x ∈ K,y ∈ K

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖22.

Let f(x) : K → R be an α-strongly convex function overK
and x∗ = argminx∈K f(x). Combining Definition 2 with
the first order optimality condition (Boyd & Vandenberghe,
2004), it is easy to verify that

α

2
‖x− x∗‖22 ≤ f(x)− f(x∗) (5)

for any x ∈ K, which was commonly used in previous
studies (Hazan & Kale, 2012; Garber & Kretzu, 2019).

Finally, we present conditional gradient with stopping con-
dition (CGSC) (Garber & Kretzu, 2019), which will be
utilized as a subroutine of our proposed algorithms. Given a
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Algorithm 1 CGSC
1: Input: feasible set K, ε > 0, L, F (x), xin

2: τ = 0, c1 = xin

3: repeat
4: τ = τ + 1
5: vτ ∈ argmin

x∈K

{
∇F (cτ )>x

}
6: sτ = argmin

s∈[0,1]
{F (cτ + s(vτ − cτ ))}

7: cτ+1 = cτ + sτ (vτ − cτ )
8: until∇F (cτ )>(cτ − vτ ) ≤ ε or τ = L
9: return xout = cτ

function F (x) : K → R and an initial point c1 = xin ∈ K,
it iteratively performs the linear optimization step as follows

vτ ∈ argmin
x∈K

{
∇F (cτ )>x

}
cτ+1 = cτ + sτ (vτ − cτ )

until∇F (cτ )>(cτ −vτ ) ≤ ε or τ = L, where ε, L are two
parameters and

sτ = argmin
s∈[0,1]

{F (cτ + s(vτ − cτ ))}

is selected by line search. The detailed procedures of CGSC
are summarized in Algorithm 1.

Different from only performing linear optimization once,
CGSC can output a point xout such that F (xout) is very
small when L is large enough and ε is small enough. As
a result, it allows us to achieve a better regret bound than
performing linear optimization once. Note that CGSC has
been employed by Garber & Kretzu (2019) to develop a
projection-free algorithm in the bandit setting, which attains
the expected regret of O(T 3/4). In this paper, we intro-
duce it into the distributed OCO to propose projection-free
algorithms with only O(

√
T ) communication complexity,

and establish the O(T 3/4) and Õ(T 3/4) regret for the full
information and bandit settings, respectively.

3.2. Algorithm for Full Information Setting

To reduce the communication complexity of D-OCG, we
first divide the total T rounds into B blocks of size K,
where we assume that B = T/K is an integer without loss
of generality. Moreover, for each local learner i ∈ V , its
decision in each block m stays the same and is denoted by
xi(m). In this way, the local gradient of local learner i in
each round t is denoted by

gi(t) = ∇ft,i(xi(mt))

where mt = dt/Ke, and the cumulative gradient of local
learner i in each block m is denoted by

ĝi(m) =
∑
t∈Tm

gi(t)

Algorithm 2 D-BOCG
1: Input: feasible set K, η, L, ε and K
2: Initialization: choose {xi(1) = 0 ∈ K|i ∈ V } and

set {zi(1) = 0|i ∈ V }
3: for t = 1, · · · , T do
4: mt = dt/Ke
5: for each local learner i ∈ V do
6: if t > 1 and mod(t,K) = 1 then
7: ĝi(mt − 1) =

∑t−1
k=t−K gi(k)

8: zi(mt) =
∑
j∈Ni Pijzj(mt− 1) + ĝi(mt− 1)

9: define Fmt,i(x) = ηzi(mt)
>x + ‖x‖22

10: xi(mt) = CGSC(K, ε, L, Fmt,i(x),xi(mt −
1))

11: end if
12: play xi(mt) and observe gi(t) = ∇ft,i(xi(mt))
13: end for
14: end for

where Tm = {(m− 1)K + 1, · · · ,mK}.

Initially, we set xi(1) = 0 ∈ K and zi(1) = 0 for each
local learner i. Inspired by (2) and (3) used by Zhang et al.
(2017), at the beginning of each block m > 1, each local
learner i communicates with its neighbors to update zi(m)
as

zi(m) =
∑
j∈Ni

Pijzj(m− 1) + ĝi(m− 1)

which is utilized to define Fm,i(x) as

Fm,i(x) = ηzi(m)>x + ‖x‖22.

Similar to the update rules of D-OCG (4), one may simply
perform 1 linear optimization step with the above Fm,i(x)
for each local learner i. However, it will increase the regret,
since the number of updates is decreased. To address this
problem, we invoke CGSC for each update as

xi(m) = CGSC(K, ε, L, Fm,i(x),xi(m− 1)).

The detailed procedures of our algorithm are presented in
Algorithm 2, and it is called distributed block online condi-
tional gradient (D-BOCG). By setting K =

√
T , it is easy

to verify that the communication complexity of D-BOCG
is only O(

√
T ), which is significantly lower than the O(T )

complexity of D-OCG. Moreover, we establish the follow-
ing theorem regarding the regret of each local learner.

Theorem 1 Let η = RT−3/4

G , ε = 4R2T−1/2, K = T 1/2

and L = 16R2

ε2 (ηαKG
√
ε + η2α2K2G2), where α =

1+σ2(P )
1−σ2(P )

√
n + 1. Under Assumptions 1, 3 and 4, for any

i ∈ V , Algorithm 2 has

RT,i ≤ (8 + 3α′)nGRT 3/4

where α′ =
√
n

1−σ2(P ) .
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It is easy to verify that the total number of linear optimiza-
tion steps required by our D-BOCG is at most BL. Because
of Theorem 1, B = T/K =

√
T and

L =
16R2

ε2
(ηαKG

√
ε+ η2α2K2G2) =

(
2α+ α2

)√
T

our D-BOCG enjoys an O(T 3/4) regret bound with at most
O(T ) linear optimization steps, which is on the same order
as that required by D-OCG.

3.3. Algorithm for Bandit Setting

To handle the bandit setting, where only the loss value is
available to each local learner, the main challenge is due to
the lack of gradient. Therefore, we first introduce a stan-
dard technique called one-point gradient estimator (Flaxman
et al., 2005), which can approximate the gradient with a sin-
gle loss value.

One-point Gradient Estimator For a function f(x), its
δ-smoothed version is defined as

f̂δ(x) = Eu∼Bd [f(x + δu)]

and satisfies the following lemma.

Lemma 1 (Lemma 1 in Flaxman et al. (2005)) Let δ > 0,
we have

∇f̂δ(x) = Eu∼Sd

[
d

δ
f(x + δu)u

]
where Sd denotes the unit sphere in Rd.

Lemma 1 provides an unbiased estimator of the gradient
∇f̂δ(x) by only observing the single value f(x + δu).

Combining our D-BOCG with this technique, our algorithm
for the bandit setting is outlined in Algorithm 3, and named
as distributed block bandit conditional gradient (D-BBCG),
where 0 < δ ≤ r and

Kδ = (1− δ/r)K = {(1− δ/r)x|x ∈ K}.

Compared D-BBCG with D-BOCG, there exist three dif-
ferences as follows. First, in line 14 of D-BBCG, due to
the lack of ∇ft,i(xi(mt)), we adopt the one-point gradient
estimator to approximate it as

gi(t) =
d

δ
ft,i(yi(t))ui(t)

where yi(t) = xi(mt) + δui(t) and ui(t) ∼ Sd. Second,
as in line 13 of D-BBCG, the actual decision yi(t) is xi(mt)
plus a random decision δui(t), which promotes more explo-
rations. Third, to ensure yi(t) ∈ K, in line 10 of D-BBCG,
we perform

xi(mt) = CGSC(Kδ, ε, L, Fmt,i(x),xi(mt − 1))

Algorithm 3 D-BBCG
1: Input: feasible set K, δ, η, L, ε and K
2: Initialization: choose {xi(1) = 0 ∈ Kδ|i ∈ V } and

set {zi(1) = 0|i ∈ V }
3: for t = 1, · · · , T do
4: mt = dt/Ke
5: for each local learner i ∈ V do
6: if t > 1 and mod(t,K) = 1 then
7: ĝi(mt − 1) =

∑t−1
k=t−K gi(k)

8: zi(mt) =
∑
j∈Ni Pijzi(mt − 1) + ĝi(mt − 1)

9: define Fmt,i(x) = ηzi(mt)
>x + ‖x‖22

10: xi(mt) = CGSC(Kδ, ε, L, Fmt,i(x),xi(mt −
1))

11: end if
12: ui(t) ∼ Sd
13: play yi(t) = xi(mt) + δui(t) and observe

ft,i(yi(t))
14: gi(t) = d

δ ft,i(yi(t))ui(t)
15: end for
16: end for

by replacing K in line 10 of D-BOCG with a smaller set
Kδ ⊆ K, which limits xi(mt) in the set Kδ. Because of
Assumption 3 and 0 < δ ≤ r, it is easy to verify that
x + δu ∈ K, for any x ∈ Kδ and u ∼ Sd.

Similar to D-BOCG, the communication complexity of D-
BBCG is O(

√
T ) by setting K =

√
T , which is also sig-

nificantly lower than that of D-OCG. Following previous
studies for the bandit setting (Flaxman et al., 2005; Garber &
Kretzu, 2019), we further assume that the adversary is obliv-
ious (i.e., all local loss functions are chosen beforehand),
and establish the following theorem for D-BBCG.

Theorem 2 Let η = cR
αT dM

T−3/4, δ = cT−1/4, ε =

4R2T−1/2, K = T 1/2 and L = 16R2

ε2 (ηαβ
√
ε+ η2α2β2),

where c > 0 is a constant such that δ ≤ r, β = αT
dM
√
K

δ +

KG, α = 1+σ2(P )
1−σ2(P )

√
n + 1 and αT = 1 +

√
8 ln n

√
T
γ .

Under Assumptions 1, 2, 3 and 4, for any i ∈ V , with
probability at least 1− 2γ, Algorithm 3 has

RT,i ≤ O
(
αTT

3/4
)
.

According to Theorem 2, we first note that our D-BBCG
attains a high-probability regret bound of Õ

(
T 3/4

)
, which

is almost the same as that of D-BOCG up to a logarithmic
factor. Moreover, similar to D-OCG and D-BOCG, our D-
BBCG requires at most O(T ) linear optimization steps, due
to B = T/K =

√
T and

L =
16R2

ε2
(ηαβ

√
ε+ η2α2β2) =

(
2ρ+ ρ2

)√
T

where ρ = α+ αcG
αT dM

.
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4. Theoretical Analysis
Due to the limitation of space, we only provide the proof
of Theorem 1 and the omitted proofs can be found in the
supplementary material.

4.1. Proof of Theorem 1

In the beginning, we define several auxiliary variables.

Let z̄(m) = 1
n

∑n
i=1 zi(m) and ḡ(m) = 1

n

∑n
i=1 ĝi(m).

According to Assumption 4, it is easy to verify that

z̄(m+ 1) =
1

n

n∑
i=1

zi(m+ 1)

=
1

n

n∑
i=1

∑
j∈Ni

Pijzj(m) + ĝi(m)


=z̄(m) + ḡ(m).

Then, we define

F̄m+1(x) = ηz̄(m+ 1)>x + ‖x‖22

and x̄(m+1) = argmin
x∈K

F̄m+1(x). Moreover, let x̂i(m) =

argmin
x∈K

ηzi(m)>x + ‖x‖22 and x∗ ∈ argmin
x∈K

∑T
t=1 ft(x).

Now, we derive an upper bound of ‖xi(m)− x̄(m)‖2 with
the following three lemmas.

Lemma 2 (Lemma 6 in Zhang et al. (2017)) Let zi(1) =
0, zi(m + 1) =

∑
j∈Ni Pijzj(m) + ĝi(m) and z̄(m) =

1
n

∑n
i=1 zi(m) for m ∈ [B], where P satisfies Assumption

4. For any i ∈ V and m ∈ [B], assume ‖ĝi(m)‖2 ≤ β, we
have

‖zi(m)− z̄(m)‖2 ≤ α′β

where α′ =
√
n

1−σ2(P ) .

Lemma 3 (Lemma 5 in Duchi et al. (2011)) Let
ΠK(u, η) = arg min

x∈K
ηu>x + ‖x‖22. We have

‖ΠK(u, η)−ΠK(v, η)‖2 ≤ η‖u− v‖2.

Lemma 4 Let x̂i(m) = argmin
x∈K

Fm,i(x), for m ∈ [B].

For any i ∈ V and m ∈ [B], Algorithm 2 with ε ≤ 8R2 and
L = 16R2

ε2 (ηαKG
√
ε+ η2α2K2G2) has

Fm,i(xi(m))− Fm,i(x̂i(m)) ≤ ε

where α = 1+σ2(P )
1−σ2(P )

√
n+ 1.

According to Algorithm 2 and Assumption 1, we have
ĝi(m) =

∑
t∈Tm gi(t) and ‖ĝi(m)‖2 ≤ KG, where

Tm = {(m− 1)K + 1, · · · ,mK}.

So, applying Lemma 2 with ‖ĝi(m)‖2 ≤ KG, we have

‖zi(m)− z̄(m)‖2 ≤ α′KG. (6)

Then, applying Lemma 3 with (6), we have

‖x̂i(m)− x̄(m)‖2 ≤ η‖zi(m)− z̄(m)‖2 ≤ ηα′KG

which further implies that

‖xi(m)− x̄(m)‖2
≤‖xi(m)− x̂i(m)‖2 + ‖x̂i(m)− x̄(m)‖2

≤
√
Fm,i(xi(m))− Fm,i(x̂i(m)) + ηα′KG

≤
√
ε+ ηα′KG

(7)

where the second inequality is due to the fact that Fm,i(x)
is 2-strongly convex and (5), and the last inequality is due
to Lemma 4.

Let ε′ =
√
ε+ ηα′KG. Then, for any i, j ∈ V , we have

T∑
t=1

(ft,j(xi(mt))− ft,j(x∗))

≤
T∑
t=1

(ft,j(x̄(mt)) +G‖x̄(mt)− xi(mt)‖2 − ft,j(x∗))

≤
T∑
t=1

(ft,j(xj(mt)) +G‖x̄(mt)− xj(mt)‖2 − ft,j(x∗))

+GTε′

≤
T∑
t=1

∇ft,j(xj(mt))
>(xj(mt)− x∗) + 2GTε′

=

T∑
t=1

∇ft,j(xj(mt))
>(xj(mt)− x̄(mt))

+

T∑
t=1

∇ft,j(xj(mt))
>(x̄(mt)− x∗) + 2GTε′

≤
T∑
t=1

‖∇ft,j(xj(mt))‖2‖xj(mt)− x̄(mt)‖2

+

T∑
t=1

∇ft,j(xj(mt))
>(x̄(mt)− x∗) + 2GTε′

≤
T∑
t=1

∇ft,j(xj(mt))
>(x̄(mt)− x∗)

+

T∑
t=1

G‖x̄(mt)− xj(mt)‖2 + 2GTε′

≤
T∑
t=1

∇ft,j(xj(mt))
>(x̄(mt)− x∗) + 3GTε′

where the third inequality is due to the convexity of ft,j(x).
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Furthermore, for any i ∈ V , we have

T∑
t=1

n∑
j=1

ft,j(xi(mt))−
T∑
t=1

n∑
j=1

ft,j(x
∗)

≤
T∑
t=1

n∑
j=1

∇ft,j,(xj(mt))
>(x̄(mt)− x∗)

+ 3nGT
(√
ε+ ηα′KG

)
=

B∑
m=1

∑
t∈Tm

n∑
j=1

∇ft,j,(xj(mt))
>(x̄(mt)− x∗)

+ 3nGT
(√
ε+ ηα′KG

)
=

B∑
m=1

n∑
j=1

∑
t∈Tm

∇ft,j,(xj(m))>(x̄(m)− x∗)

+ 3nGT
(√
ε+ ηα′KG

)
=n

B∑
m=1

ḡ(m)>(x̄(m)− x∗)

+ 3nGT
(√
ε+ ηα′KG

)
.

(8)

To bound
∑B
m=1 ḡ(m)>(x̄(m) − x∗), we introduce the

following lemma.

Lemma 5 (Lemma 2.3 in Shalev-Shwartz (2011)) Let x̂∗t =

argmin
x∈K

∑t−1
i=1 fi(x) + R(x),∀t ∈ [T ], where R(x) is a

strongly convex function. Then, ∀x ∈ K, it holds that

T∑
t=1

(ft(x̂
∗
t )− ft(x))

≤R(x)−R(x̂∗1) +

T∑
t=1

(
ft(x̂

∗
t )− ft(x̂∗t+1)

)
.

According to the definition, we have

x̄(m+ 1) = argmin
x∈K

ηz̄(m+ 1)>x + ‖x‖22.

So, applying Lemma 5 with the linear loss functions{
ḡ(m)>x

}B
m=1

, the decision set K and the regularizer

R(x) =
‖x‖22
η , we have

B∑
m=1

ḡ(m)>(x̄(m)− x∗)

≤‖x
∗‖22
η
− 0 +

B∑
m=1

ḡ(m)>(x̄(m)− x̄(m+ 1))

≤R
2

η
+

B∑
m=1

‖ḡ(m)‖2‖x̄(m)− x̄(m+ 1)‖2.

(9)

It is easy to verify that F̄m+1(x) is 2-strongly convex, which
implies that

‖x̄(m)− x̄(m+ 1)‖22
≤F̄m+1(x̄(m))− F̄m+1(x̄(m+ 1))

=F̄m(x̄(m)) + ηḡ(m)>x̄(m)

− F̄m(x̄(m+ 1))− ηḡ(m)>x̄(m+ 1)

=F̄m(x̄(m))− F̄m(x̄(m+ 1))

+ ηḡ(m)> (x̄(m)− x̄(m+ 1))

≤η‖ḡ(m)‖2‖x̄(m)− x̄(m+ 1)‖2.

The above inequality can be simplified as

‖x̄(m)− x̄(m+ 1)‖2 ≤ η‖ḡ(m)‖2. (10)

Substituting (10) into (9), we have

B∑
m=1

ḡ(m)>(x̄(m)− x∗)

≤R
2

η
+ η

B∑
m=1

‖ḡ(m)‖22

=
R2

η
+ η

B∑
m=1

∥∥∥∥∥ 1

n

n∑
i=1

ĝi(m)

∥∥∥∥∥
2

2

≤R
2

η
+
η

n

B∑
m=1

n∑
i=1

‖ĝi(m)‖22

=
R2

η
+ ηBK2G2.

(11)

Finally, substituting (11) into (8), we have

T∑
t=1

n∑
j=1

ft,j(xi(mt))−
T∑
t=1

n∑
j=1

ft,j(x
∗)

≤nR
2

η
+ nηBK2G2 + 3nGT

(√
ε+ ηα′KG

)
=(8 + 3α′)nGRT 3/4.

4.2. Proof of Lemma 4

For brevity, we define hm(x) = Fm,i(x) − Fm,i(x̂i(m))
and hm = Fm,i(xi(m))− Fm,i(x̂i(m)).

For m = 1, because xi(1) = x̂i(1) = argmin
x∈K

‖x‖22, we

have

h1 = F1,i(xi(1))− F1,i(x̂i(1)) = 0 ≤ ε. (12)
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Then, for m = 2, we have

hm(xi(m− 1)) = Fm,i(xi(m− 1))− Fm,i(x̂i(m))

=Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m))

+ η(zi(m)− zi(m− 1))>xi(m− 1)

− η(zi(m)− zi(m− 1))>x̂i(m)

≤Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m− 1))

+ η(zi(m)− zi(m− 1))>(xi(m− 1)− x̂i(m))

≤Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m− 1))

+ η‖zi(m)− zi(m− 1)‖2‖xi(m− 1)− x̂i(m)‖2
≤Fm−1,i(xi(m− 1))− Fm−1,i(x̂i(m− 1))

+ η‖zi(m)− zi(m− 1)‖2‖xi(m− 1)− x̂i(m− 1)‖2
+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2
≤hm−1 + η‖zi(m)− zi(m− 1)‖2

√
hm−1

+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2
≤ε+ η‖zi(m)− zi(m− 1)‖2

√
ε

+ η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2
(13)

where the first inequality is due to x̂i(m − 1) =
argmin

x∈K
Fm−1,i(x) and the fourth inequality is due to the

fact that Fm−1(x) is 2-strongly convex and (5).

Moreover, because for each m = 1, · · · , B, Fm,i(x) is
2-strongly convex, we also have

‖x̂i(m− 1)− x̂i(m)‖22
≤Fm,i(x̂i(m− 1))− Fm,i(x̂i(m))

=Fm−1,i(x̂i(m− 1))− Fm−1,i(x̂i(m))

+ η(zi(m)− zi(m− 1))>x̂i(m− 1)

− η(zi(m)− zi(m− 1))>x̂i(m)

=Fm−1,i(x̂i(m− 1))− Fm−1,i(x̂i(m))

+ η(zi(m)− zi(m− 1))>(x̂i(m− 1)− x̂i(m))

≤η‖zi(m)− zi(m− 1)‖2‖x̂i(m− 1)− x̂i(m)‖2
which further implies that

‖x̂i(m− 1)− x̂i(m)‖2 ≤ η‖zi(m)− zi(m− 1)‖2.
(14)

To bound ‖zi(m)−zi(m−1)‖2, we introduce the following
lemma.

Lemma 6 (Lemma 3 in Zhang et al. (2017)) Let zi(1) =
0, zi(m + 1) =

∑
j∈Ni Pijzj(m) + ĝi(m) and z̄(m) =

1
n

∑n
i=1 zi(m) for m ∈ [B], where P satisfies Assumption

4. For any i ∈ V and m = 1, · · · , B, assume ‖ĝi(m)‖2 ≤
β, we have

‖zi(m+ 1)− zi(m)‖2 ≤ αβ

where α = 1+σ2(P )
1−σ2(P )

√
n+ 1.

For m ∈ [B], applying Lemma 6 with ‖ĝi(m)‖2 ≤ KG,
we have

‖zi(m+ 1)− zi(m)‖2 ≤ αKG. (15)

Substituting (14) and (15) into (13), we have

Fm,i(xi(m− 1))− Fm,i(x̂i(m))

≤ε+ η‖zi(m)− zi(m− 1)‖2
√
ε

+ η2‖zi(m)− zi(m− 1)‖22
≤ε+ ηαKG

√
ε+ η2α2K2G2.

According to Algorithm 2, we have

xi(m) = CGSC(K, ε, L, Fm,i(x),xi(m− 1)).

To bound hm = Fm,i(xi(m)) − Fm,i(x̂i(m)) with the
above inequality, we introduce the following lemma regard-
ing the theoretical guarantee of Algorithm 1.

Lemma 7 (Derived from Lemma 7 of Garber & Kretzu
(2019)) Let F (x) : K′ → R be a 2-smooth and 2-strongly
convex function, and x∗ = argminx∈K′ F (x), where K′ ⊆
RBd. Assume xin ∈ K′, ε ≤ 8R2 and L ≥ 16R2

ε2 (F (xin)−
F (x∗)− ε), Algorithm 1 ensures

F (xout)− F (x∗) ≤ ε.

Because Fm,i(x) is 2-smooth and 2-strongly convex, ε ≤
8R2 and L = 16R2

ε2 (ηαKG
√
ε + η2α2K2G2), applying

Lemma 7 with K′ = K, we have

hm = Fm,i(xi(m))− Fm,i(x̂i(m)) ≤ ε

for m = 2. By induction, we can complete the proof for
m = 1, · · · , B.

5. Experiments
In this section, we perform simulation experiments to verify
the performance of our proposed algorithms.

5.1. Experimental Settings

Following Zhang et al. (2017), we consider the problem of
multiclass classification in the distributed online learning
setting. Let k be the number of features, and let h be the
number of classes. In the t-th round, each local learner i
receives a single example ei(t) ∈ Rk and chooses a deci-
sion matrix Xi(t) = [x>1 ;x>2 ; · · · ;x>h ] ∈ Rh×k from the
convex set K = {X ∈ Rh×k|‖X‖∗ ≤ τ}, where ‖X‖∗
denotes the trace norm of X and τ is a constant. Note that
Xi(t) can be utilized to predict the class label of ei(t) by
computing argmax`∈[h] x

>
` ei(t). Then, the true class label

yi(t) is revealed, and it suffers the multivariate logistic loss
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Figure 1. Comparison of D-BOCG and D-OCG on the aloi dataset.

ft,i(Xi(t)) = log
(
1 +

∑
` 6=yi(t) e

x>` ei(t)−x>yi(t)ei(t)
)
. The

distributed network is modeled by a cycle graphG = (V,E)
with 9 nodes, where each node only has three immedi-
ate neighbors including itself. The weight matrix P is
simply set as Pij = 1/3 if (i, j) ∈ E, which satisfies
Assumption 4. For any dataset, we will divide it into 9
equally-sized parts, and distribute them onto the comput-
ing nodes in the network. To measure the performance of
each algorithm, we introduce the average loss defined as
1
tn2

∑t
q=1

∑n
i=1

∑n
j=1 fq,j(Xi(q)) for the t-th round.

5.2. Experimental Results

To validate the advantage of our D-BOCG on communica-
tion complexity, we first compare it against D-OCG (Zhang
et al., 2017). As in Zhang et al. (2017), we also use the
aloi dataset from the LIBSVM repository (Chang & Lin,
2011), the details of which are summarized in Table 1. Ac-
cording to Zhang et al. (2017), we set the bound of trace
norm as τ = 50, and set st = 1/

√
t and η = cT−3/4 for

D-OCG by tunning the constant c. For our D-BOCG, we
set K = b

√
T c, ε = 1e − 5, L = 20 and η = cT−3/4 by

tunning the constant c. For both D-BOCG and D-OCG, the
constant c is selected from [0.01, · · · , 1e5]. Fig. 1 shows the
average loss versus the number of communication rounds
for D-BOCG and D-OCG. We find that the average loss
of our D-BOCG decreases faster than that of D-OCG with
the increasing of communication rounds, which verifies the
theoretical results of our D-BOCG.

Then, to verify the performance of our D-BBCG, we com-
pare it with our D-BOCG. Note that D-BBCG only uses
approximate gradients generated by the one-point gradient
estimator, the performance of which is highly affected by
the dimensionality. To make a fair comparison, we use
the poker dataset from the LIBSVM repository, the dimen-
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2.4

Figure 2. Comparison of our two algorithms on the poker dataset.

Table 1. Summary of datasets
Dataset #Features #Classes #Examples

aloi 128 1000 108000
poker 10 10 1025010

sionality of which is relatively small. The upper bound of
trace norm is set to be τ = 1, and the parameters of D-
BOCG are set in the same way as the previous experiment.
For D-BBCG, we set K = b

√
T c, ε = 1e − 5, L = 20,

δ = 0.1 and η = cT−3/4 by selecting the constant c from
[0.01, · · · , 1e5]. Since D-BBCG is a randomized algorithm,
we repeat it 10 times and report the average results. Fig. 2
shows the average loss versus the number of communication
rounds for D-BOCG and D-BBCG. We find that D-BBCG is
worse than D-BOCG, which is reasonable because D-BBCG
is working with the more challenging bandit setting.

6. Conclusion and Future Work
In this paper, we first propose a projection-free algorithm
called D-BOCG for distributed online convex optimization,
the communication complexity of which is only O(

√
T ).

According to our analysis, it enjoys an O(T 3/4) regret
bound with at most O(T ) linear optimization steps, which
matches the best result established by the existing algorithm
with O(T ) communication complexity. Furthermore, to
handle the more challenging bandit setting, we propose our
second projection-free algorithm named as D-BBCG, which
is a bandit variant of D-BOCG. Similar to D-BOCG, it at-
tains a high-probability regret bound of Õ(T 3/4) with at
most O(T ) linear optimization steps. An open question is
whether the regret bound for the full information setting can
be improved if a few projections are allowed. We note that
O(log T ) projections are sufficient to achieve the optimal
convergence rate for stochastic optimization of smooth and
strongly convex functions (Zhang et al., 2013).
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