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Abstract
To cope with non-stationary environments, recent
advances in online optimization have introduced
the notion of adaptive regret, which measures the
performance of an online learner against different
comparators within different time intervals. Pre-
vious studies have proposed various algorithms to
yield low adaptive regret under different scenarios.
However, all of existing algorithms need to query
the gradient of the loss function at least O(log t)
times in every iteration t, which hinders their appli-
cations to broad domains, especially when the eval-
uation of gradients is expensive. To address this
limitation, we propose a series of computationally
efficient algorithms for minimizing the adaptive re-
gret of general convex, strongly convex and expo-
nentially concave functions respectively. The key
idea is to replace each loss function with a carefully
designed surrogate loss, which bounds the original
loss function from below. We show that the pro-
posed algorithms only query the gradient once per
iteration, and attain the same theoretical guarantees
as previous optimal algorithms. Empirical results
demonstrate the efficiency and effectiveness of our
methods.

1 Introduction
Online convex optimization is a powerful framework for
modeling sequential decision making [Hazan, 2016]. It can
be deemed as a repeated game where a learner competes
against an adversary: In every iteration t, firstly the learner
selects an action xt from a convex set D ⊆ Rd, at the same
time, the adversary reveals a convex function ft(·) : D 7→ R,
and the learner incurs a loss ft(xt). The goal is to minimize
the cumulative loss over T iterations. The standard perfor-
mance metric is regret, defined as the difference between the
cumulative loss of the learner and that of the optimal action
in hindsight [Shalev-Shwartz, 2012]:

Rf1,...,fT =
T∑
t=1

ft(xt)−min
x∈D

T∑
t=1

ft(x),

which is typically referred to as static regret since the com-
parator is time-invariant. Despite that static regret is a reason-

able benchmark in many contexts and has led to plentiful on-
line algorithms [Hazan, 2016], it fails to capture the hardness
of real-world applications where the environments are non-
stationary and no single fixed action performs well in general
(e.g., portfolio management, ad recommendation). As a con-
sequence, a more stringent performance metric termed adap-
tive regret [Hazan and Seshadhri, 2007] was proposed and
received significant interest recently. Given a parameter τ ,
the Strongly version of Adaptive Regret (SAR) is defined as
the algorithm’s maximum static regret over any time interval
of length τ [Daniely et al., 2015]:

SARf1,...,fT (τ) = max
[q,q+τ−1]⊆[T ]

{
Rfq,...,fq+τ−1

}
, (1)

where [T ] is the shorthand of {1, ..., T}. Minimizing SAR
forces the algorithm to keep a low static regret in any time
interval of length τ .

In the past decade, a wide variety of algorithms that guar-
antee low SAR have been proposed for different types of
convex functions [Hazan and Seshadhri, 2007; Hazan and
Seshadhri, 2009; Daniely et al., 2015; Jun et al., 2017;
Zhang et al., 2017]. However, different from traditional al-
gorithms under the static setting that only query the gradient
once in each iteration, existing approaches under the adap-
tive setting query the gradient at least O(log t) times in the
t-th round. The price paid for adaptivity impedes them to
many applications, especially when the evaluation of gradi-
ents is expensive. For example, in nuclear norm minimization
[Ji and Ye, 2009], we have to perform SVD to compute the
gradient, which is a costly step for large-scale matrices; an-
other example is the mini-batch optimization [Li et al., 2014],
where the gradient is obtained by averaging the gradients of
all samples inside a batch.
Contribution. In this paper, we propose a series of algo-
rithms for minimizing adaptive regret that only query the gra-
dient once in each iteration. Similar to previous approaches
for adaptive regret, our algorithms follow the Learning with
Expert Advice (LEA) framework [Cesa-Bianchi and Lugosi,
2006]. The basic idea is to maintain many algorithms for
minimizing static regret as experts to output a set of actions,
and employ a weighting method to combine these actions and
select xt. In order to output an action, each expert needs to
compute its own gradient. In contrast to previous algorithms
where each expert queries the gradient of ft(·) directly, the
expert kept in our algorithm queries the gradient of a surro-
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gate loss [van Erven and Koolen, 2016]. It can be considered
as a conversion from the original learning problem to a new
one, where the loss revealed by the adversary in each iteration
is the surrogate loss, rather than ft(·). The surrogate losses
are carefully designed to satisfy the following properties.
• Their gradients can be computed efficiently by exploit-

ing∇ft(xt), which is shared among all experts, without
further querying∇ft(·) at different points;
• The SAR of any algorithm on the new problem is an

upper bound of that on the original problem.
Equipped with surrogate losses, our algorithms only need
to query the gradient once in each round, and achieve
O(
√
τ log T ), O(log2 T ) and O(d log2 T ) SAR bounds for

general convex, strongly convex and exponentially concave
functions respectively. These upper bounds match the theo-
retical guarantees of the optimal SAR methods.

2 Related Work
In the literature, most studies are devoted to the minimiza-
tion of static regret [Hazan, 2016]. For general convex and
strongly convex functions, the classic algorithm Online Gra-
dient Descent (OGD) enjoys O(

√
T ) and O(log T ) static

regret bounds respectively [Zinkevich, 2003; Hazan et al.,
2007]. Both bounds are known to be minimax optimal [Aber-
nethy et al., 2009]. For exponentially concave functions,
the state-of-the-art algorithm is Online Newton Step (ONS),
which achieves an O(d log T ) static regret bound [Hazan et
al., 2007].

To handle changing environments, the seminal work of
Hazan and Seshadhri [2007] proposed adaptive regret (re-
ferred to as Weakly Adaptive Regret, WAR), which is defined
as the maximum static regret of an algorithm over any time
interval:

WARf1,...,fT = max
[q,s]⊆[T ]

{
Rfq,...,fs

}
.

To minimize this performance metric, Hazan and Seshadhri
[2007] developed an algorithm called Following the Leading
History (FLH), achievingO(

√
T log T ) andO(dlog T ) WAR

for general convex and exponentially concave functions re-
spectively. The essential idea of FLH is to maintain many low
static regret algorithms (e.g., OGD or ONS) simultaneously
as experts, and employ a meta algorithm to combine the out-
puts of experts and decide the final action. Each expert attains
good static regret in a different time interval, and the meta al-
gorithm can track the best expert by dynamically assigning
weights to different experts according to their historical per-
formances. Specifically, in the t-th round, FLH maintains t
low static regret algorithms (OGD or ONS), and each algo-
rithm needs to query the gradient of ft(·) once. Thus, the
number of gradient evaluations in FLH is linear with respect
to t. To reduce the computational cost, Hazan and Seshadhri
[2007] then proposed an enhanced version of FLH named Ad-
vanced Following the Leading History (AFLH). By remov-
ing some old experts according to a data streaming method,
AFLH reduces the number of experts and gradient queries
down to O(log t) per round, at a cost of an additional log T
in its regret.

A major drawback of WAR is that it does not respect short
time intervals well. For instance, an O(

√
T ) type of static

regret bound is meaningless for intervals of length O(
√
T ).

To address this limitation, Daniely et al. [2015] proposed
strongly adaptive regret, which is defined in (1). Furthermore,
Daniely et al. [2015] introduced the following definition:

Definition 1. For any static learning problem, let R(τ) be its
minimax static regret bound over τ iterations. An algorithm
is said to be strongly adaptive, if

∀τ > 0, SARf1,...,fT (τ) = O(R(τ)poly (log T )).

It can be proved that AFLH algorithm in Hazan and Seshadhri
[2007] is in fact strongly adaptive for strongly convex and
exponentially concave functions, but not for general convex
functions. Daniely et al. [2015] then developed a strongly
adaptive algorithm named Strongly Adaptive Online Learner
(SAOL), which improves AFLH by introducing a new meta
algorithm as well as a new expert removing policy. This al-
gorithm achievesO(

√
τ log T ) SAR for general convex func-

tions with O(log t) experts and gradient queries in round t.
Later, Jun et al. [2017] proposed an algorithm named Coin
Betting for Changing Environment (CBCE) that improves the
SAR for convex functions to O(

√
τ log T ) with O(log t) ex-

perts and gradient queries as well.
From the above discussions, we observe that all the previ-

ous methods for adaptive regret need to query the gradient at
least O(log t) times in the t-th round. Our goal is to reduce
the number of gradient evaluation to 1 per iteration.

3 Algorithms
In this section, we introduce our efficient low SAR algorithms
for exponentially concave, strongly convex, as well as general
convex functions respectively, and present their theoretical
guarantees. We put the detailed analysis in the supplemen-
tary material due to the limitation of space.

Through out the paper, we use ‖ · ‖ to denote `2 norm, and
ΠA
D(·) the projection induced by a positive semi-definite ma-

trix A, i.e.,

ΠA
D(y) = argmin

x∈D
(y− x)>A(y− x).

Before proceeding to specific algorithms, following previous
studies [Hazan and Seshadhri, 2007; Jun et al., 2017], we in-
troduce the following assumptions and definitions [Boyd and
Vandenberghe, 2004]:

Assumption 1. The gradients of all loss functions are
bounded by G, i.e., maxx∈D ‖∇ft(x)‖ ≤ G for all t.

Assumption 2. The diameter of the decision set is bounded
by D, i.e., maxx1,x2∈D ‖x1 − x2‖ ≤ D.

Definition 2. A function f : D 7→ R is convex if ∀x1, x2 ∈ D,

f(x1)− f(x2) ≤ ∇f(x1)>(x1 − x2).

Definition 3. A function f : D 7→ R is λ-strongly convex if
∀x1, x2 ∈ D,

f(x1)− f(x2) ≤ ∇f(x1)>(x1 − x2) +
λ

2
‖x1 − x2‖2.
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Algorithm 1 The meta algorithm for exp-concave and
strongly convex functions

1: Initialize S1 = {E1}, q1 = 1
2: for t = 1, ..., T do
3: for Ei ∈ St do
4: if qi 6= t then
5: Pass ∇ft−1(xt−1) to expert Ei
6: end if
7: Get action xi,t from expert Ei
8: end for
9: Choose xt by (3)

10: Observe∇ft(xt)
11: Remove experts whose ei are less than t
12: n̂ = |St|+ 1
13: Initialize En̂, set pn̂,t+1 = 1

t+1 , qn̂ = t, compute en̂
14: St+1 ← St ∪ {En̂}
15: for Ei ∈ St+1 and qi 6= t do

16: p̂i,t+1 =

{
pi,t exp(−αecLect (xi,t)), exp-concave
pi,t exp(−αscLsct (xi,t)), strongly convex

17: end for
18: for Ei ∈ St+1 and qi 6= t do
19: pi,t+1 = (1− 1

t+1 )
p̂i,t+1∑

Ej∈St+1,qj 6=t
p̂j,t+1

20: end for
21: end for

Algorithm 2 The algorithm for expert Ei (exp-concave ver-
sion)

1: if qi = t then
2: Ai,t = εId, xi,t = 0
3: else
4: Ai,t = Ai,t−1 +∇Lect−1(xi,t−1)∇Lect−1(xi,t−1)>

5: yi,t = xi,t−1 − 1
γecA

−1
i,t ∇Lect−1(xi,t−1)

6: xi,t = Π
Ai,t
D (yi,t)

7: end if
8: Output xi,t

Definition 4. A function f : D 7→ R is α-exponentially con-
cave (abbreviated to α-exp-concave), if exp(−αf(·)) is con-
cave over domain D.

Finally, we introduce the following lemma for exp-concave
functions [Hazan et al., 2007]:
Lemma 1. If Assumptions 1 and 2 hold, and ft : D 7→ R is
α-exp-concave, we have ∀ x1, x2 ∈ D,

ft(x1)− ft(x2) ≤∇ft(x1)>(x1 − x2)

− γ

2

(
(x1 − x2)>∇ft(x1)

)2
,

(2)

where γ = 1
2 min{ 1

4GD , α}.

3.1 Exp-Concave Functions
Our algorithm named MARSL-ec (Minimizing Adaptive
Regret with Surrogate Losses for exp-concave functions) is
a two-level hierarchical construction, summarized in Algo-
rithm 1 (the meta algorithm) and Algorithm 2 (the expert

algorithm). In each round t, we maintain a set of experts
St = {E1, ..., En}. We use qi to denote the round in which
Ei is added to the expert set. At the beginning of every round,
each expert Ei ∈ St runs the expert algorithm once to output
an action xi,t, and passes it to the meta algorithm (Algorithm
1, steps 3-8). Since we are dealing with exp-concave func-
tions, we choose ONS as the expert algorithm. Next, a linear
weighting method is applied to combine the outputs of ex-
perts and select xt (Algorithm 1, step 9):

xt =
∑
Ei∈St

pi,txi,t. (3)

In step 11, following the data streaming rule in Hazan and
Seshadhri [2007], we remove some experts from St to keep
the number of experts |St| = O(log t). Specifically, expert
Ei will be removed in round ei, defined as

ei = t+ 4 ∗ 2u(qi) + 1, (4)
where u(qi) is a number such that 2u(qi) is the largest power
of 2 that divides qi. After the experts are removed, we
initialize a new expert En̂ with n̂ = |St| + 1, and add it to
St to get St+1 (steps 12-14). In steps 15-17, the weights
of experts are updated by their own losses through the
exponential weighting method. Finally, in steps 18-20, the
weights are normalized to keep the sum to be 1.

The major difference between AFLH [Hazan and Seshadhri,
2007] and our algorithm is the loss function revealed to ex-
perts. While AFLH directly reveals ft(·) to all experts in
round t, we use a surrogate loss Lect (·). Specifically, con-
sider an expert Ei ∈ St. As mentioned above, in round t, Ei
has to perform ONS to output xi,t. Let xi,t−1 be its output in
round t− 1. In AFLH, xi,t is computed as:

xi,t = xi,t−1 −
1

γ
M−1i,t ∇ft−1(xi,t−1), (5)

where

Mi,t = Mi,t−1 +∇ft−1(xi,t−1)∇ft−1(xi,t−1)>. (6)

Clearly, to compute xi,t, expert Ei has to query ∇ft−1(·) at
xi,t−1. Because |St| = O(log t), it leads to an O(log t) num-
ber of gradient evaluations in round t. Inspired by Metagrad
[van Erven and Koolen, 2016], we introduce surrogate loss to
tackle this drawback. According to Lemma 1, we construct a
lower bound for ft(·), i.e., ∀u ∈ D,

ft(u) ≥γ
2

(xt − u)>∇t∇>t (xt − u)

−∇>t (xt − u) + ft(xt),
(7)

where∇t := ∇ft(xt). Then, we define

Lect (u) =
γ

2
(xt − u)>∇t∇>t (xt − u)−∇>t (xt − u), (8)

and take Lect (·) as the loss for all experts in St. Lect (·) enjoys
the following property:
Lemma 2. If Assumptions 1 and 2 hold, ft(·) is α-exp-
concave, then Lect (·) is αec-exp-concave, where αec =
γ/
(
1 + 2γDG+ γ2D2G2

)
. Besides, we have ∀ u1, u2 ∈ D,

Lect (u1)− Lect (u2) ≤∇Lect (u1)>(u1 − u2)

− γec

2

(
(u1 − u2)>∇Lect (u1)

)2
,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2764



Algorithm 3 The algorithm for expert Ei (strongly convex
version)

1: if qi = t then
2: xi,t = 0
3: else
4: yi,t = xi,t−1 − 1

t−qi∇L
sc
t−1(xi,t−1)

5: xi,t =
∏Id
D (yi,t)

6: end if
7: Output xi,t

where γec = 1
2 min{ 1

4GecD , α
ec}, Gec = 5

4GD.

By Lemma 2, Lect (·) is exp-concave, therefore ONS can still
be applied. Specifically, for expert Ei, its updating rule can
be rewritten as:

xi,t = xi,t−1 −
1

γec
A−1i,t ∇L

ec
t−1(xi,t−1), (9)

where

Ai,t = Ai,t−1 +∇Lect−1(xi,t−1)∇Leci,t−1(xi,t−1)>. (10)

Because

∇Lect−1(xi,t−1) =γ∇t−1∇>t−1(xi,t−1 − xt−1) +∇t−1, (11)

expert Ei only needs to use ∇t−1 = ∇ft−1(xt−1), instead
of querying ∇ft−1(xi,t−1). In this way, our algorithm only
queries the gradient once in each round.

As we have replaced ft(·) with Lect (·), after the gradient is
revealed, we use Lect (xi,t) to update p̂i,t:

p̂i,t+1 = pi,t exp(−αecLect (xi,t)). (12)

For α-exp-concave functions, MARSL-ec achieves the fol-
lowing SAR bound, which matches the optimal result in
Hazan and Seshadhri [2007] up to a constant factor:
Theorem 1. Suppose Assumptions 1 and 2 hold and all func-
tions f1, . . . , fT are α-exp-concave, MARSL-ec achieves

SARf1,...,fT (τ)

≤ (log T + 1)

(
5

(
1

αec
+

5

4
GD2

)
d log T + 1

)
=O

(
d log2 T

)
.

We note that the concept of surrogate loss was used by van
Erven and Koolen [2016]. Their work aims to develop an
universal algorithm that can automatically adapt to different
type of loss functions under the static setting. In contrast, this
paper aims to minimize the adaptive regret in the dynamic
setting.

3.2 Strongly Convex Functions
For strongly convex functions, we proposed an algo-
rithm named MARSL-sc (Minimizing Adaptive Regret with
Surrogate Losses for strongly convex functions), which uses
the same meta algorithm as MARSL-ec, but employs a differ-
ent surrogate loss and expert algorithm (Algorithm 3). Before
proceeding to the algorithm, firstly we introduce the follow-
ing lemma [Hazan et al., 2007], which implies that strongly
convex function is also exp-concave when the gradient is
bounded:

Lemma 3. If ft : D → R is λ-strongly convex and Assump-
tion 1 holds, then ft(·) is λ/G2-exp-concave.
By Lemma 3, we can directly apply MARSL-ec to this learn-
ing scenario. However, it will lead to a linear dependence on
d in the upper bound (Theorem 1). As an alternative, we in-
troduce a new surrogate loss which suits the problem better.
Following the same spirit as in Section 3.1, we first give a
lower bound for ft(·) based on Definition 3, i.e., ∀u ∈ D,

ft(u) ≥∇>t (u− xt) +
λ

2
(xt − u)>(xt − u) + ft(xt). (13)

Then, the surrogate loss Lsct (·) is defined as:

Lsct (u) = −
[
∇>t (xt − u)− λ

2
(xt − u)>(xt − u)

]
,

and we use Lsct (·) in place of ft(·) for all experts in round
t. Because the Hessian matrix of Lsct (·) is positive definite
with parameter λ, Lsct (·) is λ-strongly convex, and therefore
we can adopt OGD for strongly convex functions as the ex-
pert algorithm. Specifically, each expert Ei ∈ St uses the
following rule to compute xi,t:

xi,t = xi,t−1 − ηi,t∇Lsct−1(xi,t−1), (14)

where ηi,t = 1/(t− qi) is the step size, and

∇Lsct−1(xi,t−1) = λ(xi,t−1 − xt−1)−∇t−1. (15)

Again, each expert can output its action by only using ∇t−1,
instead of querying ∇ft−1(xi,t−1). Correspondingly, we use
Lsct (xi,t) to update p̂i,t at each round t:

p̂i,t+1 = pi,t exp (−αscLsct (xi,t)) , (16)

where αsc is the parameter of exp-convexity of Lsct (·). Since
Lsct (·) is λ-strongly convex, and ∀u ∈ D,

‖Lsc(u)‖ ≤ λD +G,

Lemma 3 implies Lsct (·) is λ/(λD+G)2-exp-concave. Con-
sequently, we set αsc = λ/(λD +G)2.

For λ-strongly convex functions, we prove a similar SAR
bound as Theorem 1, but independent from d:
Theorem 2. Suppose Assumptions 1 and 2 hold, and all func-
tions f1, . . . , fT are λ-strongly convex, MARSL-sc achieves

SARf1,...,fT (τ)

≤ (log T + 1)

(
(λD +G)2

2λ
(log T + 1) + 1

)
=O

(
log2 T

)
.

3.3 General Convex Functions
For general convex functions, we can still employ Algo-
rithm 1 as the meta algorithm, and take OGD for general
convex functions as its subroutine. However, it will only
lead to a weakly adaptive algorithm, as indicated in Section
2. Alternatively, we build our meta algorithm based on the
Coin Betting for Changing Environment (CBCE) algorithm
of Jun et al. [2017]. The algorithm, named Minimizing
Adaptive Regret with Surrogate Losses for general convex
functions (MARSL-gc), is summarized in Algorithm 4 (the
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Algorithm 4 The meta algorithm for general convex func-
tions

1: Initialize S1 = {E1}, qi = 1
2: for t = 1, ..., T do
3: for Ei ∈ St do
4: if qi 6= t then
5: Pass ∇ft−1(xt−1) to expert Ei
6: end if
7: Get action xi,t of expert Ei (Algorithm 5)
8: end for
9: Choose xt by (3), observe∇ft(xt) and ft(xt)

10: Remove experts whose ei are less than t
11: for Ei ∈ St do
12: Compute g̃i,t by (21)
13: end for
14: n̂ = |St|+ 1
15: Initialize En̂, set qn̂ = t and compute en̂
16: St+1 ← St ∪ {En}
17: for Ei ∈ St+1 do
18: Compute wi,t+1 and p̂i,t+1 by (17) and (18)
19: end for

20: pt+1 =

{
p̂t+1/‖p̂t+1‖1, ‖p̂t+1‖1 > 0

[πEi ]Ei∈St , otherwise
21: end for

Algorithm 5 The algorithm for expert Ei (general convex
version)

1: if qi = t then
2: xi,t = 0
3: else
4: yi,t = xi,t−1 − 1

2GD
√
t−qi
∇ft−1(xt−1)

5: xi,t =
∏Id
D (yi,t)

6: end if
7: Output xi,t

meta algorithm) and Algorithm 5 (the expert algorithm). Sim-
ilar to AFLH, CBCE follows the LEA framework with a
data streaming method. In each round t, the meta algo-
rithm receives xi,t, i = 1, ..., n, and selects xt as in (3).
Next, old experts are removed from St according to the
same data streaming method as in Section 3.1, and a new
expert En̂ is initialized and added to St to get St+1. Fi-
nally, the weights of experts are updated and normalized.
However, instead of applying exponential weighting scheme,
CBCE employs Sleeping Coin Betting method [Blum, 1997;
Orabona and Pál, 2016] as the weight updating policy. In
round t, after St+1 is obtained, p̂i,t+1 is obtained as:

p̂i,t+1 = πi max{wi,t+1, 0}, (17)
where

wi,t+1 =

∑t
j=qi

g̃i,j

t− qi + δ

1 +
t∑

j=qi

g̃i,jwi,j

 , (18)

g̃i,t is computed as:

g̃i,t =

{
ft(xt)− ft(xi,t), wi,t > 0

max{ft(xt)− ft(xi,t), 0}, otherwise

and πi = 1/q2i (1 + blog qic) is the prior of Ei.
Our algorithm and CBCE differ in the loss functions re-

vealed to experts. By Definition 2, a first attempt is to define
the surrogate loss as:

Lgct (u) = −∇ft(xt)>(xt − u). (19)

However, because CBCE requires the loss function to lie in
[0,1], we scale and redefine the surrogate loss function as:

Lgct (u) = −∇ft(xt)>(xt − u)/(2GD) + 1/2. (20)

We replace ft(·) with (20) as the loss function in round t. It
can be easily verified that ∀u ∈ D, Lgct (u) ∈ [0, 1]. Note that
the gradient of Lgct (u) is ∇Lgct (u) = ∇t/2GD, which im-
plies that every expert in our algorithm shares the same gra-
dient, instead of computing their own gradients respectively.
Correspondingly, the update rule of g̃i,t is rewritten as

g̃i,t =

{
Lgct (xt)− Lgct (xi,t), wi,t > 0

max{Lgct (xt)− Lgct (xi,t), 0}, otherwise.
(21)

For general convex functions, MARSL-gc achieves the fol-
lowing SAR bound, which is on the same order as the optimal
result in Jun et al. [2017]:
Theorem 3. Suppose Assumptions 1 and 2 hold and all func-
tions f1, . . . , fT are convex, MARSL-gc achieves

SARf1,...,fT (τ) ≤ 2GD
√
τ

(
6D√
2− 1

+ 8
√

7 log T + 5

)
= O

(√
τ log T

)
.

4 Experiments
In this section, we present empirical results on different data
sets to evaluate the proposed algorithms.

4.1 Synthetic Data
We consider the problem of matrix regression with a nuclear
norm regularizer [Bach, 2008]. In each round t, firstly a data
point (Mt, yt) arrives, where Mt ∈ Rp×q is a feature matrix
and yt ∈ R is the target value. Then, the algorithm predicts
a parameter matrix Wt ∈ Rp×m without knowing the data
point and incurs a loss, defined as:

ft(Wt) =
1

a

[
1

2

(
yt − tr

(
W>t Mt

))2
+ b‖Wt‖∗

]
, (22)

where a and b are constant parameters, and ‖ · ‖∗ is the nu-
clear norm. Inspired by Jun et al. [2017], we create a sce-
nario where the optimal parameter matrix is drifting over
time. Specifically, we sample Mt, ∀t = 1, ..., 30000 and
Wi, ∀i = 1, 2, 3 uniformly at random from [−1, 1]100×100.
For t ∈ [1, 10000], we assign yt = tr(W>1 Mt) + ε, where
ε is a Gaussian distributed noise. For t ∈ [10001, 20000]
([20001, 30000]), we use the same assignment but with pa-
rameter matrix W2 (W3). In this way, the optimal parameter
matrix will change every 10000 rounds. Since the loss func-
tion is convex, CBCE and MARSL-gc can be applied. As
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(a) Loss vs. the number of iterations (b) Cumulative running time vs. the number of iterations

Figure 1: Experimental results of nuclear norm regularized matrix regression

(a) Loss vs. the number of iterations (b) Cumulative running time vs. the number of iterations

Figure 2: Experimental results of mini-batch logistic regression

discussed in Section 3.3, our surrogate loss takes the follow-
ing form:

Lgct (W ) = ∂ft(Wt)
> • (W −Wt)/a+ 1/2, (23)

where • denotes the element-wise product, Wt is the matrix
chosen by the meta algorithm, and ∂ft(Wt) is a subgradient
of ft(Wt), computed by SVD [Watson, 1992].

Following Jun et al. [2017], we scale both loss and surro-
gate loss by assigning a = 500 and capping them above at
1. The value of b is empirically set as 10−4. We repeat the
experiment 50 times, and the losses of the two algorithms are
averaged by a moving time window of length 50, as shown in
Figure 1(a). The cumulative running time is reported in Fig-
ure 1(b). As can be seen, MARSL-gc performs very closely
to CBCE, and MARSL-gc is much more efficient. In fact,
it achieves 15.9 times speed-up (1733.9s vs. 110.5s). Al-
though in each round t the number of experts of MARSL-gc
and CBCE are the same (i.e., O(log t)), the computations dif-
fer dramatically. Namely, in CBCE, each expert has to per-
form SVD twice to compute its loss and gradient, while in
MARSL-gc the SVD operations are only performed in the
meta algorithm. Note that the speed ratio will grow if we
increase the number of iterations or the size of the matrix.

4.2 Real-World Data with a Synthetic Component
Next, we consider the problem of mini-batch logistic regres-
sion [Shalev-Shwartz and Zhang, 2013]. In each round t, a
batch of training examples {(xt,1, yt,1), . . . , (xt,n, yt,n)} ar-
rives, where (xt,i, yt,i) ∈ [−1, 1]d × {−1, 1}, i = 1, . . . , n.

Simultaneously, the learner makes a prediction of the un-
known parameter w, denoted as wt, and suffers a loss, defined
as:

ft(wt) =
1

n

n∑
i=1

log(1 + exp(−yt,iw>t xt,i)). (24)

Following the same spirit as in Section 4.1., We build a dy-
namic scenario based on real-world binary classification data
set IJCNN01 [Prokhorov, 2001; Chang and Lin, 2011]. Let
the number of iterations be 9000. In the first and last 3000 it-
erations, the algorithm receives a batch of training data which
is randomly sampled from the original data set; in iterations
3001-6000, the labels of samples are flipped by multiplying
−1. In this way, the optimal parameter will change every
3000 iterations. To make Assumption 2 is satisfied, we also
add a domain constraint such that the optimal parameters are
inside a d-dimensional ball with radius 10. Since the loss
function is exp-concave, AFLH and MARSL-ec can be ap-
plied. As discussed in Section 3.1, the surrogate loss takes
the following form:

Lect (u) =
γ

2
(wt − u)

>

(
1

n

n∑
i=1

∇t,i∇>t,i

)
(wt − u)

+

(
1

n

n∑
i=1

∇t,i

)>
(u− wt),

(25)

where

∇t,i = −yt,ixt,i/
(
1 + exp(yt,iw>t xt,i)

)
.
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(25) implies that MARSL-ec can directly compute the aver-
aged gradient in the meta algorithm, and thus it is more effi-
cient. We set n = 256 for both algorithms. the experiment
is repeated 10 times, and the losses are averaged by a mov-
ing time window of length 20, as shown in Figure 2(a). The
cumulative running time is reported in Figure 2(b). It can be
seen that MARSL-ec performs nearly as well as AFLH, and
achieves 10.6 times speed-up (2010.7s vs. 189.5s). The speed
ratio will also grow if we increase the number of iterations or
the size of the batch.

5 Conclusion
In this paper, we propose a series of efficient algorithms for
minimizing the adaptive regret of exp-concave, strongly con-
vex and general convex functions respectively. The main ad-
vantage of our algorithms is that they only require one gra-
dient query per round, and attain the same theoretical guar-
antees as previous optimal algorithms. Empirical results on
different data sets demonstrate the efficiency and effective-
ness of our methods.
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Coin betting and parameter-free online learning. In Ad-
vances in Neural Information Processing Systems 29,
pages 577–585, 2016.

[Prokhorov, 2001] Danil Prokhorov. Ijcnn 2001 neural net-
work competition. Slide Presentation in IJCNN, 1:97,
2001.

[Shalev-Shwartz and Zhang, 2013] Shai Shalev-Shwartz and
Tong Zhang. Accelerated mini-batch stochastic dual coor-
dinate ascent. In Advances in Neural Information Process-
ing Systems 26, pages 378–385, 2013.

[Shalev-Shwartz, 2012] Shai Shalev-Shwartz. Online learn-
ing and online convex optimization. Foundations and
Trends R© in Machine Learning, 4:107–194, 2012.

[van Erven and Koolen, 2016] Tim van Erven and Wouter M
Koolen. Metagrad: Multiple learning rates in online learn-
ing. In Advances in Neural Information Processing Sys-
tems 29, pages 3666–3674, 2016.

[Watson, 1992] G Alistair Watson. Characterization of the
subdifferential of some matrix norms. Linear Algebra and
Its Applications, 170:33–45, 1992.

[Zhang et al., 2017] Lijun Zhang, Tianbao Yang, Rong Jin,
and Zhi-Hua Zhou. Dynamic regret of strongly adaptive
methods. arXiv preprint arXiv:1701.07570, 2017.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Ma-
chine Learning, pages 928–936, 2003.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2768


