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Abstract
The usual goal of online learning is to minimize
the regret, which measures the performance of on-
line learner against a fixed comparator. However, it
is not suitable for changing environments in which
the best decision may change over time. To ad-
dress this limitation, new performance measures,
including dynamic regret and adaptive regret have
been proposed to guide the design of online algo-
rithms. In dynamic regret, the learner is compared
with a sequence of comparators, and in adaptive re-
gret, the learner is required to minimize the regret
over every interval. In this paper, we will review
the recent developments in this area, and highlight
our contributions. Specifically, we have proposed
novel algorithms to minimize the dynamic regret
and adaptive regret, and investigated the relations-
hip between them.

1 Introduction
Online learning is a well established learning paradigm which
has both theoretical and practical appeals [Shalev-Shwartz,
2011]. It is performed in a sequence of consecutive rounds,
where at iteration t the learner chooses a decision wt from
a set W . After committing to this choice, a cost function
ft :W 7→ R is revealed and the learner suffers a loss ft(wt).
The goal of online learning is to minimize the cumulative loss∑T
t=1 ft(wt), and the traditional performance measure is re-

gret:

Regret(T ) =
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w) (1)

defined as the difference between the cumulative loss of the
online learner and that of the best decision chosen in hind-
sight. When both the set W and the function ft(·) are con-
vex, it becomes online convex optimization (OCO) [Zinke-
vich, 2003].

In the literature, there exist plenty of algorithms and the-
ories for minimizing the regret [Cesa-Bianchi and Lugosi,
2006; Hazan, 2016]. However, when the environment is
changing, regret is not a suitable measure, since it compa-
res the learner against a fixed decision. And for the same

reason, the definition in (1) is also referred to as static regret.
To address this limitation, recent studies have introduced new
performance measures, including dynamic regret and adap-
tive regret, to measure the performance of online learner.

In dynamic regret, the learner is compared against a se-
quence of comparators u1, . . . ,uT ∈ W [Zinkevich, 2003],
i.e.,

D-Regret(u1, . . . ,uT ) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(ut). (2)

It is well-known that in the worst case, a sublinear dyn-
amic regret is impossible. The dynamic regret is usually
bounded in terms of some regularities on the comparator
sequence or the function sequence [Besbes et al., 2015;
Jadbabaie et al., 2015]. As shown in (2), dynamic regret deals
with changing environments from a global prospective, as it
measures the performance over the whole interval [1, T ] but
allows the comparator to change over time.

On the other hand, adaptive regret takes a local perspective,
and aims to minimize the static regret over every interval. Gi-
ven a parameter τ , the strong version of adaptive regret is
defined as the maximum static regret over intervals of length
τ [Daniely et al., 2015], i.e.,

SA-Regret(T, τ)

= max
[r,r+τ−1]⊆[T ]

(
r+τ−1∑
t=r

ft(wt)− min
w∈W

r+τ−1∑
t=r

ft(w)

)
.

(3)
Note that the optimal decision for different intervals could be
different. By minimizing the adaptive regret, we essentially
enforce the learner to compete with a changing comparator.

In this paper, we will review the recent developments on
dynamic regret and adaptive regret under the setting of OCO,
including our contributions. Specifically, we contribute to
this area in the following aspects.
• We have considered the worst-case of dynamic regret in

(2), and exploited the curvature of the functions, such as
smoothness and strong convexity, to improve the regret
bound [Yang et al., 2016; Zhang et al., 2017].
• For the general definition of dynamic regret, we pro-

pose a novel algorithm named Ader, which attains an
O(
√
T (1 + PT )) dynamic regret, where PT is the path-

length of the comparator sequence [Zhang et al., 2018a].
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We also prove an Ω(
√
T (1 + PT )) lower bound, sho-

wing that our upper bound is optimal.
• For adaptive regret, we reduce the number of gradient

evaluations in the t-th round from O(log t) to 1 wit-
hout affecting the performance [Wang et al., 2018], and
make use of smoothness to establish problem-dependent
bounds [Zhang et al., 2019a]. We also develop a uni-
versal algorithm that is able to minimize the adaptive
regret of multiple types of convex functions simultane-
ously [Zhang et al., 2019b].
• To investigate the relationship between dynamic regret

and adaptive regret, we demonstrate that the worst-case
dynamic regret can be upper bounded in terms of the
adaptive regret and the functional variation [Zhang et
al., 2018b]. Furthermore, we develop novel algorithms
that are able to minimize the general dynamic regret and
adaptive regret simultaneously [Zhang et al., 2020].

2 Dynamic Regret
We first discuss the worst-case dynamic regret, and then move
to the general one.

2.1 Worst-case Dynamic Regret
Under the setting of OCO, most of previous studies about
dynamic regret focus on the worst-case of (2), in which the
sequence of comparators consists of minimizers of online
functions [Jadbabaie et al., 2015], i.e.,

D-Regret(w∗1, . . . ,w
∗
T ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
∗
t )

=
T∑
t=1

ft(wt)−
T∑
t=1

min
w∈W

ft(w)

where w∗t ∈ argminw∈W ft(w) is a minimizer of ft(·) over
W .

Let P ∗T be the path-length of the minimizer sequence, i.e.,

P ∗T =
T∑
t=2

‖w∗t −w∗t−1‖2.

When the loss functions are strongly convex and smooth,
Mokhtari et al. [2016] show that online gradient descent
(OGD) ensures D-Regret(w∗1, . . . ,w

∗
T ) = O(P ∗T ). We have

demonstrated that this rate is also attainable for convex and
smooth functions under the condition that the minimizers lie
in the interior of W [Yang et al., 2016]. Furthermore, when
the minimizer of each function is unique, a simple baseline
which plays the minimizer of the previous round, i.e.,

wt+1 = argmin
w∈W

ft(w),

attains an O(P ∗T ) worst-case dynamic regret.
Besides the path-length, we have introduced the squared

path-length [Zhang et al., 2017]:

S∗T =
T∑
t=1

‖w∗t+1 −w∗t ‖22

as a new regularity of the comparator sequence. The ad-
vantage of S∗T is that it could be much smaller than P ∗T
if the minimizer moves slowly. When all the functions
are strongly convex and smooth, we propose to apply gra-
dient descent multiple times in each round, and demonstrate
that the dynamic regret could be reduced from O(P ∗T ) to
O(min(P ∗T , S

∗
T )). We then extend our theoretical guarantee

to semi-strongly convex or self-concordant functions.
Instead of measuring the complexity of the comparator se-

quence, Besbes et al. [2015] propose to evaluate the mo-
vement of the loss functions as follows:

FT =
T∑
t=1

sup
w∈W

|ft+1(w)− ft(w)|. (4)

Besbes et al. show that a restarted OGD algorithm equip-
ped with a prior knowledge of an upper bound VT ≥ FT
achieves O(V

1/3
T T 2/3) and O(log T

√
VTT ) dynamic regret

for convex functions and strongly convex functions, respecti-
vely. However, these bounds depend on the predetermined
VT rather than the actual FT .

2.2 General Dynamic Regret
Although one can show that D-Regret(w∗1, . . . ,w

∗
T ) ≥

D-Regret(u1, . . . ,uT ) for any u1, . . . ,uT ∈ W , it does
not imply the former one is stronger since an upper
bound for D-Regret(w∗1, . . . ,w

∗
T ) could be very loose for

D-Regret(u1, . . . ,uT ). In fact, the definition in (2) is more
general since it holds for any sequence of comparators, and
thus includes the static regret and the worst-case dynamic re-
gret as special cases.

In his seminal work, Zinkevich [2003] shows that OGD
with a constant step size attains a dynamic regret of
O(
√
T (1 + PT )) for any sequence u1, . . . ,uT , where

PT =

T∑
t=1

‖ut+1 − ut‖2.

This upper bound is adaptive in the sense that it automati-
cally becomes tighter when the comparators change slowly.
Hall and Willett [2013] have investigated the general dyna-
mic regret when a dynamic model is available to predict the
comparator sequence.

For the general dynamic regret, we have established an
Ω(
√
T (1 + PT )) lower bound, which indicates that results

of Zinkevich [2003] and Hall and Willett [2013] are far away
from the optimum. To address this limitation, we develop
an optimal algorithm, namely adaptive learning for dynamic
environment (Ader), which attains an O(

√
T (1 + PT )) dyn-

amic regret. In the following, we give a brief description of
Ader.

2.3 Ader
Ader follows the framework of prediction with expert advice
(PAE) [Cesa-Bianchi and Lugosi, 2006], and is inspired by
the strategy of maintaining multiple learning rates in Meta-
Grad [van Erven and Koolen, 2016]. The basic idea is to run
multiple OGD algorithms in parallel, each with a different
step size that is optimal for a specific path-length, and com-
bine them with an expert-tracking algorithm.
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Algorithm 1 Ader: Meta-algorithm

Require: A step size α, and a setH containing step sizes for
experts

1: Activate a set of experts {Eη|η ∈ H} by invoking Algo-
rithm 2 for each step size η ∈ H

2: Sort step sizes in ascending order η1 ≤ η2 ≤ · · · ≤ ηN ,
and set ωηi1 = C

i(i+1)

3: for t = 1, . . . , T do
4: Receive wη

t from each expert Eη
5: Output

wt =
∑
η∈H

ωηtw
η
t

6: Observe the loss function ft(·)
7: Update the weight of each expert by

ωηt+1 =
ωηt e

−αft(wηt )∑
µ∈H ω

µ
t e
−αft(wµt )

8: Send gradient∇ft(wη
t ) to each expert Eη

9: end for

Meta-algorithm Our meta-algorithm, summarized in Al-
gorithm 1, is built upon the exponentially weighted average
forecaster [Cesa-Bianchi and Lugosi, 2006]. The inputs of
the meta-algorithm are its own step size α, and a set H of
step sizes for experts. In Step 1, we active a set of ex-
perts {Eη|η ∈ H} by invoking the expert-algorithm for each
η ∈ H. In Step 2, we set the initial weight of each expert. Let
ηi be the i-th smallest step size in H. The weight of Eηi is
chosen as

ωηi1 =
C

i(i+ 1)
, and C = 1 +

1

|H|
. (5)

In each round, the meta-algorithm receives a set of predicti-
ons {wη

t |η ∈ H} from all experts (Step 4), and outputs the
weighted average (Step 5):

wt =
∑
η∈H

ωηtw
η
t

where ωηt is the weight assigned to expert Eη . After obser-
ving the loss function, the weights of experts are updated ac-
cording to the exponential weighting scheme (Step 7). In the
last step, we send the gradient∇ft(wη

t ) to each expert Eη so
that they can update their own predictions.

Expert-algorithm As shown in Algorithm 2, we use OGD
as the expert-algorithm, which takes the step size η as its in-
put. In Step 3 of Algorithm 2, each expert submits its pre-
diction wη

t to the meta-algorithm, and receives the gradient
∇ft(wη

t ) in Step 4. Then, in Step 5 it performs gradient des-
cent

wη
t+1 = ΠW

[
wη
t − η∇ft(w

η
t )
]

to get the prediction for the next round.
Next, we specify the parameter setting and our dynamic

regret. The set H is constructed in the way such that for any
possible sequence of comparators, there exists a step size that

Algorithm 2 Ader: Expert-algorithm

Require: The step size η
1: Let wη

1 be any point inW
2: for t = 1, . . . , T do
3: Submit wη

t to the meta-algorithm
4: Receive gradient∇ft(wη

t ) from the meta-algorithm
5:

wη
t+1 = ΠW

[
wη
t − η∇ft(w

η
t )
]

6: end for

is nearly optimal. To control the size ofH, we use a geometric
series with ratio 2:

H =

{
ηi =

2i−1D

G

√
7

2T

∣∣∣∣∣ i = 1, . . . , N

}
(6)

where G is the upper bound of the norm of gradients, D is
the upper bound of the diameter ofW , and N = d 12 log2(1 +
4T/7)e + 1. Then, with an appropriate choice of α, we can
show that Ader is equipped with an optimal dynamic regret:

D-Regret(u1, . . . ,uT ) = O
(√

T (1 + PT )
)
.

With the help of surrogate losses, we have proposed an im-
proved Ader and reduced the number of gradient evaluations
per round from N = O(log T ) to 1. Furthermore, we have
extended Ader to the setting that a sequence of dynamical
models is available to characterize the comparators.

3 Adaptive Regret
Adaptive regret has been studied under the settings of PAE
[Littlestone and Warmuth, 1994; György et al., 2012] and
OCO. In this paper, we focus on the later one.

The concept of adaptive regret is formally introduced by
Hazan and Seshadhri [2007] to OCO, and later refined by Da-
niely et al. [2015]. To distinguish between them, we refer to
the definition of Hazan and Seshadhri as weakly adaptive re-
gret:

WA-Regret(T ) = max
[r,s]⊆[T ]

(
s∑
t=r

ft(wt)− min
w∈W

s∑
t=r

ft(w)

)
which is the maximum regret over any contiguous interval.
They develop a novel algorithm named as follow the leading
history (FLH), which runs an instance of low-regret algorithm
in each round as an expert, and then combines them with an
expert-tracking method. To improve the efficiency, Hazan
and Seshadhri deploy a data-streaming technique to prune the
set of experts, and as a result only O(log t) experts are stored
at round t. The efficient version of FLH attains O(d log2 T )

and O(
√
T log3 T ) adaptive regrets for exponentially con-

cave (abbr. exp-concave) functions and convex functions, re-
spectively [Hazan and Seshadhri, 2009]. For strongly convex
functions, we have designed an efficient algorithm with an
O(log2 T ) adaptive regret [Zhang et al., 2018b].

However, the weakly adaptive regret does not respect short
intervals well. To avoid this limitation, Daniely et al. [2015]
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propose the strongly adaptive regret in (3), which emphasi-
zes the dependence on the interval length. For convex functi-
ons, Daniely et al. [2015] establish an O(

√
τ log T ) strongly

adaptive regret. In a subsequent work, Jun et al. [2017a] im-
prove the strongly adaptive regret to O(

√
τ log T ). Jun et

al. [2017b] have investigated how to exploit smoothness to
further improve the adaptive regret, and we go one step furt-
her by making the bound fully problem-dependent [Zhang et
al., 2019a]. All the previous algorithms designed for adaptive
regret require to query the gradient at least O(log t) times in
the t-th round. To address this limitation, we propose to use
surrogate losses to reduce the number of gradient evaluations
per round to 1 [Wang et al., 2018].

Existing algorithms for adaptive regret lack universality in
the sense that they can only handle one type of convex functi-
ons and need apriori knowledge of parameters. By contrast,
there exist universal algorithms, such as MetaGrad [van Er-
ven and Koolen, 2016], that attain optimal static regret for
multiple types of convex functions simultaneously. Along
this line of research, we have proposed the first universal al-
gorithm for minimizing the adaptive regret of convex functi-
ons [Zhang et al., 2019b]. Due to limitations of space, we
take exp-concave functions as an example to illustrate the key
idea in the next section.

3.1 A Universal Algorithm for Adaptive Regret
Inspired by MetaGrad, we constructs surrogate losses para-
meterized by a learning rate η:

`ηt (w) = −η〈∇ft(wt),wt −w〉+ η2〈∇ft(wt),wt −w〉2.
By considering different values of η, we can handle the un-
certainty of the modulus of exp-concavity. To minimize the
adaptive regret, we adopt the the idea of sleeping experts
[Freund et al., 1997]. Specifically, we make use of the geo-
metric covering (GC) intervals [Daniely et al., 2015] defined
as I =

⋃
k∈N∪{0} Ik, where

Ik =
{

[i · 2k, (i+ 1) · 2k − 1] : i ∈ N
}
, k ∈ N ∪ {0}.

Then, we only focus on intervals in I. For each interval
I = [r, s] ∈ I, we will create 1+d 12 log2(s−r+1)e experts,
each of which minimizes one surrogate loss in {`ηt (w)|η ∈
S(s− r + 1)} during I , where

S(τ) =

{
2−i

5DG

∣∣∣∣ i = 0, 1, . . . ,

⌈
1

2
log2 τ

⌉}
.

These experts become active in round r and will be removed
forever after round s. It is easy to verify that the surrogate
loss `ηt (·) is exp-concave. So, we can apply online Newton
step (ONS) [Hazan et al., 2007] as the expert-algorithm to
minimize `ηt (·) during interval I .

To combine the solutions of active experts, we extend the
meta-algorithm of MetaGrad, i.e., Tilted Exponentially Weig-
hted Average (TEWA), to sleeping experts. Let At be the set
consisting of all the active experts, and EηI be the expert for
an interval I ∈ I with learning rate η. Denote the prediction
of expert EηI at round t as wη

t,I . Specifically, we submit the
following decision in the t-th round

wt =
1∑

EηI ∈At
exp(−Lηt−1,I)η

∑
EηI ∈At

exp(−Lηt−1,I)ηw
η
t,I

where Lηt−1,I is the cumulative loss of EηI .
Our theoretical analysis shows that the above algorithm

attains an O( dα log τ log T ) strongly adaptive regret for α-
exp-concave functions. By introducing an additional sur-
rogate loss for strongly convex functions, we obtain an
O( 1

λ log τ log T ) strongly adaptive regret for λ-strongly con-
vex functions. Meanwhile, the algorithm also ensures an
O(
√
τ log T ) bound for convex functions.

4 Relationship between Dynamic Regret and
Adaptive Regret

While both the dynamic and adaptive regrets aim at coping
with changing environments, little is known about their rela-
tionship. We make two contributions in this direction.

First, we show that the strongly adaptive regret in (3), to-
gether with the functional variation, can be used to upper
bound the worst-case dynamic regret [Zhang et al., 2018b].
Let I1 = [r1, s1], . . . , Ik = [rk, sk] be a partition of [1, T ] and
for each interval Ii, and define the local variation of functions
as

FT (i) =

si−1∑
t=ri

sup
w∈W

|ft+1(w)− ft(w)|.

We have proved that
D-Regret(w∗1, . . . ,w

∗
T )

≤ min
I1,...,Ik

k∑
i=1

(
SA-Regret(T, |Ii|) + 2|Ii| · FT (i)

)
.

Thus, an algorithm with a small strongly adaptive regret is au-
tomatically equipped with a tight dynamic regret. As a result,
we obtain a series of algorithms for minimizing the dynamic
regret that do not need any prior knowledge of the functional
variation.

Second, we have proposed novel algorithms that are able
to minimize the general dynamic regret and adaptive regret
simultaneously [Zhang et al., 2020]. In fact, our theoretical
guarantee is even stronger in the sense that one algorithm is
able to minimize the dynamic regret over any interval.

5 Open Problems
Although significant progress has been made in dynamic re-
gret and adaptive regret, there still remain many open pro-
blems in this area.
• In the analysis of the worst-case dynamic regret, we can

exploit the curvature of functions, such as strong con-
vexity and smoothness, to improve the bound. However,
whether these conditions can be used to tighten the ge-
neral dynamic regret remains open.
• Although we have shown that the worst-case dynamic

regret can be upper bounded by the adaptive regret, the
relationship between the general dynamic regret and the
adaptive regret is unclear.
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Gábor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006.

[Daniely et al., 2015] Amit Daniely, Alon Gonen, and Shai
Shalev-Shwartz. Strongly adaptive online learning. In Pro-
ceedings of the 32nd International Conference on Machine
Learning, pages 1405–1411, 2015.

[Freund et al., 1997] Yoav Freund, Robert E. Schapire, Yo-
ram Singer, and Manfred K. Warmuth. Using and combi-
ning predictors that specialize. In Proceedings of the 29h
Annual ACM Symposium on Theory of Computing, pages
334–343, 1997.

[György et al., 2012] András György, Tamás Linder, and
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