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Abstract
In this paper, we study contrastive learning from
an optimization perspective, aiming to analyze
and address a fundamental issue of existing con-
trastive learning methods that either rely on a large
batch size or a large dictionary of feature vectors.
We consider a global objective for contrastive
learning, which contrasts each positive pair with
all negative pairs for an anchor point. From the
optimization perspective, we explain why exist-
ing methods such as SimCLR require a large
batch size in order to achieve a satisfactory re-
sult. In order to remove such requirement, we pro-
pose a memory-efficient Stochastic Optimization
algorithm for solving the Global objective of
Contrastive Learning of Representations, named
SogCLR. We show that its optimization error is
negligible under a reasonable condition after a
sufficient number of iterations or is diminishing
for a slightly different global contrastive objective.
Empirically, we demonstrate that SogCLR with
small batch size (e.g., 256) can achieve similar
performance as SimCLR with large batch size
(e.g., 8192) on self-supervised learning task on
ImageNet-1K. We also attempt to show that the
proposed optimization technique is generic and
can be applied to solving other contrastive losses,
e.g., two-way contrastive losses for bimodal con-
trastive learning. The proposed method is im-
plemented in our open-sourced library LibAUC
(www.libauc.org).

1. Introduction
Recently, self-supervised learning (SSL) for pre-training
deep neural networks, which springs from natural language
processing (Mikolov et al., 2013; Devlin et al., 2018; Lan
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et al., 2019), has emerged to be a popular paradigm in com-
puter vision for learning visual representations (Dosovitskiy
et al., 2020; Zhu et al., 2020c; Liu et al., 2021). A simple
yet effective framework of SSL for learning visual repre-
sentations is contrastive learning (Chopra et al., 2005; Chen
et al., 2020a), which uses the gradient of a contrastive loss to
update model, aiming to push the similarity scores between
positive pairs (augmented data from the same image) to be
higher than that between negative pairs (augmented data
from different images).

While the great performance of contrastive learning methods
and their alternatives have been demonstrated on popular
benchmarks (e.g., ImageNet), some fundamental problems
of contrastive learning remain unresolved. One such prob-
lem is the requirement for large batch size. Unlike super-
vised learning methods, the performance of SimCLR (Chen
et al., 2020a) decreases as the batch size decreases, and a
satisfactory performance can be only achieved with a large
batch size on natural image datasets (e.g., 8192 for Ima-
geNet). However, in practice, training models with such a
large batch size can be memory-intensive and requires more
computational resources, especially when adopting large-
scale backbones (e.g., Vision Transformers (Dosovitskiy
et al., 2021; Zhai et al., 2021)) or taking video sequences as
input (Qian et al., 2021).

To address this issue, some ad-hoc approaches have been in-
vestigated. For example, the MoCo method (He et al., 2020)
uses a large dictionary to maintain a set of feature vectors
for constructing negative pairs with data in the mini-batch.
Other approaches choose to get around such issue by opti-
mizing pairwise loss (Grill et al., 2020; Zbontar et al., 2021;
Chen & He, 2021) or other losses (Caron et al., 2020). Nev-
ertheless, the fundamental issue of optimizing a contrastive
loss with a large batch size requirement still exists. This
also occurs in other tasks with a similar contrastive loss, e.g.,
bimodal SSL tasks by optimizing a two-way contrastive loss
(e.g., CLIP (Radford et al., 2021)).

In this paper, we aim to address this fundamental problem
from the optimization perspective by considering a global
objective for contrastive learning, providing a rigorous anal-
ysis to explain why SimCLR requires a large mini-batch
size, and designing a memory-efficient stochastic algorithm
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for optimizing the global contrastive objective with provable
convergence guarantee under a reasonable condition. Our
major contributions are summarized below:

• We propose a global objective for contrastive learn-
ing, in which the similarity score between a random
positive pair of an anchor point is contrasted with that
between the anchor point and all other images and
their augmented data. We cast the problem as a special
case of coupled compositional stochastic optimization
by highlighting the challenges in designing stochastic
algorithms.

• We analyze SimCLR from the perspective of optimiz-
ing the global contrastive objective, and show that it
suffers from an optimization error of SimCLR in the
order of O(1/

√
B) for the objective’s gradient norm

even with the number of iterations approaching infinity,
which explains the phenomena that SimCLR’s perfor-
mance degrades as the mini-batch size decreases.

• We propose a memory-efficient stochastic algorithm
named SogCLR without relying on a large batch size.
We establish the convergence of the proposed algo-
rithm SogCLR and show that its optimization error
for the aforementioned global contrastive objective is
negligible under a mild condition. Moreover, we show
that SogCLR converges to a stationary solution to a
slightly different global contrastive objective with a
diminishing optimization error as the number of itera-
tions increases.

• We demonstrate the empirical success of SogCLR on
ImageNet-1K. With a standard mini-batch size 256 and
the same other settings as SimCLR, by running 800
epochs, SogCLR achieves a performance of 69.4% for
top 1 linear evaluation accuracy, which is better than
69.3% of SimCLR using a large batch size 8,192. By
incorporating other useful techniques into SogCLR,
e.g., multi-crop data augmentation and multi-layer pro-
jection heads, we are able to achieve 72.5% top-1 linear
evaluation accuracy on ImageNet-1K, which is com-
petitive with existing listwise contrastive loss based
SSL methods using a large dictionary (e.g., MoCo-v2).
We further demonstrate the usefulness of the proposed
technique for bimodal contrastive learning, e.g., CLIP.

Finally, we would like to emphasize that to the best of our
knowledge, this is the first work that analyzes SimCLR and
a stochastic algorithm for contrastive learning from an op-
timization perspective. We expect that this paper would
inspire new studies by proposing better algorithms for opti-
mizing the global contrastive objective.

2. Related Work
We would like to point out that SSL is an emerging field and
there are tremendous studies proposing different method-

ologies. Nevertheless, we focus our attention on different
methodologies for contrastive SSL.

Contrastive Losses. There are multiple definitions of con-
trastive loss, including pairwise losses, and listwise losses.
The notation of contrastive loss dates back to 15 years ago
for dimensionality reduction (Hadsell et al., 2006), which
uses pairwise contrastive losses that simply push the simi-
larity scores between positive pairs to be high and that be-
tween negative pairs to be low. Listwise contrastive losses
have been proposed in the context of distance metric learn-
ing (Sohn, 2016), which contrasts a similarity score between
an anchor point and a positive sample with a number of simi-
larity scores between the anchor point and multiple negative
samples. (Oord et al., 2018) is a pioneering work that uses
a contrastive loss for unsupervised representation learning.
They propose a contrastive loss based on noise contrastive
estimation (NCE), which is called InfoNCE. It was used to
learn representations by predicting the future in the latent
space by using autoregressive model. However, a funda-
mental issue regarding how to select the negative samples
and how it affects the learning performance was not studied
in (Oord et al., 2018).

Contrastive SSL. The InfoNCE loss was later adopted in
the momentum contrast (MoCo) method (He et al., 2020) for
SSL of visual representations. MoCo tackles the question
of how to construct negative samples in the latent space. It
introduces two techniques (i) a momentum encoder network,
which is used to generate representations of images for con-
trast with that generated by the target network on the anchor
points, and is updated by a momentum step; (ii) a large dic-
tionary that stores a number of feature representations for
constructing negative pairs that are generated by the momen-
tum encoder network, and is updated by a queue structure in
a FIFO fashion. Later, the large dictionary and momentum
contrast was abandoned in SimCLR (Chen et al., 2020a),
which uses a large batch to sample data for constructing pos-
itive and negative pairs within the batch. SimCLR makes
several contributions for improving the performance, in par-
ticular using strong data augmentations and MLP projection
layers. SimCLR conducted extensive experiments by study-
ing how the batch size and other factors (e.g. number of
epochs) affect the performance and a key observation is that
the performance degrades as the mini-batch size decreases.
Although a large-batch size is preferred or not an issue in
industrial setting, the fundamental issue of requiring large
batch size is still not well addressed.

Improvements on top of MoCo or SimCLR. Recently,
there have been some efforts made for improving MoCo
and SimCLR. MoCo-v2 (Chen et al., 2020c) is an improved
version of MoCo by adopting strong data augmentations and
multiple MLP projection heads as in SimCLR. MoCo-v2
(with ResNet-50 as backbone) achieves 71.1% top-1 linear
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Table 1. Comparison of different InfoNCE-loss based contrastive learning methods and their top-1 linear evaluation accuracy by using
800 epochs, a batch size of 256, and ResNet-50 on ImageNet-1K. Momentum encoder is introduced by MoCo (He et al., 2020). We
expect the performance of SogCLR can be further improved by incorporating other techniques, e.g., InfoMin augmentation.

Method Batch Size Memory Bank Momentum Encoder Other Tricks Convergence Top1 Acc.
SimCLR (Chen et al., 2020a) Large-batch No No Strong Aug. No 66.5

NNCLR (Dwibedi et al., 2021) Large-batch No No Nearest Neighbors No 68.7
SiMo (Zhu et al., 2020a) Small-batch No Yes Margin Trick No 72.1

MoCov2 (Chen et al., 2020c) Small-batch Yes Yes Strong Aug. No 71.1
InfoMin (Tian et al., 2020) Small-batch Yes Yes InfoMin Aug. No 73.0

SogCLR (Ours) Small-batch No No GC Optimization Yes 72.5

evaluation accuracy on ImageNet-1K with small batch size
of 256, which suppresses the SimCLR’s 69.3% with larger
batch size of 8192.

Several works have tried to approach SSL from the Info-
Max principle, i.e., maximizing mutual information between
different views and the shifted negative InfoNCE loss is a
lower bound of mutual information (Tian et al., 2020; Chen
et al., 2021a; Zhu et al., 2020b). (Tian et al., 2020) studies
the effects of data augmentations from the perspective of
mutual information between different views, and uses more
and stronger data augmentations on the top of MoCo-v2
framework, which achieves 73% top-1 linear evaluation
accuracy on Imagenet-1K with ResNet-50. (Chen et al.,
2021a) clarifies why InfoNCE loss fails under small batch-
size settings by showing that the negative InfoNEC loss
approaches saturation (e.g., log(B) where B is batch size)
after a few epochs. To address this issue, they propose a
self-normalized version of InfoNCE loss named FlatNCE, in
which larger weights will prioritize harder negative samplers
in a mini-batch to facilitate the models learning better repre-
sentations. Zhu et al. (2020b) proposes a similar technique
from the viewpoint of mutual information lower bound to
address the small batch collapse issue. In detail, they add a
constant margin to offset the similarity score between posi-
tive pairs, which could help increase the weight of learning
from hard negative samples.

(Li et al., 2020; Dwibedi et al., 2021; Chuang et al., 2020)
improve InfoNCE in a different way. For example, (Li
et al., 2020) proposes ProtoNCE loss that uses prototypical
representations in place of the second view in InfoNCE loss,
which are learned by clustering the data into a large number
of clusters. (Dwibedi et al., 2021) uses similar samples for
a given image extracted from a support set maintained by a
queue to improve the data diversity for training. (Chuang
et al., 2020) proposes a debiased contrastive loss to tackle
the sampling bias (false negative samples) and they observe
sampling negative samples from the truly different labels
improves the performance. We compare our method with
several InfoNCE-loss based SSL methods in Table 1 with
top-1 linear evaluation accuracy reported on ImageNet-1K.

Global Contrastive Loss. The global contrastive loss that
contrasts a positive pair with all possible negative pairs has
been explored in the literature. For example, Wang & Isola

(2020) formulates the InfoNCE loss with the number of
negative samples approaching infinity into two parts and
explain them from the perspectives of alignment and unifor-
mity, where alignment aims to keep similar positive pairs
closer and uniformity aims to perverse the maximal infor-
mation among all pairs by pushing them evenly distributed
on the hypersphere. However, The challenge of handling a
large number of components in the normalization term in
the InfoNCE loss is not well addressed. One of the most
well-known techniques to address this challenge is to use
NCE (Gutmann & Hyvärinen, 2010), which reduces the
problem to how to sample negative data and how many
negative data are sufficient for obtaining satisfactory perfor-
mance. Although the original paper of NCE shows that the
approximation error of NCE decreases as the number of sam-
ples increases, it is unclear how it affects the performance
of SSL for visual representations. In contrast, this paper
provides an arguable better approach for tackling the global
contrastive loss in the sense that (i) the performance does
not hinge on how to sample negative samples and how many
to sample; (ii) there is a stronger convergence guarantee for
optimizing the global contrastive loss.

Evolution of State-of-the-art. Caron et al. (2020) proposes
SwAV that solves a swapped prediction problem wherein the
prototypical codes obtained from one data augmented view
are predicted using the similarity scores between the other
view’s representations and the prototypical codes. They also
propose a multi-crop augmentation strategy, which signifi-
cantly boosts the performance under small batch setting. In
particular, SwAV achieves a top-1 linear evaluation accuracy
of 75.3% using a batch size of 256 on ImageNet-1K. Grill
et al. (2020) proposes a method named BYOL which mini-
mizes a pairwise loss based on feature representations of two
data augmented views from two neural networks, referred
to as online and target networks, respectively. From an aug-
mented view of an image, an online network is learned to
predict the target network representation of the same image
under a different augmented view. The target network is
updated by a momentum step as in MoCo. BYOL achieves
74.3% top-1 linear evaluation accuracy on ImageNet-1K
with a ResNet-50. Recently, a concurrent work (Tomasev
et al., 2022) attains state-of-the-art performance of top-1 lin-
ear evaluation accuracy (77.1%) by using a combination of
techniques, e.g., the InfoNCE loss as in SimCLR/MoCo, the
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online-target setup as in MoCo/BYOL, the multi-crop aug-
mentations as in SwAV, and the invariance loss as in (Mitro-
vic et al., 2020). We also notice that larger backbones lead
to better performance, e.g, ResNet-200 (Grill et al., 2020;
Tomasev et al., 2022) and Vision Transformer (Chen et al.,
2021c; Li et al., 2021). We would like to point out that it
is not our focus to leverage all of these different techniques
to achieve state-of-the-art performance. But instead we fo-
cus on understanding the fundamental limits of optimizing
the InfoNCE loss and providing an alternative yet effective
strategy to make contrastive learning possible without using
a large batch size, which is potentially useful for differ-
ent methods, e.g., supervised contrastive learning (Khosla
et al., 2020), and bimodal contrastive learning mentioned
below (Radford et al., 2021).

Recently, a two-way contrastive loss has been used in bi-
modal contrastive learning (Zhang et al., 2021; Radford
et al., 2021), which takes paired image and text as input
and aims to map them into a Euclidean space that are closer
than non-observed image/text pairs. The CLIP model (Rad-
ford et al., 2021) uses this idea to train a model on a large
image-text dataset and observe promising zero-shot predic-
tion performance for downstream tasks. However, their
approach also uses a very large batch size equal to 32,768.

3. Optimizing Global Contrastive Objective
Notations. Let D = {x1, . . . ,xn} denote the set of training
images, let P denote a set of data augmentation operators
that can be applied to each image to generate a copy. Let
A(·) ∈ P denote a random data augmentation operator,
and let x ∈ D denote a random example from D. Let
Si = {A(x) : ∀A ∈ P,∀x ∈ D \ {xi}} denote all training
images including their augmented versions but excluding
that of xi. Let E(·) denote the encoder network parameter-
ized by w ∈ Rd that outputs a normalized feature represen-
tation of an input image. Below, A(xi) and A(xj) denote
two independent random data augmentations applied to xi

and xj independently.

The SimCLR method is to update the model according to
the gradient of the local contrastive loss that is defined
over sampled mini-batch data. To this end, a random mini-
batch of B images B = {x1, · · · ,xB} are first sampled.
Then for each image xi ∈ B, two random augmented data
A(xi),A′(xi) are generated by two randomly sampled data
augmentations A,A′ ∈ P . Then the gradient is computed
based on the following local contrastive loss for each data
xi and its symmetric one by switching A and A′:

LB(w;xi,A,A′) = − ln
exp(E(A(xi))

⊤E(A′(xi))/τ)

g(w;xi,A,B)
,

(1)
where τ is known as the temperature parameter, and

g(w;xi,A,Bi) =
∑

zj∈Bi

(exp(E(A(xi))
⊤E(zj)/τ) (2)

and Bi = {A(xj),A′(xj) : xj ∈ B \ {xi}} denote the set
of images that are generated by applying independent two
random data augmentations to each image in B indepen-
dently excluding xi.

3.1. A Global Contrastive Objective: V1

The local contrastive loss defined over the mini-batch sam-
ples hides the complexity for contrastive learning, which
renders the SimCLR method sensitive to the mini-batch size.
To address this issue, we propose a global contrastive objec-
tive. To this end, we define the following global contrastive
loss for each augmented data pair (A(xi),A′(xi)):

L(w;xi,A,A′) = − ln
exp(E(A(xi))

⊤E(A′(xi))/τ)

ε′ + g(w;xi,A,Si)
,

(3)
where ε′ > 0 is a small constant, which is introduced simply
for the purpose of analysis to ensure the denominator that
involves g(w;xi,A,Si) is lower bounded 1, and

g(w;xi,A,Si) =
∑
z∈Si

(exp(E(A(xi))
⊤E(z)/τ), (4)

which contrasts the similarity score between each positive
pair E(A(xi))

⊤E(A′(xi) with the similarity scores of neg-
ative pairs E(A(xi))

⊤E(z) for all z ∈ Si. Based on the
individual contrastive loss, we define the following global
contrastive objective (GCO) for minimization:

min
w

F (w) = Exi∼D,A,A′∼P [τL(w;xi,A,A′)] (5)

where ∼ denotes a random sample, L is multiplied by τ
to ensure the gradient is not illy scaled. In contrast to an-
other variant proposed in section 3.4, we refer to the above
objective as the V1 GCO.

To highlight the challenge for optimizing the global con-
trastive objective, we consider the calculation of the gradient
of τL(w;xi,A,A′) in terms of the parameters w of the en-
coder network E.

τ∇L(w;xi,A,A′) = −∇(E(A(xi))
⊤E(A′(xi)))

+
τ

ε′ + g(w;xi,A,Si)
∇g(w;xi,A,Si).

It is notable that the first term can be easily computed
by back-propogation. The challenge lies at computing
the second term, where g(w;xi,A,Si) involves a large
number of examples in Si that includes all images and
their augmented data excluding that of xi. Due to the
finite-sum structure of g in (4), we can compute an un-
biased estimator by sampling data from Si. Indeed, we can
show that 1

|Bi|g(w;xi,A,Bi) is an unbiased estimator of
1

|Si|g(w;xi,A,Si). SimCLR directly uses this mini-batch

1We can also modify the definition of Si to include A(xi) for
ensuring g(w;xi,A,Si) is lower bounded without adding ε′.
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estimator to estimate g(w;xi,A, Si) and ∇g(w;xi,A,Si)
in the above equation, yielding the following approximated
gradient of τL(w;xi,A,A′):

τ∇̂L(xi,A,A′) = −∇(E(A(xi))
⊤E(A′(xi))) (6)

+
τ

ε+ g(w;xi,A,Bi)
∇g(w;xi,A,Bi),

where ε = |Bi|ε′
|Si| . However, this quantity is a biased esti-

mator of τ∇L(w;xi,A,A′) due to the non-linear function
1

ε+g(w;xi,A,Bi)
.

3.2. SimCLR and its Convergence for V1 GCO

The SimCLR method can be viewed as a mini-batch based
stochastic method, which uses a gradient estimator that is
the average of the estimator in (6) for xi in the sampled
mini-batch. To analyze the optimization error of SimCLR,
we first consider the following simplest update 2:

wt+1 = wt − η
1

B

∑
xi∈B

∇̂L(xi,A,A′). (7)

We establish the optimization error of the above update for
T iterations for optimizing the V1 GCO.

Theorem 1. Assume F is smooth, g is smooth and Lip-
chitiz continuous, SimCLR with the update (7) ensures
that E[∥∇F (wt′)∥2] ≤ O( 1

ηT + η + 1
B ) for a random

t′ ∈ {1, . . . , T}.

Remark: The above theorem implies that SimCLR suffers
an optimization error at least in the order of O(1/

√
B) for

the objective’s gradient norm. Even with T → ∞, its op-
timization error is always dominated by O(1/

√
B). This

explains the phenomenon that the performance of SimLCR
degrades as the mini-batch size decreases. The above the-
orem also implies in order to find an ϵ-level stationary so-
lution, i.e., E[∥∇F (w′

t)∥ ≤ ϵ], we can set η = O(ϵ2) and
T = O(1/ϵ4) and B = O(1/ϵ2). All missing proofs can
be found in the supplement.

3.3. SogCLR and its Convergence for V1 GCO

To address the issue of SimCLR, in this section we propose
a memory-efficient stochastic algorithm for solving (5) with-
out suffering from a large optimization error depending on
the batch size. To this end, we decompose the objective
function into three terms:
F (w) = Exi∼D,A,A′∼P(E(A(xi))

⊤E(A′(xi))) (8)

+
τ

n

∑
xi∈D

EA ln

(
ε′

|Si|
+

1

|Si|
g(w;xi,A,Si)

)
+ Const,

where Const is a constant that is independent of the model
parameters. Below, we let f(·) = τ ln(ε′/|Si|+ ·).

2For simplicity, we do not include another similar term in the
gradient estimator by switching A and A′, which will not affect
the analysis.

Algorithm 1 SogCLR
1: Input: w0 ∈ Rd, Initialize u0 ∈ Rn

2: Draw a batch of B samples denoted by B = {xi}Bi=1.
3: for t = 1, . . . , T do
4: for xi ∈ B do
5: Compute g(wt;xi,A,Bi) and g(wt;xi,A′,Bi)

according to (2)
6: Update ui,t according to (9)
7: end for
8: Compute the gradient estimator mt by (10)
9: vt = (1− β)vt−1 + βmt

10: wt+1 = wt − ηvt (or use Adam-style update)
11: end for

Our algorithm is motivated by the coupled compositional
stochastic optimization studied in (Qi et al., 2021) for max-
imizing Average Precision, whose objective has a form of
1
n

∑
i f(gi(w)) that is similar to the second component in

our objective F (w). The key idea of the proposed algorithm
is to keep track of 1

|Si|g(w;xi,A,Si) by a scalar, whose
averaged error in the long run is diminishing. However,
different from the problem studied in (Qi et al., 2021), there
could be many data augmentations in P . As a result, by
maintaining a scalar for each xi ∈ D,A ∈ P , the memory
cost is O(n|P|) which increases as we increase the num-
ber of data augmentations and could be very large if |P|
is large. By noting that A(xi),∀A ∈ P is an augmented
data from the same image for different A, we expect that
their embedded feature vectors are close in the sense that
EA,A′,z|E(A(xi))

⊤E(z) − E(A′(xi))
⊤E(z)]|2 ≤ ϵ2 for

any A,A′,xi and a small value ϵ. By leveraging this prop-
erty, we maintain and update a scalar ui for each image to
track 1

|Si|g(w;xi,A,Si). At the t-th iteration, we update
ui for xi ∈ B by moving average

ui,t = (1− γ)ui,t−1

+ γ
1

2|Bi|
(g(wt;xi,A,Bi) + g(wt;xi,A′,Bi)),

(9)

where γ ∈ (0, 1). Then we can compute a stochastic gradi-
ent estimator by

mt = − 1

B

∑
xi∈B

∇(E(A(xi))
⊤E(A′(xi))) (10)

+
pi,t
2|Bi|

(∇g(wt;xi,A,Bi) +∇g(wt;xi,A′,Bi)).

where pi,t =
τ

ε′/|Si|+ui,t−1
= ∇f(ui,t−1). Finally, we can

update the model parameter wt+1 by using a momentum-
style update or an Adam-style update. The detailed steps are
summarized in Algorithm 1, which is referred as SogCLR
to emphasize that we aim to optimize the global contrastive
objective.

We note that the memory cost of SogCLR is O(n + d),
which is O(d) for over-parameterized deep neural networks
with d ≫ n. The per-iteration complexity of SogCLR is the
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same as SimCLR.

Next, we provide a convergence result for SogCLR.

Theorem 2. Assume that EA,A′Ez∼Si
|E(A(xi))

⊤E(z)−
E(A′(xi))

⊤E(z)|2 ≤ ϵ2 for any xi ∈ D and the same
conditions as in Theorem 1 hold, then with γ ≤ n

B , and

η = O(min
{
β, γB

n , 1
LF

}
), after T iterations, SogCLR

ensures that E[∥∇F (wt′)∥2] ≤ O( 1
ηT + β+γ

B + ϵ2) for
a random t′ ∈ {1, . . . , T}.

Remark: The above theorem implies that by setting
β =

√
B/T < 1 and γ =

√
n/T < 1, then Sog-

CLR’s optimization error will converge to the level of ϵ
when T = O(max( n

B2ϵ4 ,
1

Bϵ4 )), i.e., E[∥∇F (wt′)∥2] ≤
O( 1√

BT
+

√
n

B
√
T
+ ϵ2) ≤ O(ϵ2). When ϵ is small enough,

the optimization error of SogCLR is negligible. In addi-
tion, the analysis also implies that SogCLR enjoys a parallel
speed-up, i.e., with a larger mini-batch size B it needs a less
number of iterations to converge to a small error.

One might notice that there are two differences between Sog-
CLR and the update (7) for SimCLR. One difference is that
SogCLR maintains and updates the u sequence. The second
difference is that SogCLR uses a momentum-style update.
We would like to emphasize that the moving average update
for ui,t+1 is the key to prove the above result. With this
technique, SogCLR is able to leverage the momentum-style
update or the Adam-style update to enjoy a small optimiza-
tion error. Without using the scalars ui,t+1 in computing the
gradient estimator, even we use the momentum-style update
or the Adam-style update for SimCLR, it still suffers from
an optimization error in the order of O(1/

√
B). In partic-

ular, we have the following corollary for the optimization
error of SimCLR with the momentum-style update.

Corollary 1. Let us consider the following momentum-style
update for SimCLR.

vt = (1− β)vt−1 + β
τ

B

∑
xi∈B

∇̂L(xi,A,A′) (11)

wt+1 = wt − ηvt. (12)
Assume F is smooth, g is smooth and Lipchitiz continuous,
with η ≤ O(β) SimCLR ensures that E[∥∇F (wt′)∥2] ≤
O( 1

ηT + 1
βT + β

B + 1
B ) for a random t′ ∈ {1, . . . , T}.

Remark: The dominating term in the upper bound is still
O(1/B) when T → ∞ and β = O(1/

√
T ).

3.4. SogCLR optimizes V2 Global Contrastive Objective

In this section, we propose another version of the global con-
trasive objective (V2) and show that SogCLR optimizes the
V2 global contrastive objective, which further justifies the
proposed algorithm SogCLR. In particular, let us consider

the following objective.
Fv2(w) = Exi∼D,A,A′∼P(E(A(xi))

⊤E(A′(xi))) (13)

+
1

n

∑
xi∈D

ln

(
ε′

|Si|
+

τ

|Si|
EAg(w;xi,A,Si)

)
+ Const.

The difference between V2 GCO (13) and V1 GCO (5)
is that the expectation over A in the second component is
moved from the outside of the logarithmic function to the
inside. The above objective function can be also explained
from the average of individual contrastive loss. To this end,
we define the following contrastive loss for each augmented
pair (A(xi),A′(xi)):

L2(w;xi,A,A′) = − ln
exp(E(A(xi))

⊤E(A′(xi))/τ)

ε′ + EAg(w;xi,A,Si)
.

(14)
Then we have

Fv2(w) = Ex∼D,A,A′ [τL2(w;xi,A,A′)].

Different from L(w;xi,A,A′), in the definition of
L2(w;xi,A,A′) the similarity score of a positive pair
(A(xi),A′(xi)) is contrasted with all possible negative
pairs between xi and other images.

We prove that SogCLR indeed converges to a stationary solu-
tion to the V2 GCO Fv2(w). Different from F (w) defined
in (5), the update of u of SogCLR can be considered di-
rectly as an moving average estimator of EAg(w;xi,A,Si)
in Fv2(w), which does not involve the error caused by dif-
ference between different augmented data. We state the
convergence below.

Theorem 3. Assume the same conditions as in Theorem 1
hold, then with γ ≤ n

B , and η = O(min
{
β, γB

n , 1
LF

}
), af-

ter T iterations, SogCLR ensures that E[∥∇Fv2(wt′)∥2] ≤
O( 1

ηT + β+γ
B ) for a random t′ ∈ {1, . . . , T}.

Remark: The above theorem implies that by setting β =√
B/T < 1 and γ =

√
n/T < 1, then SogCLR converges

to a stationary solution of Fv2(w) when T → ∞.

4. Extensions
In this section, we propose the extension of the proposed
technique for optimizing other contrastive losses. We note
that the large batch size requirement also exists in other
contrastive learning methods. Below we consider one task,
namely a self-supervised bimodal contrastive learning task.

Optimizing Two-way Contrastive Objective. A recent
paper (Radford et al., 2021) proposes a bimodal contrastive
learning method named CLIP, which uses a two-way con-
trastive loss to learn both the encoder network for the image
and the encoder network for the text. Radford et al. (2021)
uses a very large batch size 32, 768 on a self-collected large-
scale dataset with 400 million image and text pairs. Inspired
by the SogCLR method for optimizing one-way contrastive
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loss and its promising performance, below we present a
similar solution to alleviate the requirement of large batch
size for optimizing two-way contrastive loss. Given a set of
image-text pairs D = {(x1, t1), . . . , (xn, tn)}. We denote
by EI and ET the encoder network for the image data and
the text data, respectively. We can consider optimizing a
global two-way contrastive loss:

F (w) = − τ

n

n∑
i=1

log
exp(EI(xi)

⊤ET (ti)/τ)∑
t∈D exp(EI(xi)⊤ET (t)/τ)

− τ

n

n∑
i=1

log
exp(EI(xi)

⊤ET (ti)/τ)∑
x∈D exp(EI(x)⊤ET (ti)/τ)

.

Due to the large size of D, the challenge lies that
handling g(w;xi) = Et∼D exp(EI(xi)

⊤ET (t)/τ)) and
g(w; ti) = Ex∼D exp(EI(x)

⊤ET (ti)/τ)). We propose to
compute a stochastic gradient estimator by

mt = − 1

B

∑
i∈B

EI(xi)
⊤ET (ti)+

1

B

∑
i∈B

(
τ

uI
i,t

∇g(wt;xi,B) +
τ

uT
i,t

∇g(wt; ti,B)

)
where g(w;xi,B) and g(w; ti,B) are the mini-batch esti-
mators of g(w;xi) and g(w; ti) respectively. The scalar
uI
i,t+1 and uT

i,t+1 are updated for the sampled data according
to

uI
i,t+1 = (1− γ)uI

i,t + γg(wt;xi,B)
uT
i,t+1 = (1− γ)uT

i,t + γg(wt; ti,B).
Then we can update the model by Adam-style update or
momentum-style update.

5. Experiments
In this section, we compare SogCLR to SimCLR to demon-
strate the effectiveness of our optimization method. For a
fair comparison, we adopt the same settings as SimCLR
to SogCLR unless noted (the main difference is the batch
size). It is not our focus to leverage multiple techniques
for achieving state-of-the-art performance (Tomasev et al.,
2022). We also compare with the CLIP framework for bi-
modal contrastive learning. We aim to demonstrate SogCLR
can achieve competitive performance when using a smaller
batch size. For SimCLR, we run experiments on two scales
of ImageNet dataset. The small version is a subset with
randomly selected 100 classes (about 128k images) from
ImageNet denoted as ImageNet-S (Wu et al., 2019), and
the full version of ImageNet (about 1.2 million images) is
denoted as ImageNet-1K (Deng et al., 2009). For CLIP,
we manually construct a text-image pair dataset based on
ImageNet-S using the label of each image to construct a text.
For the implementations, we follow these open-source repos-
itories (Chen et al., 2020a; Radford et al., 2021; Ilharco et al.,
2021) available on Github. All experiments related to Sim-
CLR are trained on Google Cloud TPUs using 8 to 512 cores

depending on model size and batch size. All experiments re-
lated to CLIP are trained a NVIDIA V100 GPU with 32GB
memory size. The code for SogCLR is available at https:
//github.com/optimization-ai/sogclr.

5.1. Image Pretraining

Experiment setup. Following previous works (Chen et al.,
2020a;b), we pretrain ResNet-50 (He et al., 2016) with a
2-layer 128× 128 projection head on top of backbone en-
coder. We explore different batch sizes of 128, 256, 512
and different training epochs of 100, 200, 400, 800. We use
square root learning rate scaling (0.075×sqrt(BatchSize))
with a cosine decay schedule without restart. We also use
learning rate warm-up for 10 epochs, i.e., learning rate is
gradually increased to the maximum value. We follow the
same image augmentation strategies as in SimCLR (Chen
et al., 2020a;b) including random crop, color distortion, and
Gaussian blur. We use LARS optimizer (You et al., 2017)
(with a momentum of 0.9 and weight decay of 1e-6) and set
temperature(τ ) to 0.1 by default for all pretraining exper-
iments. For SogCLR in Algorithm 1, we tune γ in [0.99,
0.9, 0.8, 0.7, 0.6] and initialize sequence u0 by all zeros.
For evaluations, we report performance for linear classifier
trained on top of the pretrained encoder on ImageNet vali-
dation sets known as linear evaluation (Chen et al., 2020a;
He et al., 2020; Caron et al., 2020; Grill et al., 2020). In par-
ticular, we train a linear classier using SGD with Nesterov
momentum with a batch size of 4096 and learning rate of
0.1 for 90 epochs. For training, We random crop and resize
input images to 224×224. For testing, we apply center crop
on input images.

Results. We report top-1 accuracy by linear evaluation on
ImageNet-S and ImageNet-1K under different batch sizes
and training epochs in Table 2 and Table 3. We can see that
SogCLR performs consistently better than SimCLR under
all settings on two datasets. SogCLR achieves 3.9%, 2.3%,
1.9% average improvements on ImageNet-S and achieves
2.8%, 2.3%, 1.3% average improvements on ImageNet-1K
with batch size of 128, 256, 512, respectively. In particular,
we achieve 69.4% top-1 accuracy using batch size of 256,
which is better than original SimCLR’s large-batch (e.g.,
4096, 8192) results at 69.1% under the same number of
epochs. In addition, we compare the convergence speed
of SogCLR with SimCLR using the same batch size of
256 with different number of epochs on ImageNet-S and
ImageNet-1K as shown in Figure 4. The results indicate
that our algorithm converges faster in terms of number of
epochs using small batch sizes.

5.2. Vision and Language Pretraining

Experiment Setup. In this section, we aim to demonstrate
our algorithm can also be applied to solve bi-modal self-

https://github.com/optimization-ai/sogclr
https://github.com/optimization-ai/sogclr
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Figure 1. Learning curve for top-1 accuracy by linear evaluation on ImageNet-S and ImageNet-1K trained on R50 with batch size of 256.

Table 2. Linear evaluation (top-1 accuracy) under different batch
sizes and training epoch on ResNet-50 and ImageNet-S.

Method BatchSize\Epoch 100 200 400 800
SimCLR 128 68.5 72.7 75.7 75.7
SogCLR 128 72.2 76.7 79.3 80.1
SimCLR 256 69.7 73.6 76.1 77.4
SogCLR 256 71.8 76.3 78.7 79.4
SimCLR 512 70.9 74.1 75.9 76.3
SogCLR 512 71.8 75.8 78.2 79.4

Table 3. Linear evaluation (top-1 accuracy) under different batch
sizes and training epoch on ResNet-50 and ImageNet-1K.

Method BatchSize\Epoch 100 200 400 800
SimCLR 128 62.6 64.0 64.1 64.5
SogCLR 128 64.9 66.2 67.4 67.9
SimCLR 256 62.8 64.3 65.7 66.5
SogCLR 256 65.2 67.1 68.7 69.4
SimCLR 512 63.8 65.6 66.7 67.4
SogCLR 512 65.0 67.2 68.8 69.6

supervised problems. We study a popular vision and lan-
guage pretraining framework, i.e., CLIP (Radford et al.,
2021). CLIP consists of two parts: vision encoder (e.g.,
CNN, transformer) and text encoder (e.g., transformer). The
original CLIP is pretrained on a large dataset with 400 mil-
lion image-text pairs to achieve competitive performance
against supervised baseline. Here, we are not aiming to
achieve the best performance but to study and understand
the limits of this framework. Thus, we use the modified
CLIP consisting of a modified ResNet-50 and a small vi-
sion transformer(ViT) (Dosovitskiy et al., 2021), denoted
as CLIP-S. The detailed configuration can be found in Ap-
pendix. We use template "This is a photo of [CLASS]" to
generate the text caption for each image based on ImageNet-
S. For training, we use batch size of 128 and 256 to train
the models for 30 and 60 epochs. We use warm-up strategy
for 1000 iterations to increase learning rate to the maximum
value of 0.001 and then decrease it by a cosine decay sched-
uler. We use Adam-W optimizer (Loshchilov & Hutter,
2017) with the weight decay of 0.1. We set temperature
to a fixed value for 0.07 for SogCLR and CLIP. Similar to

Table 4. Top-1 linear evaluation under different batch sizes for
bimodal learning on ImageNet-S.

Method BatchSize\Epoch 30 60
CLIP-S (InfoNCE) 128 67.7 63.4
CLIP-S (SogCLR) 128 69.5 71.3
CLIP-S (InfoNCE) 256 69.0 64.9
CLIP-S (SogCLR) 256 69.4 70.1

SimCLR, we tune γ = [0.6 ∼ 0.99] and set u0 to zeros for
SogCLR. For evaluations, we perform zero-shot evaluation
on ImageNet-S validation set using the ensemble results of
80 different prompt templates (Radford et al., 2021). The
validation results are presented in Table 4.

Results. We report zero-shot evaluation accuracy of CLIP-
S in Table 4. The results indicate that CLIP-S trained by
SogCLR performs better than CLIP-S trained by standard
InfoNCE loss. In addition, we observe that InfoNCE suf-
fers from 4% performance drop for training 60 epochs. In
contrast, SogCLR has a much more stable performance for
longer training and achieves over 1% improvement on zero-
shot evaluation accuracy. In addition, we also find that CLIP
with SogCLR is much more robust to the change of batch
size while CLIP with InfoNCE drops more than 1% when
switching batch size from 256 to 128.

5.3. Ablation Studies

Verification of algorithmic design and theory. We vali-
date (i) using the momentum update for ut+1 (i.e., γ < 1)
is better than without using momentum update (γ = 1).
(ii) EA,A′,z|E(A(xi))

⊤E(z) − E(A′(xi))
⊤E(z)|2 ≤ ϵ2

in Theorem 2 holds with a small ϵ2. In other words, we ex-
pect the similarity between the representations of different
augmented samples are close. For (i), we train ResNet-50
with batch size of 256 for 100, 200, 400, 800 epochs. We
tune the γ in [0.6, 0.7, 0.8, 0.9, 0.99]. The results are sum-
marized in the Table 8 in Appendix. The results indicate that
models with γ = 0.7 ∼ 0.8 achieve the best performance.
For (ii), we use the models trained with batch size 256 at the
checkpoints of 100th, 200th, 400th, 800th epoch to compute
EA,A′,z[|A(xi)

⊤z − A′(xi)
⊤z|2] on ImageNet-S, where
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Figure 2. Histogram for difference of learned features between dif-
ferent augmented samples. X-axis is EA,A′,z|E(A(xi))

⊤E(z)−
E(A′(xi))

⊤E(z)|2 and Y-axis denotes the count number.

Table 5. Performance with ResNet-50 (2×, 4×) on ImageNet-1K.
Method Encoder Params Batch Top1 Top5
SimCLR R50 (2×) 94M 4096 74.2 92.0
SogCLR R50 (2×) 94M 512 74.6 92.1
SimCLR R50 (4×) 375M 4096 76.5 93.2
SogCLR R50 (4×) 375M 512 76.7 93.1

the expectation is approximated by the Monte Carlo method.
We show the histograms of this quantity for all images xi

in Figure 2, which suggests that all data samples satisfy the
above condition in Theorem 2 for some small ϵ.

Impact of batch size. Since SimCLR suffers from the
performance drop due to small batch sizes. Here, we show
SogCLR is robust to smaller batch sizes. To verify this
hypothesis, we train SogCLR using batch sizes varying
from 128 to 8192 with ResNet-50 on ImageNet-1K. We set
a fixed γ = 0.8. We directly compare the results taken from
Table B.1 in (Chen et al., 2020a) using the same settings.
As shown in Figure 3, the performance of SimCLR drops
quickly as the decrease of batch size. As a comparison,
SogCLR remains stable with batch sizes from 8192 to 256
and there is a small drop for batch size of 128. Overall,
SogCLR demonstrates the robustness to different batch
sizes. This result is consistent with our theory.

Figure 3. Impact of batch size. Y-axis is linear evaluation accuracy
with 800-epoch pretraining with ResNet-50 on ImageNet-1K.

Different network encoders. To verify the effectiveness
of the proposed method, we further evaluate it on different
network encoders. To this end, we train ResNet models by
varying widths. We train ResNet-50 (2×, 4×) using batch
size of 512 for 800 epochs. We set γ = 0.8. For baselines,
we use the batch size of 4096 to train models for a total of
1000 epochs. The results are summarized in the table below.
When using ResNet-50 (2×, 4×), we are able to achieve
74.6% and 76.7% top-1 linear evaluation accuracy, which
are better than SimCLR’s results trained with a larger batch

Table 6. Comparison of small-batch training approaches.
Method Batch Size\Epochs 100 200 400 800
SimCLR 256 69.7 73.6 76.1 77.4
FlatNCE 256 71.5 75.5 76.7 77.8

SiMo 256 71.5 75.0 76.8 78.2
SogCLR 256 71.9 76.3 78.7 79.4

size of 4096 and a large epoch number.

5.4. Comparison with Small Batch Size Methods

We conduct experiments to compare SogCLR with other
two InfoNCE-based small-batch training methods, e.g., Flat-
NCE (Chen et al., 2021b) and SiMo (Zhu et al., 2020a). We
train ResNet-50 with a 2-layer nonlinear projection head on
ImageNet-S using a batch size of 256 for 100, 200, 400, 800
epochs. For SiMo, we set α = 65536. The results are sum-
marized in Table 6. We observe that all methods outperform
SimCLR for 100 and 200 epochs and the improvements for
FlatNCE and SiMo seem to disappear when reaching 800
epochs. In contrast, SogCLR performs consistently better.

5.5. Combining with Other Useful Tricks

We explore two commonly used techniques to boost the
performance in our framework, namely, multi-layer pro-
jection head (Chen et al., 2020a) and multi-crop augmenta-
tion (Caron et al., 2020), and incorporate them into SogCLR.
We use a 4-layer MLP projection head with 128 neurons
for each layer on the top of ResNet-50 encoder, and use a
multi-crop strategy by using 4 crops of size 160×160 and 2
crops of size 96× 96. SogCLR achieves 72.5% top-1 linear
evaluation accuracy with these two tricks and a batch size of
256 and 800 epochs, which is reported in Table 1. We also
experiment with different combinations of projection heads
and multi-crop data augmentations summarized in Table 9.

6. Conclusion
In this paper, we have examined the large batch size is-
sue in the training of contrastive self-supervised learning
from an optimization perspective. To address this issue, we
have proposed a global contrastive objective and an efficient
stochastic algorithm with provable convergence guarantee.
Our analysis also exhibits why existing methods such as
SimCLR require a large batch size for ensuring the opti-
mization error to be small. For future work, we plan to
incorporate more advanced techniques into the proposed
method to further improve the performance.
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A. Experiment Details

Figure 4. Learning curve for top-1 accuracy by linear evaluation on ImageNet-S and ImageNet-1K training set trained on ResNet-50
using batch size of 256.

Table 7. CLIP-S hyper-parameters.
Hyperparameter Value

embed_dim 512
image_resolution 224×224
vision_layers [3,4,6,3]
vision_width 32
vision_patch_size null
context_length 77
vocab_size 49408
transformer_width 128
transformer_heads 8
transformer_layers 8

Table 8. Top-1 linear evaluation accuracy trained on ResNet-50 under different number of epochs using batch size of 256 on ImageNet-1K
for γ = 1 v.s. γ < 1 in Algorithm 1.

γ\Epoch 100 200 400 800
1.0 62.8 64.3 65.7 66.5
0.99 64.9 67.1 68.3 69.2
0.9 65.0 66.9 68.1 69.2
0.8 65.2 67.1 68.4 69.3
0.7 65.0 67.1 68.7 69.4
0.6 64.4 66.7 68.3 69.2

Table 9. Linear evaluations with different nonlinear heads and multi-crop augmentation.
Num of views 3-layer proj. head 4-layer proj. head

2× 224 70.7 71.3
4× 160 + 2× 96 71.7 72.5

B. Notations in the Proofs
In the following proofs, we abuse the notation: gi(w;A,Si) = g(w;xi,A,Si) =

1
|Si|g(w;xi,A,Si) and gi(w;A,Bi) =

g(w;xi,A,Bi) = 1
|Bi|g(w;xi,A,Bi). In the following analysis, we assume xi ∈ B is independently sampled

with replacement and A,A′ are also independently sampled for each sampled data independently. It is notable that
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EBi|xi
[g(w;xi,A,Bi)] = g(w;xi,A,Si). We write the objective function as

F (w) = F1(w) + F2(w)

where we ignore the constant and
F1(w) = −Exi,A,A′ [E(A(xi))

⊤E(A′(xi))]

F2(w) =
τ

n

∑
xi∈D

EA ln (ε0 + g(w;xi,A,Si)) =
τ

n

∑
xi∈D

EAf(g(w;xi,A,Si))

where f(g) = ln(ε0 + g).

C. Proof of Theorem 1
The SimCLR with the update (7) uses the following gradient estimator:

vt = ∇F1(wt;B) +
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi)) (15)

We make the following standard assumptions.

Assumption 1. We assume that there exist σ,Cg, Cf , Lf , LF such that

• E[∥∇F1(w;B)−∇F1(w)∥2] ≤ σ2

B

• EBi|xi
[∥g(w;xi,A,Bi)− g(w;xi,A,Si)∥2] ≤ σ2

B and EBi|xi
[∥∇g(w;xi,A,Bi)−∇g(w;xi,A,Si)∥2] ≤ σ2

B

• ∥∇gi(w;A,Si)∥ ≤ Cg

• ∥∇f(g)∥ ≤ Cf , and ∇f(·) is Lf Lipschitz continuous

• F is LF -smooth.

It is notable that the above assumptions are mild or standard for convergence analysis.

Below, we use Et to denote the expectation over randomness at t-th iteration given history. First, we have

Et[F (wt+1)] ≤ Et[F (wt) + (wt+1 −wt)
⊤∇F (wt) +

η2LF

2
∥vt∥2]

= F (wt)− ηEt[(∇F1(wt;B) +
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi)))]
⊤∇F (wt)

+
η2LF

2
∥vt∥2]

= F (wt)− ηEt[(∇F1(wt;B) +
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si)))]
⊤∇F (wt)]

+ ηEt[(∇F1(wt;B) +
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si)))

− (∇F1(wt;B) +
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi)))
⊤∇F (wt)

+
η2LF

2
∥vt∥2]

= F (wt)− η∥∇F (wt)∥2 + ηEt[
1

B

∑
xi∈B

∥∇F (wt)∥CgLf∥g(w;xi,A,Bi)− g(w;xi,A,Si)∥+
η2LF

2
∥vt∥2]

= F (wt)− η∥∇F (wt)∥2 +
η

2
∥∇F (wt)∥2 +

ηC2
gL

2
f

2
Et[

1

B

∑
xi∈B

∥g(w;xi,A,Bi)− g(w;xi,A,Si)∥2] +
η2LF

2
Et[∥vt∥2]

= F (wt)−
η

2
∥∇F (wt)∥2 +

ηC2
gL

2
fσ

2

2B
+

η2LF

2
Et[∥vt∥2]
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Then we have
E[∥vt −∇F (wt)∥2] = E[∥∇F1(wt;B)−∇F1(wt)

+
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤ 2E[∥∇F1(wt;B)−∇F1(wt)∥2]

+ 2E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤ 2σ2

B
+ 2E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

To bound the second term, we have

E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

= E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Bi))−
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si))

+
1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤ E[
2

B2
B
∑
xi∈B

C2
gL

2
f∥g(w;xi,A,Bi)− g(w;xi,A,Si)∥2]

+ 2E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

=
2C2

gL
2
fσ

2

B

+ 2E[∥ 1

B

∑
xi∈B

∇g(w;xi,A,Bi)∇f(g(w;xi,A,Si))−
1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))

+
1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

=
2C2

gL
2
fσ

2

B
+

4C2
fσ

2

B

+ 4E[∥ 1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤
2C2

gL
2
fσ

2

B
+

4C2
fσ

2

B

+ 4E[∥ 1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤
2C2

gL
2
fσ

2

B
+

4C2
fσ

2

B
+ 4C2

gC
2
f

As a result,

E[∥vt∥2] ≤ 2∥∇F (wt)∥2 +
C

B
+ 16C2

gC
2
f ,

where C is a proper constant. By combining the above results together, we have

E[F (wt+1)] ≤ F (wt)−
η

2
∥∇F (wt)∥2 +

ηC

B
+ η2LF ∥∇F (wt)∥2 + 16η2LFC

2
gC

2
f .
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Then with ηLF ≤ 1/4, we have

E[
1

T

T∑
t=1

∥∇F (wt)∥2] ≤
4(F (w1)− F∗)

ηT
+ 64ηLfC

2
fC

2
g +

4C

B
,

which finises the proof.

We can also sharpen the bound of E[∥vt −∇F (wt)∥2] by noting that

E[∥ 1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

= E[∥ 1

B

∑
xi∈B

[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))−
1

B

∑
xi∈B

EA[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))+

1

B

∑
xi∈B

EA[∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))−
1

n

∑
xi∈D

EA∇g(w;xi,A,Si)∇f(g(w;xi,A,Si))∥2]

≤
4C2

gC
2
f

B
.

As a result, E[∥vt −∇F (wt)∥2] ≤
2C2

gL
2
fσ

2

B +
4C2

fσ
2

B +
4C2

gC
2
f

B , then with ηLF ≤ 1/4, we have

E[
1

T

T∑
t=1

∥∇F (wt)∥2] ≤
4(F (w1)− F∗)

ηT
+

C

B
,

which still has a dependence of 1/B. However, we can set η = O(1) and T = O(1/ϵ2), B = O(1/ϵ2) in order to achieve
an ϵ-stationary solution.

D. Proof of Theorem 2
First, we note that the gradient estimator mt is

mt = ∇F1(wt;B) +
1

B

∑
xi∈B

∇f(ui,t)
1

2
(∇g(wt;xi,A,Bi) +∇g(wt;xi,A′,Bi))︸ ︷︷ ︸

∇gi(wt;A,A′,Bi)

ui,t+1 = (1− γ)ui,t + γ
1

2
(g(wt;xi,A,Bi) + g(wt;xi,A′,Bi))︸ ︷︷ ︸

gi(wt;A,A′,Bi)

Define gi(w) = EA[g(w;xi,A,Si)]. We can see that EBi,A,A′|xi
[gi(wt;A,A′,Bi)] = gi(wt), and

EBi,A,A′|xi
[∇gi(wt;A,A′,Bi)] = ∇gi(wt).

We make the following assumptions.

Assumption 2. We assume that there exist σ,Cg, Cf , Lf , LF such that

• E[∥∇F1(w;B)−∇F1(w)∥2] ≤ σ2

B

• EBi|xi
[∥g(w;xi,A,Bi)− g(w;xi,A,Si)∥2] ≤ σ2

B and EBi|xi
[∥∇g(w;xi,A,Bi)−∇g(w;xi,A,Si)∥2] ≤ σ2

B

• ∥∇f(g)∥ ≤ Cf , ∥∇gi(w)∥ ≤ Cg , ∥∇F1(w)∥ ≤ CF1
, ∥∇gi(w;A,Si)∥ ≤ Cg

• ∇f(·) is Lf Lipschitz continuous

• F is LF -smooth.

• ∥E(z)∥ ≤ 1, ∀z

• EA,A′Ez∼Si |E(A(xi))
⊤E(z)]− E(A′(xi))

⊤E(z)|2 ≤ ϵ2 for any xi ∈ D



Provable Stochastic Optimization for Global Contrastive Learning

We note that under the above assumption we have

EA,A′∥gi(wt;A′,Si)− gi(wt;A,Si)∥2

= EA,A′∥Ez∼Si
(exp(E(A(xi))

⊤E(z)/τ)− Ez∼Si
(exp(E(A′(xi))

⊤E(z)/τ)∥2

≤ EA,A′Ez∼Si
∥(exp(E(A(xi))

⊤E(z)/τ)− (exp(E(A′(xi))
⊤E(z)/τ)∥2

≤ CEA,A′Ez∼Si
∥E(A(xi))

⊤E(z)/τ − E(A′(xi))
⊤E(z)/τ∥2

≤ O(ϵ2)

where C is a proper constant that bounds the Lipschitz of exp(E()̇E(·)/τ).

We need the following lemma, whose proof can be found in (Guo et al., 2021) and thus is omitted here.

Lemma 1. Consider a sequence wt+1 = wt − ηvt and the LF -smooth function F and the step size ηtLF ≤ 1/2.

F (wt+1) ≤ F (wt) +
η

2
∥∆t∥2 −

η

2
∥∇F (wt)∥2 −

η

4
∥vt∥2 , (16)

where ∆t = vt −∇F (wt).

Lemma 2. Assume EA,A′∥gi(wt;A′,Si)− gi(wt;A,Si)∥2 ≤ ϵ2, we have

E[∥∆t∥2] ≤ (1− β)E
[
∥∆t−1∥2

]
+

2L2
F η

2E
[
∥vt−1∥2

]
β

+
14βL2

fC
2
g

n
E
[
∥Ξt∥2

]
+

14βL2
fC

2
g

n
E
[
∥ut − ut+1∥2

]
+

β2C

B
+ 5βC2

gL
2
f ϵ

2.

where ∆t = vt −∇F (wt), Ξt = ut+1 − g(wt), g(w) = (g1(w), . . . , gn(w)), and C is a proper constant.

Proof. We define that ∆t = vt −∇F (wt). Below, for the analysis of ∆t, we note that ut is independent of the randomness
in B,A,A′. Based on the update rule vt = (1− β)vt−1 + βmt, we have
∥∆t∥2 = ∥vt −∇F (wt)∥2

=

∥∥∥∥∥(1− β)vt−1 + β(∇F1(wt;B) +
1

B

∑
i∈B

∇f([ut−1]i)∇gi(wt;A,A′,Bi))−∇F (wt)

∥∥∥∥∥
2

=

∥∥∥∥∥∥(1− β)(vt−1 −∇F (wt−1))︸ ︷︷ ︸
A1

+(1− β)(∇F (wt−1)−∇F (wt))︸ ︷︷ ︸
A2

+ β

 1

B

∑
i∈B

∇f(gi(wt))∇gi(wt;A,A′,Bi)−
1

B

∑
i∈B

1

2

∑
a=A,A′

∇f(gi(wt;a,Si))∇gi(wt;a,Bi)


︸ ︷︷ ︸

A3

+β

(
1

B

∑
i∈B

∇f([ut−1]i)∇gi(wt;A,A′,Bi)−
1

B

∑
i∈B

∇f(gi(wt))∇gi(wt;A,A′,Bi)

)
︸ ︷︷ ︸

A4

+β

(
∇F1(wt;B) +

1

2B

∑
i∈B

(∇f(gi(wt;A,Si))∇gi(wt;A,Bi) +∇f(gi(wt;A′,Si))∇gi(wt;A′,Bi))−∇F (wt)

)
︸ ︷︷ ︸

A5

∥∥∥∥∥∥∥∥∥∥

2

.

Note that E [⟨A1, A5⟩] = E [⟨A2, A5⟩] = 0. Then,

Et

[
∥A1 +A2 +A3 +A4 +A5∥2

]
= ∥A1∥2 + ∥A2∥2 + Et

[
∥A3∥2

]
+ Et

[
∥A4∥2

]
+ Et

[
∥A5∥2

]
+ 2 ⟨A1, A2⟩

+ 2Et [⟨A1, A3⟩] + 2Et [⟨A1, A4⟩] + 2Et [⟨A2, A3⟩] + 2Et [⟨A2, A4⟩] + 2Et [⟨A3, A4⟩] + 2Et [⟨A3, A5⟩] + 2Et [⟨A4, A5⟩] .
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Based on Young’s inequality for products, we have 2 ⟨a,b⟩ ≤ ∥a∥2c
2 + 2∥b∥2

c for c > 0.

Et

[
∥A1 +A2 +A3 +A4 +A5∥2

]
≤ (1 + β) ∥A1∥2 + (3 + 3/β) ∥A2∥2 + (4 + 3/β)Et

[
∥A3∥2

]
+ (4 +

3

β
)Et

[
∥A4∥2

]
+ 3Et

[
∥A5∥2

]
.

Thus, we have

Et[∥∆t∥2] ≤ (1− β) ∥∆t−1∥2 + (3 + 3/β) ∥A2∥2 + (4 + 3/β)Et[∥A3∥2] + (4 + 3/β)Et[∥A4∥2] + 3Et

[
∥A5∥2

]
.

(17)
Moreover, we have

∥A2∥2 = (1− β)2 ∥∇F (wt−1)−∇F (wt)∥2 ≤ (1− β)2η2L2
F ∥vt−1∥2 , (18)

Et[∥A3∥2] ≤ β2C2
gL

2
fEA∥gi(wt)− gi(wt;A,Si)∥2 ≤ β2C2

gL
2
fEA∥EA′gi(wt;A′,Si)− gi(wt;A,Si)∥2

≤ β2C2
gL

2
fEA,A′∥gi(wt;A′,Si)− gi(wt;A,Si)∥2 (19)

Et[∥A4∥2] ≤ Et[
β2

B

∑
i∈B

∥∇gi(wt;A,A′,Bi)∥
2 ∥∇f([ut−1]i)−∇f(gi(wt))∥2] (20)

≤ Et[
β2L2

f

B

∑
i∈B

∥∇gi(wt;A,A′,Bi)∥
2 ∥[ut−1]i − gi(wt)∥2]

≤ β2L2
fC

2
gEt

[
1

B

∑
i∈B

∥[ut−1]i − gi(wt)∥2
]

(21)

Since the update rule of ut is based on B, we have

Et

[
1

B

∑
i∈B

∥[ut−1]i − gi(wt)∥2
]
=

1

n
Et

[
∥ut−1 − g(wt)∥2

]
,

where and g(wt) := [g1(wt), · · · , gn(wt)]
⊤. Then, ∥ut−1 − g(wt)∥2 =

∑
i∈D ∥[ut−1]i − gi(wt)∥2. Thus, we also have

Et

[
∥A5∥2

]
≤ 2β2σ2

B

+ 2β2Et

∥∥∥∥∥
(

1

2B

∑
i∈B

(∇f(gi(wt;A,Si))∇gi(wt;A,Bi) +∇f(gi(wt;A′,Si))∇gi(wt;A′,Bi))−∇F2(wt)

)∥∥∥∥∥
2

(22)

≤ 2β2σ2

B
+ 4β2Et

[
1

B

∑
i∈B

EBi
∥(∇f(gi(wt;A,Si))∇gi(wt+1;A,Bi)− EBi

∇f(gi(wt;A,Si))∇gi(wt;A,Bi))∥2
]

+ 8β2EB

[
1

B

∑
i∈B

EA ∥∇f(gi(wt;A,Si))∇gi(wt;A,Si)− EA∇f(gi(wt;A,Si))∇gi(wt;A,Si)∥2
]

+ 8β2EB

∥∥∥∥∥ 1

B

∑
i∈B

EA∇f(gi(wt;A,Si))∇gi(wt;A,Si)−
1

n

∑
i∈D

EA∇f(gi(wt;A,Si))∇gi(wt;A,Si)

∥∥∥∥∥
2


≤ β2C

B
,

where C is some proper constant.

Define that Ξt = E
[
1
n ∥ut − g(wt)∥2

]
. By combining the above inequalities we have

E[∥∆t∥2] ≤ (1− β)E
[
∥∆t−1∥2

]
+

3L2
F η

2E
[
∥vt−1∥2

]
β

+
14βL2

fC
2
g

n
E
[
∥Ξt∥2

]
+ 14βL2

fC
2
gE
[
∥ut − ut−1∥2

]
+

β2C

B
+ 7βC2

gL
2
f ϵ

2.
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Lemma 3. If γ ≤ 1/5, the following equation holds.

E [Ξt+1] ≤
(
1− γB

4n

)
E [Ξt] +

5nη2C2
gE
[
∥vt∥2

]
γB

+
2γ2σ2B

nB
− 1

4n
E
[
∥ut+1 − ut∥2

]
. (23)

By Combining Lemma 1, 2, and Lemma 3, we can prove the final theorem.

E [F (wt+1)− F ∗] ≤ E [F (wt)− F ∗] +
η

2
E [∆t]−

η

2
E
[
∥∇F (wt)∥2

]
− η

4
E
[
∥vt∥2

]
(24)

E [∆t+1] ≤ (1− β)E [∆t] +
3L2

F η
2

β
E
[
∥vt∥2

]
+ 14βL2

fC
2
gE [Ξt+1] +

β2C

B
+

14βL2
fC

2
g

n
E
[
∥ut+1 − ut∥2

]
+ 7βC2

gL
2
f ϵ

2 (25)

E [Ξt+1] ≤
(
1− γB

4n

)
E [Ξt] +

5nη2C2
gE
[
∥vt∥2

]
γB

+
2γ2σ2B

nB
− 1

4n
E
[
∥ut+1 − ut∥2

]
. (26)

Summing (24), η
β×(25), and

56L2
fC

2
gnη

γB ×(26) leads to

E

[
(F (wt+1)− F ∗) +

η

β
∆t+1 +

56L2
fC

2
gnη

γB

(
1− γB

4n

)
Ξt+1

]

≤ E

[
(F (wt)− F ∗) +

η

β

(
1− β

2

)
∆t +

56L2
fC

2
gnη

γB

(
1− γB

4n

)
Ξt

]
− L2

fC
2
gη

(
14n

γB
− 14

)
E
[
1

n
∥ut+1 − ut∥2

]

− η

2
E
[
∥∇F (wt)∥2

]
− η

(
1

4
− 3L2

F η
2

β2
−

280L2
fn

2C4
gη

2

γ2B2

)
E
[
∥vt∥2

]
+

βηC

B
+

112ηγL2
fC

2
gσ

2

B
+ 7ηC2

gL
2
f ϵ

2.

If γ ≤ n
B , we have 14n

γB − 14 ≥ 0. Set β = O(min(Bϵ2), 2
7 )}, γ = min

{
O(Bϵ2), 5n

14B

}
, and η = min

{
β

6LF
, γB
50LfnC2

g

}
.

Define the Lyapunov function as Φt := (F (wt)− F ∗) + η
β∆t +

56L2
fC

2
g

B
η
γ

(
1− γB

4n

)
Ξt. If we initialize v0 = 0, we have

E[∆1] ≤ 2CF1
+ 2C2

fC
2
g . Then,

1

T

T∑
t=1

E
[
∥∇F (wt)∥2

]
≤ 2Λ1

Φ

ηT
+

2βC

B
+

224γL2
fC

2
gσ

2

B
+ 14C2

gL
2
f ϵ

2, (27)

where we define E [Φ1] ≤ ∆F + 1
6LF

(2C2
F1

+ 2C2
fC

2
g ) +

CΞ1

n =: Λ1
Φ. After T = O(max( n

B2ϵ4 ,
1

Bϵ4 )) iterations, we have
1
T

∑T
t=1 E

[
∥∇F (wt)∥2

]
≤ O(ϵ2).
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E. Proof of Corollary 1
The proof is similar to that of Theorem 2, except that the bound ∆t, which is shown below.

∥∆t∥2 = ∥vt −∇F (wt)∥2

=

∥∥∥∥∥(1− β)vt−1 + β(∇F1(wt;B) +
1

B

∑
i∈B

∇f(gi(wt;A,Bi))∇gi(wt;A,Bi))−∇F (wt)

∥∥∥∥∥
2

=

∥∥∥∥∥∥(1− β)(vt−1 −∇F (wt−1))︸ ︷︷ ︸
A1

+(1− β)(∇F (wt−1)−∇F (wt))︸ ︷︷ ︸
A2

+β

(
1

B

∑
i∈B

∇f(gi(wt;A,Bi))∇gi(wt+1;A,Bi)−
1

B

∑
i∈B

∇f(gi(wt;A,Si))∇gi(wt;A,Bi)

)
︸ ︷︷ ︸

A3

+β

(
∇F1(wt;B) +

1

B

∑
i∈B

∇f(gi(wt;A,Si))∇gi(wt;A,Bi)−∇F (wt)

)
︸ ︷︷ ︸

A4

∥∥∥∥∥∥∥∥∥∥

2

.

Note that E [⟨A1, A4⟩] = E [⟨A2, A4⟩] = 0. Then,

Et

[
∥A1 +A2 +A3 +A4∥2

]
= ∥A1∥2 + ∥A2∥2 + Et

[
∥A3∥2

]
+ Et

[
∥A4∥2

]
+ 2 ⟨A1, A2⟩

+ 2Et [⟨A1, A3⟩] + 2Et [⟨A1, A4⟩] + 2Et [⟨A2, A3⟩] + 2Et [⟨A2, A4⟩] + 2Et [⟨A3, A4⟩]

Based on Young’s inequality for products, we have 2 ⟨a,b⟩ ≤ ∥a∥2c
2 + 2∥b∥2

c for c > 0.

Et

[
∥A1 +A2 +A3 +A4 +A5∥2

]
≤ (1 + β) ∥A1∥2 + C/β ∥A2∥2 + C/βEt

[
∥A3∥2

]
+ CEt

[
∥A4∥2

]
,

where Cis a proper constant. We can show that E[∥A3∥2] ≤ β2 C
B and E[∥A4∥2] ≤ β2 C

B for some constant C. Then we
have

E[∥∆t∥2] ≤ (1− β)E
[
∥∆t−1∥2

]
+

Cη2E
[
∥vt−1∥2

]
β

+
βC

B
+

β2C

B
Combining this inequality with lemma 1 and with η ≤ O(β), we can prove an optimization error

E[
1

T

∑
t

∥∇F (wt)∥2] ≤ O(
1

ηT
+

1

βT
+

β

B
+

1

β
)
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F. Proof of Theorem 3
The proof is similar to that of Theorem 2, except that the bound ∆t, which is shown below.

∥∆t∥2 = ∥vt −∇F (wt)∥2

=

∥∥∥∥∥(1− β)vt−1 + β(∇F1(wt;B) +
1

B

∑
i∈B

∇f([ut]i)∇gi(wt;A,A′,Bi))−∇F (wt)

∥∥∥∥∥
2

=

∥∥∥∥∥∥(1− β)(vt−1 −∇F (wt−1))︸ ︷︷ ︸
A1

+(1− β)(∇F (wt−1)−∇F (wt))︸ ︷︷ ︸
A2

+β

(
1

B

∑
i∈B

∇f([ut]i)∇gi(wt+1;A,A′,Bi)−
1

B

∑
i∈B

∇f(gi(wt))∇gi(wt;A,A′,Bi)

)
︸ ︷︷ ︸

A4

+β

(
∇F1(wt;B) +

1

2B

∑
i∈B

(∇f(gi(wt))∇gi(wt;A,Bi) +∇f(gi(wt))∇gi(wt;A′,Bi))−∇F (wt)

)
︸ ︷︷ ︸

A5

∥∥∥∥∥∥∥∥∥∥

2

.

from which we can see that A3 is gone in the proof of Theorem 2, which is the source to cause the error depends on ϵ. Then
we can follow the same analysis to finish the proof, which is omitted here due to that it is almost a duplicate of Theorem 2.

F.1. Proof of Lemma 3

Proof. Based on Algorithm, the update rule of [u]i is

[ut+1]i =

{
(1− γ)[ut]i + γgi(wt+1; ξ) i ∈ B
[ut]i i /∈ B

.

where ξ denote the randomness in A,A′,Bi, and wt+1 = wt. Below, we dnote by B1 = |B| and E[∥gi(wt+1; ξ) −
gi(wt+1)∥2] ≤ σ2

B2
, where B1 = B2 = B = |B|. We can re-write it into the equivalent expression below.

[ut+1]i =

{
[ut]i − γ ([ut]i − gi(wt+1; ξ)) i ∈ B
[ut]i i /∈ B

. (28)

Let us define ϕt(u) = 1
2 ∥u− g(wt)∥2 = 1

2

∑n
i=1 ∥ui − gi(wt)∥2, which is a 1-strongly convex function. Then, the

update rule (28) can be viewed as one step of the stochastic block mirror descent algorithm (Algorithm 2 in Dang & Lan
(2015)) for minimizing ϕt+1(u), where the Bregman divergence is associated with the quadratic function. We follow the
analysis of Dang & Lan (2015).

ϕt+1(ut+1) =
1

2
∥ut+1 − g(wt+1)∥2

=
1

2
∥ut − g(wt+1)∥2 + ⟨ut − g(wt+1),ut+1 − ut⟩+

1

2
∥ut+1 − ut∥2

=
1

2
∥ut − g(wt+1)∥2 +

∑
i∈B

⟨[ut]i − gi(wt+1; ξ), [ut+1]i − [ut]i⟩+
1

2

∑
i∈B

∥[ut+1]i − [ut]i∥2

+
∑
i∈B

⟨gi(wt+1; ξ)− gi(wt+1), [ut+1]i − [ut]i⟩ .
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Note that [ut]i − gi(wt+1;B2) = ([ut]i − [ut+1]i)/γ and 2 ⟨b− a, a− c⟩ ≤ ∥b− c∥2 − ∥a− b∥2 − ∥a− c∥2.∑
i∈B

⟨[ut]i − gi(wt+1; ξ), [ut+1]i − [ut]i⟩

=
∑
i∈B

⟨[ut]i − gi(wt+1; ξ), gi(wt+1)− [ut]i⟩+
∑
i∈B

⟨[ut]i − gi(wt+1; ξ), [ut+1]i − gi(wt+1)⟩

=
∑
i∈B

⟨[ut]i − gi(wt+1; ξ), gi(wt+1)− [ut]i⟩+
1

γ

∑
i∈B

⟨[ut]i − [ut+1]i, [ut+1]i − gi(wt+1)⟩

≤
∑
i∈B

⟨[ut]i − gi(wt+1; ξ), gi(wt+1)− [ut]i⟩

+
1

2γ

∑
i∈B

(
∥[ut]i − gi(wt+1)∥2 − ∥[ut+1]i − [ut]i∥2 − ∥[ut+1]i − gi(wt+1)∥2

)
If γ < 1

5 , we have

− 1

2

(
1

γ
− 1− (γ + 1)

4γ

)∑
i∈B

∥[ut+1]i − [ut]i∥2 +
∑
i∈B

⟨gi(wt+1; ξ)− gi(wt+1), [ut+1]i − [ut]i⟩

≤ − 1

4γ

∑
i∈B

∥[ut+1]i − [ut]i∥2 + γ
∑
i∈B

∥gi(wt+1; ξ)− gi(wt+1)∥2 +
1

4γ

∑
i∈B

∥[ut+1]i − [ut]i∥2

= γ
∑
i∈B

∥gi(wt+1; ξ)− gi(wt+1)∥2 .

Then, we have
1

2
∥ut+1 − g(wt+1)∥2

≤ 1

2
∥ut − g(wt+1)∥2 +

1

2γ

∑
i∈B

∥[ut]i − gi(wt+1)∥2 −
1

2γ

∑
i∈B

∥[ut+1]i − gi(wt+1)∥2

+ γ
∑
i∈ξ

∥gi(wt+1; ξ)− gi(wt+1)∥2 +
∑
i∈B

⟨[ut]i − gi(wt+1; ξ), gi(wt+1)− [ut]i⟩ −
(γ + 1)

8γ

∑
i∈B

∥[ut+1]i − [ut]i∥2 .

Note that 1
2γ

∑
i/∈B ∥[ut]i − gi(wt+1)∥2 − 1

2γ

∑
i/∈B ∥[ut+1]i − gi(wt+1)∥2 = 0 based on Algorithm, which implies that

1

2γ

∑
i∈B

(
∥[ut]i − gi(wt+1)∥2 − ∥[ut+1]i − gi(wt+1)∥2

)
=

1

2γt

(
∥ut − g(wt)∥2 − ∥ut+1 − g(wt)∥2

)
.

Besides, we also have:

Et

[∑
i∈B

⟨[ut]i − gi(wt+1; ξ), gi(wt+1)− [ut]i⟩

]
=

B1

n

n∑
i=1

⟨[ut]i − gi(wt+1), gi(wt+1)− [ut]i⟩

= −B1

n
∥[ut]i − gi(wt+1)∥2

E

[∑
i∈B

∥gi(wt+1; ξ)− gi(wt+1)∥2
]
≤ B1σ

2

B2
.

Then, we can obtain
γ + 1

2
E
[
∥ut+1 − g(wt+1)∥2

]
≤

γ
(
1− B1

n

)
+ 1

2
E
[
∥ut − g(wt+1)∥2

]
+

γ2B1σ
2

B2
− (γ + 1)

8

∑
i∈B

∥[ut+1]i − [ut]i∥2 .

Further divide γ+1
2 and take full expectation on both sides

E
[
∥ut+1 − g(wt+1)∥2

]
≤

γ
(
1− B1

n

)
+ 1

γ + 1
E
[
∥ut − g(wt+1)∥2

]
+

2

1 + γ

γ2σ2B1

B2
− 1

4
E

[∑
i∈B

∥[ut+1]i − [ut]i∥2
]
.

Note that
γ(1−B1

n )+1

γ+1 = 1 − γB1

(γ+1)n ≤ 1 − γB1

2n and 1
1+γ ≤ 1 for γ ∈ (0, 1]. Besides, we have ∥ut − g(wt+1)∥2 ≤

(1 + γB1

4n ) ∥ut − g(wt)∥2 + (1 + 4n
γB1

) ∥g(wt+1)− g(wt)∥2 due to Young’s inequality and
∥∥g(wt)− g(wt−1)

∥∥2 ≤
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nC2
g ∥wt+1 −wt∥2 = nη2C2

g ∥vt∥2.

E [Ξt+1] = E
[
1

n
∥ut+1 − g(wt+1)∥2

]
≤
(
1− γB1

2n

)
E
[
1

n
∥ut − g(wt+1)∥2

]
+

2γ2σ2B1

nB2
− 1

4n
E

[∑
i∈B

∥[ut+1]i − [ut]i∥2
]

≤
(
1− γB1

2n

)(
1 +

γB1

4n

)
E
[
1

n
∥ut − g(wt)∥2

]
+

5nC2
gE
[
∥wt+1 −wt∥2

]
γB1

+
2γ2σ2B1

nB2

− 1

4n
E

[∑
i∈B

∥[ut+1]i − [ut]i∥2
]

≤
(
1− γB1

4n

)
E [Ξt] +

5nη2C2
gE
[
∥vt∥2

]
γB1

+
2γ2σ2B1

nB2
− 1

4n
E

[∑
i∈B

∥[ut+1]i − [ut]i∥2
]
.


