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ABSTRACT

This paper studies the problem of cHarging tAsk Scheduling for

direcTional wireless chargEr networks (HASTE), i.e., given a set of

rotatable directional wireless chargers on a 2D area and a series of

offline (online) charging tasks, scheduling the orientations of all

the chargers with time in a centralized offline (distributed online)

fashion to maximize the overall charging utility for all the tasks.

We prove that HASTE is NP-hard. Then, we prove that a relaxed

version of HASTE falls within the realm of maximizing a submodu-

lar function subject to a partition matroid constraint, and propose

a centralized offline algorithm that achieves (1 − ρ)(1 − 1

e ) approxi-

mation ratio to address HASTE where ρ is the switching delay of

chargers. Further, we propose a distributed online algorithm and

prove it achieves
1

2
(1 − ρ)(1 − 1

e ) competitive ratio. We conduct

simulations, and field experiments on a testbed consisting of 8 off-

the-shelf power transmitters and 8 rechargeable sensor nodes. The

results show that our distributed online algorithm achieves 92.97%

of the optimal charging utility, and outperforms the comparison

algorithms by up to 26.19% in terms of charging utility.

CCS CONCEPTS

•Networks→Network control algorithms; • Theory of com-

putation → Scheduling algorithms;
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1 INTRODUCTION

The last decade has witnessed the rapid development of Wireless

Power Transfer (WPT) technology, which enjoys huge advantages

such as no contact, reliable power supply, and ease of maintenance

compared to traditional wired power supply technologies. WPT

technology has numerous applications, including wireless identi-

fication and sensing platform (WISP) [32], wireless rechargeable

sensor networks [3, 35], electric vehicles [27], wireless powered

drone aircraft [6], etc.. As per the record provided byWireless Power

Consortium, the number of registered WPT products from its 214

member companies, including IT leaders Samsung, Philips, and

Huawei, has surged to 848 [1]. By a recent report, 35% of consumers

in the United States have used WPT products [2].

In this paper, we consider the problem of cHarging tAsk

Scheduling for direcTional wireless chargEr networks (HASTE)

aiming for maximizing the overall charging utility of offline/online

charging tasks. We adopt the directional charging model for wire-

less chargers and rechargeable devices for which the power charg-

ing area for a charger and the power receiving area for a device are

modeled as sectors [11, 13]. A rechargeable device can be charged

via wireless by a charger with non-zero power if and only if they

are located in each other’s covered sector. All wireless chargers can

freely adjust its orientation in [0, 2π ). Moreover, a charging task

https://doi.org/10.1145/3225058.3225080
https://doi.org/10.1145/3225058.3225080
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initiated by a rechargeable device consists of five elements: the po-

sition and orientation of its associated device, the release time and

end time of the task, and its required charging energy. We define

the task’s charging utility as a linear and bounded function with its

harvested energy from its release time to its end time. With these

models, we consider offline/online charging task scheduling. In the

offline scenario, information for all charging tasks is known a priori,

and thereby the scheduling policies for all chargers at any moment

can be determined beforehand. To accommodate practical concerns,

we assume that each charger needs an amount of time for switching,

which we call switching delay. In the online scenario, charging tasks

stochastically arrive, and chargers reschedule their orientations in

realtime. Nevertheless, in addition to switching delay, each charger

needs an additional amount of time for recomputing the scheduling

policies with negotiating with neighboring chargers, which we call

rescheduling delay. To avoid global management effort and reduce

update cost, we desire a distributed and local algorithm which is

scalable with network size. To sum up, we state our problemHASTE

as follows. Given a set of rotatable directional wireless chargers on

a 2D area and a series of offline (online) charging tasks, scheduling

the orientations of all the chargers with time in a centralized offline

(distributed online) fashion to maximize the overall charging utility

for all the tasks.

First, there exist numerous literatures [7, 20, 24, 25, 28, 31, 33, 34]

studying on the mobile charging case where one single or multiple

chargers travel in a field to charge wireless rechargeable devices to

guarantee their normal working, which are fundamentally differ-

ent from ours. Second, the other works consider wireless charger

networks consisted of static wireless chargers such as [9, 10, 12, 14–

18, 26, 30, 36], but none of them investigate charging task scheduling

for directional wireless charger networks.

We are faced with three major challenges. The first challenge

is that HASTE is non-linear and is NP-hard. HASTE is nonlinear

because that the orientation of chargers can be freely scheduled; a

task can be either covered by a charger and have a certain constant

power increment or not with no power increment, which has the

flavor of 0-1 integer programming; the charging utility function is

linear but bounded, let alone that we extend our results to the case

where the utility function is a general concave function. In addition,

by reducing from the classical NP-hard separate assignment prob-

lem, we prove that HASTE is NP-hard. The second challenge is how

to design an efficient centralized offline algorithm for HASTE in the

offline scenario while considering the switching delay of chargers.

The switching delay happens if and only if a charger’s next intended

orientation is different from its current orientation, which implies

that the switching delay as well as its caused performance loss is

history-dependent. Moreover, the performance loss is difficult to

evaluate as there are potentially multiple tasks that are affected

by a charger’s switching delay, and the charging utility function

for tasks is non-linear. The third challenge is how to design an effi-

cient distributed online algorithm for HASTE in the online scenario

where all chargers are asynchronous and the rescheduling delay

needs to be considered. To the best of our knowledge, there are

neither existing distributed online algorithms directly applicable

to our problem even when the rescheduling delay is omitted, nor

existing online algorithms that deal with the case in our considered

scenario with rescheduling delay being concerned for which the

response is delayed and the algorithm is not truly “online”.

To address the first challenge, we propose that rather than con-

sidering all possible orientations in [0, 2π ) for chargers, we can

safely consider a limited number of orientations for them without

causing performance loss, and therefore, extract the so-called “dom-

inant task sets” as the corresponding sets of covered tasks. Then,

we neglect the switching delay for wireless chargers, and thus

reformulate the original continuous optimization problem into a

discrete optimization problem HASTE-R. Further, we prove that the

reformulated problem is exactly a problem of maximizing a submod-

ular function subject to a partition matroid constraint. To address

the second challenge, based on the theoretical results obtained by

addressing the first challenge, we tailor the TABULARGREEDY

algorithm proposed in [23] to address HASTE-R as it can achieve

an approximation ratio between
1

2
and 1− 1

e (1− 1

e as default in our

setting) depending on the value of a control parameter and resulting

in different time complexity. Further, to bound the performance loss

of switching delay, we exploit the concavity of the utility function

and consider all the caused performance loss for all impacted tasks

in the worst case, and prove that the switching delay introduces a

constant factor of 1−ρ in the ultimate achieved approximation ratio

for HASTE, i.e., (1 − ρ)(1 − 1

e ), of the proposed algorithm, where ρ
is the switching delay. To address the third challenge, we propose

a distributed online algorithm to HASTE. We first prove that if the

rescheduling delay is neglected, its achieved global charging utility

is the same as that of the centralized offline algorithm. Further, by

leveraging the concavity of the utility function and the submodu-

larity of the objective function, we bound the performance loss of

scheduling delay, and prove that our distributed online algorithm

achieves
1

2
(1 − ρ)(1 − 1

e ) competitive ratio.

We conducted simulations and field experiments to evaluate

our proposed algorithms. Our simulation results show that our

proposed distributed online algorithm can achieve 92.97% of the

optimal charging utility, outperform the other two comparison

algorithms by 10.96%. Our experimental results show that our dis-

tributed online algorithm outperforms the comparison algorithms

by up to 26.19% on average.

2 RELATEDWORK

First, there exist some literatures focus onmobile charging scenarios

where one single or multiple chargers travel in a field to charge

rechargeable devices deployed there tomake themwork perpetually,

which are fundamentally different from ours. For example, [7, 31]

study the charging efficiency issues of wireless chargers. [24, 25]

concentrate on reducing the service delay of mobile chargers. [20,

33, 34] optimize the overall network performance such as data

routing, data collection, and task assignment. We refer readers to

the survey [28] for more related works.

Second, the other works (e.g., [11, 13, 26]) are dedicated to wire-

less charger networks consisted of static wireless chargers, but none

of them consider charging task scheduling for directional wireless

charger networks. On one hand, some of them study wireless charg-

ing issues but overlook the detrimental effect of the electromagnetic

radiation (EMR) to human health. For example, Dai et al. first pro-
posed the empirical directional charging model, and investigated
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the problem of ominidirectional charging with directional chargers

in [11] and the directional wireless charger placement problem in

[13]; Yu et al. first studied the problem of placing a given num-

ber of wireless chargers to maximize the charging efficiency while

guaranteeing the connectivity of these chargers in [36]. The others

[9, 10, 12, 14–18, 30] take the EMR safety into consideration by

guaranteeing that the EMR intensity at any point in the area does

not exceed a predefined EMR threshold. For instance, Dai et al.
presented and studied how to schedule non-adjustable chargers

[9, 15] and adjustable chargers [10, 18] to maximize the charging

utility for chargers under the EMR safety constraint.

3 PROBLEM FORMULATION

3.1 Preliminaries

Suppose there is a set of directional wireless chargers S =

{s1, ..., sn } located in a 2D plane Ω, which can continuously ro-

tate with orientation angle within [0 2π ). Suppose there are also
some rechargeable devices located in Ω, which either keep static

or dynamically join or leave the wireless charger network. These

rechargeable devices launch (wireless) charging tasks and send-

ing them to chargers now and then, and the chargers accordingly

schedule their orientations to serve the tasks. Formally, charging

tasks are defined by a five-tuple Tj =< oj ,ϕ j , t
j
r , t

j
e ,Ej > where oj

denotes the position of the rechargeable device that raises the task,

ϕ j is the orientation of the device, t
j
r and t

j
e are the release time and

end time of the task, and Ej is required charging energy. We adopt

a discrete time model for which the time is divided into multiple

slots with uniform duration Ts . For simplicity, we assume that t
j
r

is exactly at the beginning of a time slot while t
j
e is at the end of a

time slot. We will show in the discussion to Lemma 4.2 that even t
j
r

and t
j
e are not aligned with time slots. We summarize the notations

used in this paper in Table 1.

We adopt the general and practical directional charging model

proposed in [11, 13]. As Figure 1 shows, a charger si with working

orientation denoted by vector
−→rθi can only charge devices in a

charging area in the shape of a sector with charging angle As and
radius D. A rechargeable device oj with orientation denoted by

vector
−→rϕj can only receive non-zero power in a receiving area in

the shape of a sector with receiving angle Ao and radius D. The
charging power from si to oj is given by

Pr (si , θi , oj , ϕj ) =



α
(| |sioj | |+β )2

, 0 ≤ | |sioj | | ≤ D,
−−−→sioj · −−→rθi − ∥sioj ∥cos(As /2) ≥ 0,

and −−−→oj si · −−→rϕj − ∥oj si ∥cos(Ao/2) ≥ 0.

0, otherwise

where α and β are two known constants, and | |sioj | | is the distance
between si and oj . Further, if a device oj is covered by more than

one chargers, its received power is the sum of the received power

from all chargers [11, 13].

A charger can either keep its orientation unchanged during the

same time slot, or switch its orientation in the starting ρ (0 <

ρ < 1) portion of a time slot, which we call switching delay, and
keep static in the rest 1 − ρ portion of the time slot. We argue

that this assumption makes sense because typically a charging

Table 1: Notations and symbols used in this paper

Symbol Description

si The ith directional wireless charger, or its position

n Number of directional wireless chargers

θi (θi (t)) Orientation of charger si (its function with time t )

θi,k The value of θi (t) at the kth time slot if charger si
is not switching

Tj The jth charging task

oj Position of the rechargeable device that raises charg-

ing task Tj , or the jth rechargeable device

ϕ j Orientation of the rechargeable device that raises

charging task Tj , or the orientation of device oj

t
j
r (t

j
e ) Release time (end time) of charging task Tj
Ej Required charging energy of charging task Tj
m Number of charging tasks

As Charging angle of chargers

Ao Receiving angle of devices

Ts Duration of a time slot

Pr (.) Charging power function

α , β Constants in the charging model

D Radius of charging/receiving area

ρ Switching delay

τ Rescheduling delay

U(.) Charging utility function

w j Weight of charging task Tj
Ti Set of charging tasks that cover charger si

Γi (Γ
p
i ) Set of dominant task sets for charger si (the pth

dominant task set in Γi )

Γi,k (Γ
p
i,k ) Set of dominant task sets for charger si at the kth

time slot (the pth dominant task set in Γi,k )

K Number of considered time slots for all tasks

C Number of colors

N (si ) Neighbors of charger si (two chargers are neighbors
to each other if and only if they cover at least one

charging task in common)

Ki Number of considered time slots for all tasks ob-

served by charger si

task can last up to tens of minutes or even more than an hour,

the duration of time slots can be set to a few minutes, and the

switching time for commercial rotatable heads or cradles [4] on

which the chargers are mounted or soft switching of smart antennas

of chargers [19, 37] is commonly a few seconds or even shorter. We

assume that a charger stops emitting power during its switching.

For convenience of exposition, we define θi = for a charger during

its switching process, and further define Pr (si , ,oj ,ϕ j ) = 0. In the

offline case, we assume the information for all charging tasks are

known a prior, then the scheduling policies for all time slots for each

charger are determined beforehand. In the online case, we assume

the charging tasks stochastically arrive, and chargers recompute

their scheduling policies in an on-the-fly fashion. Especially, we

assume each charger needs τ (τ ∈ Z+) number of time slots, which

we name as rescheduling delay, for negotiation with neighboring

chargers and computation to update its future scheduling policies,
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Figure 2: A toy example of dominant task sets extraction

and then, if necessary, starts switching with a delay of ρ time slot.

Typically, the rescheduling delay much less than the duration of

charging tasks. In this paper, we assume the latter is at least two

times that of the former, i.e., t je − t
j
r ≥ 2τTs whereTs is the duration

of a time slot.

We adopt a linear and bounded charging utility model for har-

vested energy for a task that is similar to [13]. That is, the charging

utility for a task is first proportional to the harvested energy of

its associated device, and then reaches a constant if the harvested

energy exceeds a predetermined threshold, i.e.,

U(x ) =


1

Ej
· x, x ≤ Ej

1, x > Ej
(1)

where Ej is the required charging energy of charging task Tj .

3.2 Problem Formulation and Hardness

Analysis

Let θi (t) (θi : R≥0 7→ {[0 2π ) ∪ }) be the function of orientation for

charger si with time t . Suppose the value of θi (t) at the kth time

slot is θi,k if charger si is not switching; otherwise, θi (t) is set to
and the charging power of si is zero. Then, for a charging task Tj ,
its harvested power at time t is given by

∑n
i=1 Pr (si ,θi (t),oj ,ϕ j ),

and its aggregate harvested energy during its whole life is∫ t je
t jr

∑n
i=1 Pr (si ,θi (t),oj ,ϕ j )dt . And the overall (weighted) charg-

ing utility is

∑m
j=1w j · U(

∫ t je
t jr

∑n
i=1 Pr (si ,θi (t),oj ,ϕ j )dt) wherew j

is the weight of charging task Tj . Our task is to determine the deci-

sion variables θi,k defined in θi (t) for all the chargers so that the
overall charging utility is maximized.

With all above, we define the cHarging tAsk Scheduling for

direcTional wireless chargEr networks (HASTE) as follows.

(P1) max

θi,k
U =

m∑
j=1

w j · U(

∫ t je

t jr

n∑
i=1

Pr (si , θi (t ), oj , ϕj )dt )

s .t . θi (t ) =


, kTs < t ≤ (k + ρ)Ts

θi,k , (k + ρ)Ts < t ≤ (k + 1)Ts
, θi,k , θi,k−1

θi,k , kTs < t (k + 1)Ts , otherwise

where k ∈ Z+
0
, and θi (0) =

0 ≤ θi,k < 2π .

The following theorem shows the complexity of HASTE.

Theorem 3.1. HASTE is NP-hard.

Proof. Basically, we can prove the NP-hardness of HASTE by

reducing from the NP-hard separate assignment problem [21]. We

omit details to save space. □

4 PROBLEM REFORMULATION

In this section, we first propose a dominant task sets extraction

algorithm for chargers to reduce the continuous solution space for

HASTE to a discrete one with limited choices. Then, we consider a

relaxed version of HASTE, i.e., HASTE-R, and prove it falls into the
realm of maximizing a submodular function subject to a partition

matroid constraint, which assists the further algorithm design.

4.1 Extraction of Dominant Task Sets

Though each charger can continuously rotate within [0 2π ), we do
NOT need to consider all possible orientations. Instead, we only

need to consider the following specific ones.

Definition 4.1. (dominant task set) Given a set of tasks T1

i
covered by a charger si with some orientation, if there doesn’t exist

another set of tasks T2

i covered by si with some other orientation

such that T1

i ⊂ T2

i , then T1

i is a dominant task set.

We describe our algorithm for extracting dominant task sets in

Algorithm 1. Basically, the considered charger rotates for 2π and

extracts the dominant task sets one by one. We use a toy example

for illustration. As shown in Figure 2(a), the charger first covers

task T1, then rotates to cover tasks T2 and T3 sequentially. Further,

T4 cannot be added in the current covered set as otherwise {T1,T2}

will be missed, and therefore, {T1,T2,T3} is a dominant task set.

Then, the charger continues to cover T4 by removing T1 and T2 from

the current set, as shown in Figure 2(b). Similarly, as T5 cannot be

covered by the charger without missing T3, {T3,T4} is added as a

dominant task set. Algorithm 1 proceeds until the charger rotates

for 2π , as depicted in Figure 2(c) and (d). After all, the obtained

dominant task sets are {T1,T2,T3}, {T3,T4}, {T4,T5} and {T6,T1}.

4.2 Problem Relaxation and Reformulation

As the switching delay is hard to be analyzed for optimization, we

first consider a relaxed version of HASTE, HASTE-R, by neglect-

ing the switching delay of all chargers, and then analyze HASTE.

Suppose the obtained set of dominant task sets for charger si is Γi ,

the pth dominant task set in Γi is Γ
p
i . Let x

p
i,k be a binary indicator

denoting whether the pth dominant task set in Γi in the kth time

slot is selected or not. For convenience, we define
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Algorithm 1: Dominant Task Sets Extraction

Input: The wireless charger si , all charging tasks {Tj }
m
j=1

Output: All dominant task sets

1 Find the subset of charging tasks in {Tj }
m
j=1 that cover si ,

say Ti ;

2 Initialize the orientation of the charger to 0;

3 Rotate the charger anticlockwise to cover the tasks in Ti
one by one until there is some covered task is going to be

uncovered. During the rotating process, if the rotated

angle is larger than 2π , then terminate;

4 Add the current covered set of tasks to the collection of

dominant task sets;

5 Rotate the charger anticlockwise until a new task in Ti is

included in the covered set. During the rotating process, if

the rotated angle is larger than 2π , then terminate. If not,

goto Line 3.

Pr (si , oj ) =


α
(| |sioj | |+β )2

, 0 ≤ | |sioj | | ≤ D,

0, otherwise .

Then, the problem HASTE-R can be formulated as

(RP1)max

xpi,k

UR =

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+1

∑
Γpi ∋oj ,

i∈[n], p∈[|Γi |]

xpi,kPr (si , oj )Ts )

s .t .
|Γi |∑
p=1

xpi,k = 1, (xpi,k ∈ {0, 1})

where x
p
i,k s are the decision variables, Γ

p
i is the pth dominant task

set in Γi . We first give the following definitions.

Definition 4.2. [22] (submodular set function) Let S be

a finite ground set. A real-valued set function f : 2
S → R is

normalized, monotonic and submodular if and only if it satisfies

the following conditions, respectively: (1) f (∅) = 0; (2) f (A∪{e})−
f (A) ≥ 0 for any A ⊆ S and e ∈ S\A; (3) f (A ∪ {e}) − f (A) ≥
f (B ∪ {e}) − f (B) for any A ⊆ B ⊆ S and e ∈ S\B.

Definition 4.3. [22] (matroid) A matroid M is a strategy

M = (S,L) where S is a finite ground set, L ⊆ 2
S
is a collection of

independent sets, such that: (1) ∅ ∈ L; (2) if X ⊆ Y ∈ L, then X ∈ L;
(3) if X ,Y ∈ L, and |X | < |Y |, then ∃y ∈ Y\X , X ∪ {y} ∈ L.

Definition 4.4. [22] (partition matroid) Given S =
⋃k
i=1 S

′
i

is the disjoint union of k sets, l1, l2, . . . , lk are positive integers, a

partition matroid M = (S,I) is a matroid where I = {X ⊂ S :

|X ∩ S ′i | ≤ li for i ∈ [k]}.

First, we define Γi,k = Γi (k ∈ [K]) as the set of dominant

task sets for charger si at the kth time slot, where K is the total

number of time slots and the notation [n] = {1, 2, . . . ,n}, and define

Γ
p
i,k as the pth dominant task set in Γi,k . Then, we defineΘ

p
i,k as

the corresponding scheduling policy for Γ
p
i,k , i.e., the orientation

that covers Γ
p
i,k = Γ

p
i , for charger si at the kth time slot, define

Θi,k = {Θ
p
i,k }p∈[ |Γi,k |] as the set of scheduling policies for si at

the kth time slot, and define a ground set of all scheduling policies

S = {Θi,k }i ∈[n],k ∈[K ]. Further, we define the scheduling policies for

all chargers at allK time slots asX , which is subject to |X∩Θi,k | ≤ 1.

AsΘi,k s are disjoint sets, we write the independent sets as

I = {X ⊆ S : |X ∩Θi,k | ≤ 1 for i ∈ [n],k ∈ [K]}. (2)

Lemma 4.1. The constraint in the problem RP1 can be written as
a partition matroid on the ground set S .

Accordingly, problem RP1 can be rewritten as

(RP2)

max

X
f (X ) =

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X∩Θi,k }

Pr (si , oj )Ts )

s .t . X ∈ I

For RP2, we have the following lemma.

Lemma 4.2. The objective function f (X ) in RP2 is a monotone

submodular set function.

Proof. We omit the detailed proof here to save space. □

Discussion: First, if the charging utility function is concave, it

is easy to verify that the three properties for the submodular set

function still hold. Therefore, all the performance guarantees for

our following centralized offline and distributed online algorithms

still keep valid. Second, if t
j
r and t

j
e are not aligned with time slots,

the received power at each time slot will not be affected and the

aggregate charging energy for each task in a specific time slot is

proportional to its active time duration in this time slot. Therefore,

f (X ) is still monotone submodular.

5 CENTRALIZED OFFLINE ALGORITHM

In this section, we propose a centralized offline algorithm to address

HASTE. After proved that HASTE-R is a problem of maximizing a

submodular function under a partition matroid constraint, we can

either use a simple greedy algorithm that achieves
1

2
approximation

ratio [29], or a randomized algorithm with optimal approximation

guarantees, i.e., 1 − 1

e approximation ratio, which is, however, too

computationally demanding to practically implement. In this paper,

we tailor the TABULARGREEDY algorithm [23] to address HASTE-

R as it achieves an approximation ratio between
1

2
and 1− 1

e which

corresponds to different levels of time complexity by using a control

parameter. This provides flexibility in practical applications. We

first propose some useful concepts.

• S-C tuple. An S-C tuple is a tuple of a scheduling policy for

a charger at a time slot and a color from a palette [C] of C
colors (note that here color and palette have no concrete

meaning, and they are only used to assist sampling). A set

Q ⊆ S × [C] consists of S-C tuples which can be regarded

as labeling each scheduling policy for a charger with one or

more colors.

• S-C tuple sampling function. We associate with each parti-

tion Θi,k a color ci,k . For any set Q ⊆ S × [C] and vector

®c = (c1,1, . . . , cn,1, . . . , c1,K , . . . , cn,K ), we define S-C tuple

sampling function as



ICPP 2018, August 13–16, 2018, Eugene, OR, USA H. Dai et al.

Algorithm 2: Centralized Offline Algorithm to HASTE

Input: Integer C , set of scheduling policiesΘi,k for charger

si (i ∈ [n], k ∈ [K]), objective function f (.)
Output: Scheduling policies for all chargers X

1 Q ← ∅;

2 for all c ∈ [C] do
3 for all i ∈ [n], k ∈ [K] do
4 ei,k,c ← argmaxx ∈Θi,k×{c } F(Q + x);

5 Q ← Q ∪ ei,k,c ;

6 for all i ∈ [n], k ∈ [K] do
7 Choose ci,k uniformly at random from [C];

8 X ← sample®c (Q), where

®c = (c1,1, . . . , cn,1, . . . , c1,K , . . . , cn,K ).

9 return X

sample®c (Q ) =
⋃

i∈[n],k∈[K ]

{x ∈ Θi,k : (x, ci,k ) ∈ Q }. (3)

In other words, sample®c (Q) returns a set containing each

item x that is exactly labeled with the color ci,k assigned by

®c to the partitionΘi,k that contains x .
• Expected charging utility function after S-C tuple sampling.
It is defined as F(Q) = E(f (sample®c (Q))) as the expected
value of f (sample®c (Q)) when each color ci,k in ®c is selected
uniformly at random from [C].

We present our centralized offline algorithm in Algorithm 2.

Following Theorem 2 in [23] and assuming C → +∞ by default,

we have the following theorem.

Theorem 5.1. Algorithm 2 achieves (1 − ρ)(1 − 1

e ) approxi-

mation ratio for HASTE, and its time complexity is O(C(nmK)2)
where ρ is the switching delay, C , n, andm are the color number,

charger number, and task number, respectively, K is the number of

considered time slots.

Proof. We omit the detailed proof here to save space. □

6 DISTRIBUTED ONLINE ALGORITHM

In this section, we propose a distributed online algorithm to ad-

dress HASTE. We face two main challenges. First, we need to adapt

the centralized offline algorithm to HASTE, whose relaxed version

HASTE-R is a submodular function maximization problem, to cater

to the distributed online scenario where all chargers are asynchro-

nous and charging tasks randomly arrive. Nevertheless, to the best

of our knowledge, there are no distributed online schemes for maxi-

mizing a submodular function with or without constraints. Second,

the response of each charger has a delay of up to τ + ρ time slots,

that is, τ number of time slots for computation and negotiation with

neighboring chargers and, possibly, plus ρ time slot for switching

delay. This setting is fundamentally different from existing ones

of online scheduling problems and invalidates traditional online

algorithms. We address these challenges by proposing a distributed

online algorithm that achieves
1

2
(1 − ρ)(1 − 1

e ) competitive ratio.

6.1 Algorithm Description

To begin with, we present some concepts to assist analysis.

• Neighbors of a charger. We say two chargers are neighbors

to each other if and only if they cover at least one charging

task in common. We assume that the communication range

of wireless chargers is at least twice of their charging range,

and therefore, the neighboring wireless chargers can com-

municate with each other. The set of neighbors of charger si
is denoted as N (si ).
• Local charging utility function. The local charging utility

function for charger si is defined as the aggregated charging
utility of all charging tasks that can be charged by si , i.e., Ti .

Denote by Xi as the set of scheduling policies of si , and Xi
the set of scheduling polices of si and its neighbors N (si ),
we can formally express the local charging utility function

for HASTE-R as

fi (Xi ) =
∑
Tj ∈Ti

w jU(

t je /Ts∑
k=t jr /Ts+1

∑
Γpi,k ∋oj , si′∈{si }∪N (si ),

p∈{p |Θpi,k=Xi∩Θi,k }

Pr (si′, oj )Ts )

where Ki is the number of considered time slots for all tasks

Ti observed by charger si .
• Local expected charging utility function after S-C tuple sam-
pling. Similar to the expected charging utility function af-

ter S-C tuple sampling defined in Section 5, we define

Fi (Qi ) = E(fi (sample®c (Qi ))) as the expected value of

fi (sample®c (Qi )) when each color ci,k in ®c is selected uni-

formly at random from [C].
• Control message. The control message exchanged

between wireless chargers is expressed as

msд(ID,T IM,COL,CMD,∆F∗i (Qi ), e
k∗
i ). The field ID

is the charger ID; T IM is the index of the time slots; COL is

an integer between 1 and C , which stands for the parameter

c in the centralized offline algorithm; CMD can be UPD

which indicates an update command; and ∆Fk∗i (Qi ) is the

“maximum” marginal increment for the local expected

charging utility function after S-C tuple sampling for

charger si for all possible scheduling policies at the kth time

slot, and ek∗i is the corresponding scheduling policy.

We show our distributed online algorithm in Algorithm 3, which

is invoked at charger si upon arrival of new charging tasks that

can be charged by si . Each charger accordingly updates the set of

charging tasks Ti , all possible scheduling policies in all Ki time

slotsΘi,k , and the local charging utility function fi (.). Then, each
charger si enumerates allC colors in allKi time slots. For each color

c at the kth time slot, si computes ∆Fk∗i (Qi ) and the correspond-

ing scheduling policy ek∗i , and broadcasts them to its neighbors.

Note that ∆Fk∗i (Qi ) for charger si is obtained by greedily choosing

the scheduling policies that yield the maximum additional local

expected charging utility in all Ki time slots in an increasing order,

and therefore, ek∗i is a set of Ki scheduling policies. Meanwhile, si
receives the control messages sent from its neighbors. If it collects

the messages from all its neighbors and finds that it has the max-

imum value of ∆Fk∗i (Qi ) (if there are two or more chargers have
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Algorithm 3: Distributed Online Algorithm to HASTE (at

each wireless charger si )

Input: Neighbor set N (si )
Output: Scheduling policy Xi

1 Update the set of charging tasks that can cover charger si ,

i.e., Ti to include the new arrived tasks;

2 Compute the dominant task sets and determine all possible

scheduling policiesΘi,k ;

3 Exchange the information of dominant task sets and

scheduling policies with the neighbors, and thus derive the

local charging utility function fi (.);

4 Qi ← ∅;

5 for k from 1 to Ki do
6 for c from 1 to C do

7 Calculate ∆Fk∗i (Qi ) and obtain ek∗i ;

8 Broadcastmsд(i,k, c,NULL,∆Fk∗i (Qi ), e
k∗
i );

9 while ∆Fk∗i (Qi ) > 0 do

10 if ∆Fk∗j (Q j ) of all neighbors sj ∈ N (si ) are
collected and all their colors are equal to c , and
∆Fk∗i (Qi ) is larger than any of them then

11 Qi ← Qi ∪ (e
k∗
i , c);

12 Broadcastsmsд(i,k, c,UPD,∆Fk∗i (Qi ), e
k∗
i );

13 break;

14 if msд(j,k, c,UPD,∆Fk∗j (Q j ), e
k∗
j ) is received

then

15 Update the stored scheduling policy of its

neighbor sj at the kth time slots to ek∗j ;

16 Calculate ∆Fk∗i (Qi ) and obtain ek∗i ;

17 Broadcastmsд(i,k, c,NULL,∆Fk∗i (Qi ), e
k∗
i );

18 continue;

19 if msд(j,k, c,NULL,∆Fk∗j (Q j ), e
k∗
j ) is received

then

20 Update ∆Fk∗j (Q j ) and e
k∗
j for the neighbor

sj ;

21 continue;

22 for c from 1 to C do

23 Choose cik uniformly at random from [C];

24 Xi ← sample®c (Qi ), where ®c = (c
i
1
, . . . , ciKi

).

25 return Xi

the same value of ∆Fk∗i (Qi ) which leads to a tie, we break it based

on the IDs of these chargers), si adds the S-C tuple (ek∗i , c) to its

global S-C tuple set Qi , and broadcasts the update command to its

surrounding neighbors.

Otherwise, if it receives an update command from one of its

neighbors, si updates the stored scheduling policy for the neighbor,

recomputes ∆Fk∗i (Qi ) and e
k∗
i , and repeats the above negotiation

procedure. After traversing all C colors for all Ki time slots, Al-

gorithm 3 obtains a set of S-C tuples Qi , and applies a sampling

function on Qi to get a solution Xi .

(a) (b) (c)
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Figure 3: An example of directed acyclic graph construction

6.2 Theoretical Analysis

Theorem 6.1. Algorithm 3 achieves
1

2
(1−ρ)(1− 1

e ) competitive

ratio for HASTE, and its time complexity is O(C(|N (si )| |Ti |Ki )
2),

its communication cost isO(CKi (|N (si )|)
2)where ρ is the switching

delay, C is the number of colors, N (si ) is the set of neighbors of
charger si , Ti is the set of tasks that can cover si , Ki is the number

of considered time slots for all tasks in Ti .

Proof. First, we ignore the rescheduling delay of chargers, and

prove that the scheduling policies determination processes at all

chargers for the online algorithm can be organized in a global order.

As the processes of determining scheduling policies for difference

colors c ∈ [C] are in different loops as shown in Algorithm 2, we

can equivalently think of the processes of determining scheduling

policies for difference colors being isolated from each other and

executed in order. For each color, it is clear that the process of

determining scheduling policies for a charger si and its neighbors

is executed in order, which can be expressed as a directed chain with

a directed edge between si and sj indicating that the scheduling

policies of si is determined just left behind that of sj . Figure 3(a)
shows an instance for order chains for nodes s1, s3, and s5. Next,
we combine these chains by merging the same nodes. For example,

Figures 3(b) and 3(c) illustrate the resulted directed graph when

we combine two directed chains corresponding to s1 and s3 by

merging the two nodes for s1 and s3; and further combine the

directed chain of s5 by merging the node for s5. Then, we obtain a

directed graphG , which must be acyclic as otherwise we can always

find a charger si determining its scheduling policies ahead of itself

and thus a contradiction arises. Finally, we apply the well-known

linear time topological sorting algorithm presented in [8], to order

all the chargers. For example, the red dotted lines in Figure 3(c)

connecting all the nodes indicate a topological sort of s1 → s7 →
s8 → s5 → s3 → s4 → s2 → s6.

Second, clearly the “maximum” marginal increment for the lo-

cal expected charging utility function after S-C tuple sampling

for charger si , i.e., ∆Fk∗i (Qi ), computed by each charger is exactly

equal to the “maximum”marginal increment for the global expected

charging utility function after S-C tuple sampling. Then, all charg-

ers can be regarded as sequentially determining their scheduling

policies based on the global knowledge of the expected charging

utility function after S-C tuple sampling as that in the centralized

algorithm.

Third, in Algorithm 3, the loop for enumerating all time slots is

outside the loop for enumerating all colors. This is critical because

as such, the process of being interrupted by arrivals of new charg-

ing tasks, recomputing the new scheduling policies and carrying
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out these new polices for Algorithm 3 can be equivalently viewed

as the fluent process with all charging tasks are known a priori.

Though Algorithm 3 differs from Algorithm 2 in that the latter

has the loop for enumerating all time slots being inside the loop

for enumerating all colors, it makes no difference in the ultimate

performance guarantee. We omit detail analysis to save space.

To sum up, we claim that Algorithm 3 achieves the same per-

formance as Algorithm 2. Next, we consider rescheduling delay.

First, we neglect the switching delay as for HASTE-R. Suppose the

global solution X based on the outputs Xi of Algorithm 3 achieves

charging utilityUR for HASTE-R, i.e.,

UR =

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X∩Θi,k }

Pr (si , oj )Ts ).

Due to rescheduling delay, the reaction of each charger for a newly

arrived charging task is delayed for τ · Ts time. Therefore, it can

be equivalently considered that there is no rescheduling delay for

chargers under the setting where the first τ time slots of all the

charging tasks are “cut off”. Suppose X achieves charging utility

U
′

R for this setting, i.e.,

U
′

R =

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+τ+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X∩Θi,k }

Pr (si , oj )Ts ).

Obviously, we haveUR ≥ U
′

R as each task misses the opportunity

to harvest charging power at its first τ time slots. Assume the

optimal overall charging utility for the above setting isU
′∗

R , then

we have

UR ≥ U
′

R ≥ (1 −
1

e
)U
′∗

R . (4)

Further, assume that the optimal overall charging utility for HASTE-

R isU
∗

R and its corresponding solution is X ∗. Due to the concavity

of the charging utility function, we have

U
∗

R =

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X
∗∩Θi,k }

Pr (si , oj )Ts )

≤

m∑
j=1

w j · U(

k=t jr /Ts+τ∑
k=t jr /Ts+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X
∗∩Θi,k }

Pr (si , oj )Ts )

+

m∑
j=1

w j · U(

t je /Ts∑
k=t jr /Ts+τ+1

∑
Γpi,k ∋oj , i∈[n],

p∈{p |Θpi,k=X
∗∩Θi,k }

Pr (si , oj )Ts )

≤U
∗1

R + U
∗2

R . (5)

Note that U
∗1

R and U
∗2

R denote the first and second terms at the

right hand side of the second inequality. We have

U
∗2

R ≤ U
′∗

R , (6)

as the latter is optimal under the same setting. Second, recall that

all the charging tasks have a duration of at least 2τTs where τ is

the switching delay, which indicates t
j
e/Ts − (t

j
r /Ts + τ + 1) + 1 ≥

(t
j
r /Ts +τ )−(t

j
r /Ts +1)+1. Thus, the duration of each task regarding

U
∗2

R is greater than or equal to that of the corresponding task

regardingU
∗1

R . Notice that we can move the starting time points of

all tasks regardingU
∗1

R for τ time slots along the time dimension

to make them aligned with the corresponding tasks regardingU
∗2

R ,

we have

U
∗1

R ≤ U
′∗

R . (7)

Combining Equs. (4), (5), (6), and (7), we obtainUR ≥
1

2
(1− 1

e )U
∗

R .

Thus Algorithm 3 achieves
1

2
(1 − 1

e ) competitive ratio. By similar

analysis on switching delay as in the proof to Theorem 5.1, the

achieved competitive ratio of Algorithm 3 is
1

2
(1 − ρ)(1 − 1

e ). We

omit the analysis of time complexity and communication cost to

save space. □

7 SIMULATION RESULTS

In this section, we perform simulations to evaluate the performance

of our proposed algorithms. We omit the simulation results for the

centralized offline algorithm to save space.

7.1 Evaluation and Baseline Setup

The considered field is a 50m × 50m square area, and wireless

chargers and charging tasks are uniformly distributed in this field.

We set α = 10000, β = 40, D = 20m, n = 50,m = 200, w j =
1

200
,

Ts = 1min, ρ = 1

12
, τ = 1, As = π/3, Ao = π/3, respectively.

The required charging energy and duration of charging tasks are

randomly selected in [5k J 20k J ] and [10min 120min], respec-
tively. Each data point in the figures stands for an averaging result

for 100 random topologies. We propose two algorithms named

GreedyUtility and GreedyCover for comparison. For GreedyUtility,

each charger greedily picks the orientation that leads to maximum

charging utility while ignoring the scheduling policies of its neigh-

boring chargers. For GreedyCover, the difference compared with

GreedyUtility is that each charger greedily selects the orientation

covers the maximum number of tasks.

7.2 Distributed Online Algorithm Evaluation

7.2.1 Impact of Charging Angle As . Our simulation results show
that on average HASTE outperforms GreedyUtility and GreedyCover
by 3.33% and 4.47% (at most 5.59% and 7.59%), respectively, in terms
of As . We denote by HASTE-DO the distributed online algorithm

for HASTE in the following figures. Figure 4 demonstrates that

the charging utilities of HASTE, GreedyUtility, and GreedyCover

smoothly increase with the charging angle of chargersAs , and reach
the same maximum overall charging utility when As = 360

◦
. This

is because the larger the charging angle, the larger the chance that

a charger can cover more charging tasks with the same orientation,

and each charger covers the same set of tasks regardless of its

orientations if As = 360
◦
. The solution for HASTE with C = 4

always outperforms that withC = 1with a gain of 0.77% on average

(at most 2.59%).
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7.2.2 Impact of Switching Delay ρ. Our simulation results show
that on average HASTE outperforms GreedyUtility and GreedyCover
by 5.20% and 7.3% (at most 5.20% and 7.31%), respectively, in terms
of ρ. Figure 5 shows that the charging utilities for all the algorithms

steadily decrease with switching delay ρ. HASTE with C = 4 out-

performs HASTE with C = 1 by 1.98%. When the switching delay

is even up to one time slot, i.e., ρ = 1, the charging utilities for all

the algorithms only slightly degrade compared with ρ = 0. This

is because most chargers keep still most of the time, and thus the

caused performance loss is little.

7.2.3 Impact of Color Number C . Our simulation results show
that on average the achieved charging utility of HASTE steadily
increases with color numberC . Figure 6 demonstrates the box plot of

the charging utilities of HASTE when the color numberC increases

from 1 to 8. We can see that both of the maximum and minimum

charging utilities of HASTE steadily increase with C . Moreover, on

average the average charging utility of HASTE increases by 3.08%

when the color number C increases by 1. Besides, the variance of

charging utility for all the eight colors is at most 8.42× 10−3, which

indicates the stable performance of our algorithm.

7.2.4 Communication Cost. Our simulation results show that the
number of messages and the number of rounds for a time slot increase
quadratically and linearly, respectively, with the number of chargers.
We setC to 1, and plot the average numbers of messages and rounds

in Algorithm 3 in Figure 7. We can see that when the number of

chargers increases from 10 to 100, the numbers of messages and

rounds increase by 223.77% and 952.29%, respectively. The number

of rounds linearly increases because the number of neighboring

chargers linearly increases. Further, as the number of messages in

each round also grows proportionally to the number of neighboring

chargers, it grows quadratically with the number of chargers.

8 FIELD EXPERIMENTS

We have conducted field experiments to evaluate our scheme. We

implemented our proposed schemes on a textbed which consists

of eight TX91501 power transmitters produced by Powercast [5]

with charging angle of about 60
◦
, eight rechargeable sensor nodes

with receiving angle of about 120
◦
, and an AP that connects to

a laptop for reporting data collected from the nodes as shown in

Figure 8. Each power transmitter is mounted on a rotatable plat-

form atop a mobile robot, and thus can be freely rotated. Figure 9

shows the topology of our testbed, where the eight power trans-

mitters are placed at the boundaries of a 2.4m × 2.4m square area,

and the eight sensor nodes are placed inside the square area. We

mark the orientation angle and the release and end time (in time

slots) on the top of each task associated with a sensor node in

Figure 9. The required charging energy for all tasks is set to be in

[3 J 5 J ]. We set α = 41.93, β = 0.6428, D = 4m, ρ = 1

12
, τ = 1,

As = π/3, Ao = 2π/3,w j =
1

8
, based on our empirical results, and

setTs = 1min. Figures 10 and 11 show the charging utility for each

task for the three algorithms, i.e., HASTE (with C = 4), GreedyU-

tility, and GreedyCover, for the centralized offline and distributed

online settings, respectively. We can see that on average HASTE

basically has the best charging utility for all tasks, and respectively

outperforms GreedyUtility and GreedyCover by 8.32% and 26.49%

for the centralized offline algorithm; and by 10.40% and 26.19% for

the distributed online algorithm. Moreover, task 1 and task 6 have

the largest two charging utility for both the algorithms as they have

the largest two charging task duration.

9 CONCLUSION

The key novelty of this paper is on proposing the first schedul-

ing algorithm for charging tasks in directional wireless charging

networks. The key contributions of this paper are proposing a cen-

tralized offline algorithm and a distributed online algorithm both
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with performance guarantee, and conducting both simulations and

field experiments for evaluation. The key technical depth of this

paper is in transforming the problem into maximizing a submodular

function subject to a partition matroid constraint, bounding the

performance loss caused by the switching delay and proving the

approximation ratio for the centralized offline algorithm, making

the centralized offline algorithm distributed and online and proving

its competitive ratio. Our simulation and field experimental results

show that our proposed distributed online algorithm can achieve

92.97% of the optimal charging utility and outperform the other

two comparison algorithms.
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