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Abstract

Recent studies have highlighted that deep neural
networks (DNNs) are vulnerable to adversarial ex-
amples. In this paper, we improve the robustness of
DNNs by utilizing techniques of Distance Metric
Learning. Specifically, we incorporate Triplet Loss,
one of the most popular Distance Metric Learning
methods, into the framework of adversarial train-
ing. Our proposed algorithm, Adversarial Training
with Triplet Loss (AT2L), substitutes the adversar-
ial example against the current model for the an-
chor of triplet loss to effectively smooth the classi-
fication boundary. Furthermore, we propose an en-
semble version of AT2L, which aggregates different
attack methods and model structures for better de-
fense effects. Our empirical studies verify that the
proposed approach can significantly improve the
robustness of DNNs without sacrificing accuracy.
Finally, we demonstrate that our specially designed
triplet loss can also be used as a regularization term
to enhance other defense methods.

1 Introduction
Deep neural networks (DNNs) have been widely used
for security-critical tasks, including but not limited to
autonomous driving [Evtimov et al., 2017], surveil-
lance [Ouyang and Wang, 2013], biometric recognition [Xu
et al., 2017], and malware detection [Yuan et al., 2014].
However, recent studies have shown that DNNs are vul-
nerable to adversarial examples [Goodfellow et al., 2014;
Papernot et al., 2016; Chen et al., 2017; Li et al., 2018],
which are carefully crafted instances that can mislead well-
trained DNNs. This raises serious concerns about the security
of machine learning models in many real-world applications.

Recently, many efforts have been made to improve the ro-
bustness of DNNs, such as (i) using the properties of obfus-
cated gradients [Athalye et al., 2018] to prevent the attackers
from obtaining the true gradient of the model, e.g., mitigating
through randomization [Xie et al., 2018], Thermometer en-
coding [Buckman et al., 2018], and Defense-GAN [Saman-
gouei et al., 2018]; (ii) adding adversarial examples into
the training set, e.g., Adversarial Training [Szegedy et al.,

2013; Goodfellow et al., 2014], scalable Adversarial Train-
ing [Kurakin et al., 2016b], and Ensemble Adversarial Train-
ing [Tramèr et al., 2018]. However, it was shown that the first
type of defense methods had been broken through by vari-
ous targeted countermeasures [Carlini and Wagner, 2017a;
He et al., 2017; Athalye et al., 2018]. The second type of
methods also suffers the distortion of the classification bound-
ary for the reason that they only import adversarial examples
against some specific types of attacks.

In this paper, we follow the framework of Adversarial
Training and introduce Triplet Loss [Schroff et al., 2015], one
of the most popular Distance Metric Learning methods, to im-
prove the robustness by smoothing the classification bound-
ary. Triplet loss is designed to optimize the embedding space
such that data points with the same label are closer to each
other than those with different labels. The primary challenge
of triplet loss is how to select representative triplets, which
are made up of three examples from two different classes and
jointly constitute a positive pair and a negative pair. Since ad-
versarial examples contain more information about the deci-
sion boundary than normal examples, we modify the anchor
of triplet loss with adversarial examples to enlarge the dis-
tance between adversarial examples and examples with dif-
ferent labels in the embedding space. Then, we add this fine-
grained triplet loss to the original adversarial training process
and name the new algorithm as Adversarial Training with
Triplet Loss (AT2L). We also propose an ensemble algorithm
which aggregates different types of attacks and model struc-
tures to improve the performance. Furthermore, the proposed
triplet loss can be applied to other methods as a regularization
term for better robustness.

We summarize our main contributions as follows:

• We introduce triplet loss into the adversarial training
framework and modify the anchor of triplet loss with ad-
versarial examples. We also design an ensemble version
of our method.

• We propose to take our triplet loss as a regularization
term and apply it to existing defense methods for further
improvement of robustness.

• We conduct extensive experiments to evaluate our algo-
rithms. The empirical results show that our proposed
approach behaves more robust and preserves the accu-
racy of the model, and the triplet loss can also improve
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the performance of other defense methods.

2 Related Work
In this section, we briefly review existing adversarial attack
and defense methods.

2.1 Attack Methods
Attack methods can be divided into two main categories:
gradient-based attack and optimization-based attack.

The gradient-based attack asks for the structure of the at-
tacked model and requires that the attacked model should
be differentiable. Then it generates adversarial examples
by adding perturbation along the direction of the gradients.
FGSM [Goodfellow et al., 2014], Single-Step Least-Likely
(LL) [Kurakin et al., 2016a; Kurakin et al., 2016b] and their
iterative versions, i.e., I-FGSM and I-LL, are popular meth-
ods in this type of attack.

The optimization-based attack formulates the task of attack
as an optimization problem which aims to minimize the norm
of perturbation and make the DNN model mis-classify adver-
sarial examples. C&W attack [Carlini and Wagner, 2017b] is
by far one of the strongest optimization-based attacks. It can
reduce the classifiers’ accuracy to almost 0 and has bypassed
over 10 different methods designed for detecting adversarial
examples [Carlini and Wagner, 2017a]. However, it is more
time-consuming than gradient-based algorithms.

2.2 Defense Methods
Many recent defense approaches are based on a technique
called obfuscated gradients [Athalye et al., 2018]. It is similar
to gradient masking [Papernot et al., 2017] which is a failed
defense method that tries to deny the attacker access to a use-
ful gradient, and leads to a false sense of security in defenses
against adversarial examples. Typical defense methods using
obfuscated gradients are thermometer encoding [Buckman
et al., 2018], Stochastic activation pruning [Dhillon et al.,
2018], Mitigating through randomization [Xie et al., 2018]
and Defense-GAN [Samangouei et al., 2018].

Another common method is adversarial training, which
proposes to add adversarial examples to the training set and
then retrain the model for better robustness. Szegedy et al.
(2013) first propose this simple process in which the model is
trained on adversarial examples until it learns to classify them
correctly. However, this type of methods suffers the distortion
of the classification boundary. So in this paper, we introduce
Distance Metric Learning to alleviate this distortion.

3 Methodology
In this section, we first introduce the triplet loss. Then we
present Adversarial Training with Triplet Loss (AT2L) and
an ensemble version of AT2L. Finally, we propose to treat
our special triplet loss as a regularization term and combine
it with existing defense methods.

3.1 Triplet Loss
A triplet [Schroff et al., 2015] consists of three examples
from two different classes, which jointly constitute a posi-
tive pair and a negative pair. We denote (xa

i ,x
p
i ,x

n
i ) as a

triplet, where (xa
i ,x

p
i ) has the same label and (xa

i ,x
n
i ) has

the different. The xa
i term is referred to as the anchor of a

triplet. The distance between the positive pair is encouraged
to be smaller than that of the negative pair, and a soft nearest
neighbor classification margin is maximized by optimizing a
hinge loss. Specifically, triplet loss forces the network to gen-
erate an embedding where the distance between xa

i and xn
i is

larger than the distance between xa
i and xp

i plus the margin
parameter α.

Formally, we define the triplet loss function as follows:

1

N

N∑
i=1

max

{
‖f(xa

i )− f(x
p
i )‖

− ‖f(xa
i )− f(xn

i )‖+ α, 0

}
,

where N is the cardinality of the set of triplets used in the
training process, f(·) is the output of the last fully connected
layer of our neural network, ‖xi − xj‖ represents a metric
of distance between xi and xj . Here we use `∞ norm in our
experiments.

Generating all possible triplets would result in redundant
triplets and lead to slow convergence. So in the next sec-
tions, we use sampling strategy to generate triplets in our al-
gorithms.

3.2 Adversarial Training With Triplet Loss
(AT2L)

The original version of adversarial training is to craft adver-
sarial examples for the entire training set and add them to
the training process. Specifically, it generates Xadv which
contains adversarial examples of instances in training set X .
Then it concatenates Xadv and X as X ′ and retrains the
model with X ′. During each iteration of the original algo-
rithm, it generates the adversarial examples against the cur-
rent model. The loss function of the original adversarial train-
ing is formulated as:

1

(1 + λ)k

(
k∑

i=1

`(xi, yi) + λ
k∑

i=1

`(xadv
i , yi)

)
, (1)

where λ is the hyper-parameter, k is the size of the mini-batch
sampled from X , y is the label of xi and xadv

i is the adver-
sarial example of xi.

To encourage a larger margin between the positive class
and the negative class, we incorporate triplet loss into the loss
function. Specifically, for example xi, we generate adversar-
ial example xadv

i and sampled an example xn
i from the mini-

batch which has a different label to construct a new triplet
(xadv

i ,xi,x
n
i ). The main difference between this triplet and

the original triplet is that instead of taking the original exam-
ple xi as the anchor, we choose the adversarial example xadv

i ,
which contains more information about the decision bound-
ary. Specifically, when dealing with a binary classification
problem, we sample xn

i which has the opposite label to xi.
For multi-class problems, we sample xn

i from the same class
as the adversarial example xadv

i , which is an incorrect class
from the view of human beings. We apply this new triplet
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Algorithm 1 Adversarial Training With Triplet Loss (AT2L)

1: Train f(·) with training data X;
2: repeat
3: Construct Xadv against f(·) for each instance in X;
4: X ′ = [X ,Xadv];
5: Retrain f(·) with X ′ using Eq. (2);
6: until Training converged

to the triplet loss, and combine it with the loss of adversarial
training, so the loss function of our algorithm is formulated
as:

ˆ̀(x, y) =
1

(1 + λ1)k

(
k∑

i=1

`(xi, yi) + λ1

k∑
i=1

`(xadv
i , yi)

)

+
λ2
k

k∑
i=1

max

{
‖f(xadv

i )− f(xi)‖

− ‖f(xadv
i )− f(xn

i )‖+ α, 0

}
,

(2)

where k is the size of a mini-batch, and λ1, λ2 and α are
the hyper-parameters. We utilize this new loss function to
retrain the model and summarize the proposed algorithm in
Algorithm 1.

3.3 Ensemble AT2L
We proceed to improve the robustness of the model against
unknown type of attacks for the reason that the originally
proposed algorithm can only defend against known type of
attacks, where defenders have detailed information about the
attacking methods and lack robustness against attacks trans-
ferred from unknown models. Our first attempt is to combine
different attack methods together to increase the robustness.
As shown in Algorithm 2 where A denotes an aggregation
of attack methods, we conduct adversarial training on a col-
lection of adversarial examples that are generated by all the
attack methods. In this paper, we consider three types of at-
tacks as follows:
• Gradient-based: A = {FGSM,LL, I-FGSM, I-LL}.
• Optimization-based: A = {C&W}.
• Mixed: A = {FGSM,LL, I-FGSM, I-LL,C&W}.
On the other hand, we adopt the idea of Ensemble Ad-

versarial Training [Tramèr et al., 2018], which says that the
augmentation of training data with perturbations transferred
from other models can improve the robustness not only under
a known type of attack, but also under an unknown type of
attack. As shown in Algorithm 2, where M is a set of model
structures, we extend our training set with adversarial exam-
ples against different models in M .

In general, the ensemble version of our algorithm not only
considers various types of attacks, but also involves adver-
sarial examples generated against different model structures.
Therefore, our algorithm captures more information about the
decision boundary, and with our designed triplet loss, it can

smooth the classification boundary and learn a better embed-
ding space to alleviate the distortion.

3.4 Triplet Regularization
Our triplet loss can also be regarded as a regularization term:

R(x, y) =
λ

k

k∑
i=1

max

{
‖f(xadv

i )− f(xi)‖

− ‖f(xadv
i )− f(xn

i )‖+ α, 0

}
Thus, it can be incorporated into most of the existing de-

fense methods for better robustness. The defense methods
based on obfuscated gradients mostly mask the real gradient
by adding non-differentiable preprocessing or random pro-
cesses, and there is no restriction on the loss function used
in the training process. Therefore, we can modify their loss
function by adding our triplet regularization term to further
increase the robustness.

For example, Buckman et al. (2018) propose to encode the
input with Thermometer Encoding and retrain the model with
the traditional adversarial training. Triplet regularization can
be easily applied to this method by changing the loss func-
tion of the adversarial training process. Mitigating through
randomization [Xie et al., 2018] and Defense-GAN [Saman-
gouei et al., 2018] both perform transformations over original
inputs without changing the loss. So we can directly incorpo-
rate our triplet regularization into their losses to improve the
defense effect.

4 Experiments
In this section, we present experimental results.

4.1 Settings
We conduct experiments over three datasets, i.e., Cats vs.
Dogs [Elson et al., 2007], MNIST [LeCun, 1998] and CI-
FAR10 [Krizhevsky and Hinton, 2009]. Cats vs. Dogs is a
large scale image dataset used for binary classification prob-
lems. MNIST and CIFAR10 are commonly used datasets for
multi-class classification problems.

The attack methods we used in our experiments include
FGSM, I-FGSM, LL, I-LL, C&W, LS-PGA and Deep-
fool [Moosavi-Dezfooli et al., 2016] and the model structures
used in the experiments are different for three datasets. The
parameters of these methods, detailed model structures and
full results of the experiments are described in the full ver-
sion of our paper1.

4.2 Adversarial Training With Triplet Loss
(AT2L)

To illustrate the advantage of the proposed method, we com-
pare it with adversarial training without triplet loss, whose
loss function is Eq. (1). As for the hyper-parameters in Eq. (1)
and Eq. (2), we traverse in the appropriate interval and find

1https://arxiv.org/abs/1905.11713
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Algorithm 2 Ensemble version of AT2L

1: Train f(·) with training data X;
2: repeat
3: for a in A do
4: for m in M do
5: Construct Xa,m, which is the set of adversarial examples of X against model m under the attack method a.
6: end for
7: end for
8: Xadv = {Xa,m}, a ∈ A, m ∈M ;
9: repeat

10: Sample k clean examples B = {x1, ...,xk} from training set X;
11: Sample k adversarial examples {xadv

1 , ...,xadv
k } from Xadv . Each xadv

i is the adversarial example of xi;
12: Construct a new training batch B′ = {x1, ...,xk,x

adv
1 , ...,xadv

k };
13: For each instance of {xadv

1 , ...,xadv
k }, take xi as xp

i in triplet loss and sample an example from B with a different
label from xi as xn

i in triplet loss;
14: Perform one training step of network f(·) using the mini-batch B′ according to Eq. (2);
15: until Training converged
16: until Training converged
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(c) CIFAR10

Figure 1: Results on three datasets where attackers perform white-box attacks. ‘Adv.T’ means the traditional adversarial training. ‘-Gra’
means the training process uses the gradient-based attack methods to generate adversarial examples. ‘-Opt’ means using optimization-based
attack method, i.e., C&W and ‘-Mix’ means using the mixed version of attack methods. The figures of the upper line are attacked by FGSM
and figures of the bottom line are attacked by C&W.

that they have a stable performance in a proper range of val-
ues. Each experiment is tested by two types of attack meth-
ods, i.e., FGSM and C&W. Due to the limitation of space, we
only show results where attackers perform white-box attacks
in Fig. 1 and partial results where defenders perform the at-
tack to a network which is not included in the training set M
of our algorithm in Fig. 2.

We have the following observations from the results in
Fig. 1: (i) when attacked by gradient-based attacks or
optimization-based attacks, AT2L trained with adversarial
examples generated by corresponding attacks has the best
robustness, e.g., when attacked by gradient-based attacks,
the model trained with adversarial examples generated by
gradient-based attacks exhibits the best robustness; (ii) when
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Figure 2: Results on three datasets where defenders are under the attack of adversarial examples transferred from unknown models. Notations
are the same as Figure 1 and these are attacked by FGSM.
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Figure 3: Comparison of traditional adversarial training and triplet regularization. The attack method used is FGSM.

trained with gradient-based attacks, AT2L shows almost
no robustness against optimization-based attacks, which is
shown by the black curves in Fig. 1. However, the robust-
ness of our algorithm trained with optimization-based attacks
demonstrates a decent defense effect against gradient-based
attacks. This briefly verifies that optimization-based attacks
are stronger and contain more information about the decision
boundary than gradient-based attacks; (iii) AT2L trained with
our mixed version of algorithms shows comparable robust-
ness to the model trained with corresponding attacks. Al-
though the mixed version of AT2L does not perform the best,
it provides more reliable robustness when attacked by an un-
known type of attacks.

Compared with Fig. 1 (results under adversarial examples
transferred from known models), Fig. 2 (results under ad-
versarial examples transferred from unknown models) shows
that the results under the attack transferred from unknown
models are slightly worse than that under the known type of
attacks for the reason that the defenders are lack of precise
information of the attack, e.g., the type of the attack method
and model structure used for attack. However, the model still
shows decent robustness against unknown type of attacks, and
this is an advantage of our ensemble AT2L, which aggregates
multiple model structures.

We also find that compared with the model trained over
clean data, all the models trained with our algorithm, i.e.,
AT2L, have no loss of accuracy, and more details can be
found in the supplemental material.

4.3 Triplet Regularization
To reveal the effect of triplet regularization, we compare it
with the original adversarial training. We use FGSM to gen-
erate adversarial examples for the training process and test
the robustness by the attack of FGSM.

From Fig. 3, we can see that the error rate of the model
trained with our triplet regularization (the red curve) keeps
decreasing as the number of iterations increases. So the triplet
loss itself can increase the robustness of the model, and its
effect is no worse than the original adversarial training (the
blue curve). This result verifies our hypothesis that enlarging
the margin between the adversarial examples and the negative
examples and decreasing the margin between examples with
the same class can smooth the decision boundary. This also
suggests that the designed triplet regularization can work well
in most machine learning problems to increase robustness.
We can also see form Fig. 3 that AT2L, which integrates both
adversarial training and triplet regularization, shows the best
performance.
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Ori Th. En.(1) Th. En.(7) Th. En. + TR(1) Th. En. + TR(7)
Clean 5.8 7.6 10.1 6.1 7.2
FGSM 51.5 37.1 20.0 27.6 15.1

PGD/LS-PGA 49.5 39.3 20.9 29.7 13.4

Table 1: Error rate against known type of attacks on CIFAR10 over Thermometer Models. ‘Th. En.’ mean Thermometer Encoding. ‘TR’
means applying our triplet regularization.

Model Inception-v3 ResNet-v2-101 Inception-ResNet-v2 Ens-adv-Inception-ResNet-v2
Ori Rand Rand + TR Ori Rand Rand + TR Ori Rand Rand + TR Ori Rand Rand + TR

FGSM 66.8 36.2 30.5 73.7 28.2 21.7 34.7 19.0 8.3 15.6 4.3 4.6
Deepfool 100.0 1.7 1.1 100.0 2.3 1.5 100.0 1.8 0.8 99.8 0.9 0.7

C&W 100.0 3.1 2.6 100.0 2.9 1.2 99.7 2.3 1.3 99.1 1.2 0.9

Table 2: Error rate of different models under the vanilla attack scenario on the ImageNet datasets. ‘Ori’ means the original model. ‘Rand’
means adding some randomization layers. ‘TR’ means applying our triplet regularization.

Model A B C D
Ori DG DG + TR Ori DG DG + TR Ori DG DG + TR Ori DG DG + TR

FGSM 88.3 1.2 1.1 97.8 4.4 0.7 67.9 1.1 0.8 96.2 2.0 1.6
C&W 85.9 1.1 1.4 96.8 8.4 4.7 87.4 1.1 1.1 96.8 1.7 1.4

Table 3: Error rates of different models on the MNIST datasets. ‘DG’ mean Defense-GAN. ‘TR’ means applying our triplet regularization.
A,B,C,D are different model structures, whose details are described in the supplemental material.

4.4 Current Defense Methods With Triplet
Regularization

We further explore the effect of the combination of triplet reg-
ularization with existing defense methods. We experiment
over some representative defense methods and demonstrate
that our triplet regularization can be applied to improve their
robustness further. Due to the limitation of space, we show
partial results in this part, and full results are listed in the
supplemental material.

Thermometer Encoding
We follow the setting of the original paper [Buckman et al.,
2018] and do experiments over both known and unknown
type of attacks. Partial results are shown in Table 1 which
indicate employing our triplet regularization indeed improves
the robustness based on the effect of the original defense.
For example, when attacked by FGSM, the error rate of the
model trained using thermometer encoding after 7 iterations
is 20.0%. However, combining with our triplet regularization,
the model can achieve 15.1% error rate.

Mitigating Through Randomization
We also apply our triplet loss to the work of Xie et al. (2018)
who proposed to randomly resize or pad the images to a
designed size. This defense can be added in front of nor-
mal classification process with no additional training or fine-
tuning, and can be combined with our triplet regularization
directly. We experiment over two settings from the origi-
nal paper (vanilla attack scenario and ensemble-pattern attack
scenario), and examine the performance of our triplet regular-
ization. The result of the vanilla attack scenario is shown in
Table 2. For the model of Inception-ResNet-v2, the random-
ized procedure only achieves 19.0% error rate under FGSM,
but with our triplet regularization, the error rate can drop to
9.3%. These results show that our triplet regularization can

further improve the robustness of the model based on the orig-
inal defense method.

Defense-GAN
Defense-GAN is designed to project samples onto the man-
ifold of the generator before classifying them. Our triplet
regularization can be easily applied after the projection of
Defense-GAN by simply changing the loss function during
the training process of the classifier. We follow the setting
of models’ structures and parameters in the paper of Saman-
gouei et al. (2018). As shown in Table 3, when attacked by
C&W, model B attains 8.4% error rate using Defense-GAN,
while combining with triplet regularization, it achieves 4.7%
error rate. Again, this result shows that equipping the orig-
inal defense method with triplet regularization can make the
trained model more robust.

5 Conclusion
In this paper, we propose Adversarial Training with Triplet
Loss (AT2L), which incorporates a modified triplet loss in
the adversarial training process to alleviate the distortion of
the models’ classification boundary. We further design an en-
semble version of AT2L and propose to use the triple loss as
a regularization term. The results of our experiments validate
the effectiveness of our algorithms and demonstrate that our
triplet regularization can be applied to existing defense meth-
ods for further improvement of robustness.
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