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Abstract
With the increasing amount of multimedia data,
cross-modality hashing has made great progress as
it achieves sub-linear search time and low mem-
ory space. However, due to the huge discrepancy
between different modalities, most existing cross-
modality hashing methods cannot learn unified hash
codes and functions for modalities at the same time.
The gap between separated hash codes and functions
further leads to bad search performance. In this pa-
per, to address the issues above, we propose a novel
end-to-end Deep Unified Cross-Modality Hashing
method named DUCMH, which is able to jointly
learn unified hash codes and unified hash functions
by alternate learning and data alignment. Specifi-
cally, to reduce the discrepancy between image and
text modalities, DUCMH utilizes data alignment to
learn an auxiliary image to text mapping under the
supervision of image-text pairs. For text data, hash
codes can be obtained by unified hash functions,
while for image data, DUCMH first maps images
to texts by the auxiliary mapping, and then uses the
mapped texts to obtain hash codes. DUCMH uti-
lizes alternate learning to update unified hash codes
and functions. Extensive experiments on three repre-
sentative image-text datasets demonstrate the supe-
riority of our DUCMH over several state-of-the-art
cross-modality hashing methods.

1 Introduction
With the increasing multimedia data, approximate nearest
neighbor (ANN) search has been a fundamental problem in
the information retrieval area. Among several ANN search
methods, hashing [Wang et al., 2018; Chen et al., 2019; Wang
et al., 2020] has attracted extensive attention. It maps data
points to binary codes with hash functions by preserving the
similarity in the original space of data points. Due to binary
codes, the storage cost can be dramatically reduced with sub-
linear search complexity. In many applications, such as search
engines, systems have to handle data of multi-modalities. It
requires researchers to support cross-modality retrieval that

∗Lijun Zhang is the corresponding author.

can return relevant results of one modality when querying
another modality, e.g., retrieving images with text queries. Due
to its low storage cost and search time, cross-modality hashing
(CMH) area receives more and more attention recently.

Existing CMH methods can be roughly divided into shallow
CMH methods [Zhai et al., 2013; Wu et al., 2015; Xie et al.,
2016; Ye and Peng, 2018] and deep CMH methods [Jiang and
Li, 2017; Yan et al., 2017; Li et al., 2018; Shi et al., 2019;
Sun et al., 2019; Xu et al., 2019]. Most shallow methods
capture the semantic relevance in a common Hamming space
and learn hash functions that map hand-crafted features to
hash codes, which means the feature extraction procedure
is independent of the hash code learning procedure. That
may block the way to achieve satisfying performance, as the
hand-crafted features might not be optimal for the hash code
learning procedure. Recently, deep learning [Zagoruyko and
Komodakis, 2016] has shown its superiority of representation
learning in various applications, such as image recognition [He
et al., 2016]. Deep CMH methods leverage the power of deep
learning by integrating feature learning and hash code learning
into a single framework. As a result, deep methods capture
non-linear correlations among cross-modality instances and
achieve better performance than shallow methods. The key
to CMH is to bridge the modality gap, as it makes original
data distributions and feature representations of modalities
different. Thus, it is necessary to explore semantic relevance
between different modalities in sufficient details to reduce that
gap and further improve search performance. Recently, some
supervised deep methods [Li et al., 2018; Zhan et al., 2020]
exploit semantic labels or relevance information, thereby better
cross-modality correlations.

However, previous work [Jiang and Li, 2017; Li et al., 2018;
Sun et al., 2019] mainly aligns different modalities in the
level of representation using pre-defined loss functions and
derives independent hash functions and codes for different
modalities. Representation (level) alignment may reduce the
modality gap in some intermediate procedures of indepen-
dent hash functions, but inputs, other layers and final outputs
(hash codes) of deep hash functions are usually of different
distributions. Actually, high-dimensional modality-specific
original data contain abundant information that enables us to
bridge the modality gap by the data (level) alignment. As
we have paired data of different modalities, e.g., image-text
paired data, leveraging that data to learn mappings between
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Figure 1: The comparison of previous cross-modality hashing methods and ours. Previous methods tend to align different modalities in the
level of representations, while ours directly align modalities in the level of original data under the supervision of image-text pairs. Besides,
most of the previous methods learn hash functions and hash codes for different modalities separately, while ours simultaneously learn unified
hash functions and unified hash codes for bridging the gap between different modalities and further improve search performance.

modalities (data alignment) is possible and may bridge the
modality gap better than representation alignment. Besides,
with the mappings between modalities, we can derive unified
hash functions and learn unified hash codes for correlated data
for different modalities at the same time, while existing work
cannot. The difference between data alignment (unified hash
codes and functions) and representation alignment (separated
hash codes and functions) is presented in Figure 1.

In this paper, to better bridge the modality gap and derive
unified hash functions and hash codes for different modalities,
we propose a novel Deep Unified Cross-Modality Hashing
(DUCMH) method. Specifically, DUCMH alternatively learns
unified hash functions and unified hash codes, while aligning
different modalities by data alignment under the supervision
of image-text pairs at hand. Our unified hash function maps
texts to hash codes, while with an auxiliary image to text
mapping trained under the supervision of paired data, the uni-
fied hash function is also able to map images to hash codes.
The auxiliary image to text mapping maximizes the seman-
tic relevance and distribution consistency between different
modalities, while the unified hash function is employed for
unifying hash codes of different modalities and further re-
ducing modality gap. To empirically evaluate our DUCMH,
we conduct extensive experiments on three commonly used
image-text datasets, showing the superiority of our method
over several state-of-the-art methods.

The main contributions of DUCMH are summarized below:

• To the best of our knowledge, DUCMH is the first deep
method that derives unified hash codes for database in-
stances and unified hashing functions for unseen query
points at the same time.

• DUCMH is the first deep method to apply data align-
ment and learn the mapping between modalities. Data
alignment can carefully preserve semantic relevance and
distribution consistency across modalities, while effec-
tively bridging the modality gap.

• Extensive experiments conducted on three image-text
benchmarks show the superiority of our DUCMH over
several state-of-the-art cross-modality hashing methods,
including both shallow and deep methods.

2 Related Work
Existing cross-modality hashing work can be divided into
unsupervised and supervised methods. For unsupervised
methods, the intra- and inter-modality relations are exploited
to generate hash codes without any supervised informa-
tion [Hotelling, 1992]. On the other side, with more semantic
information, supervised methods are able to capture correla-
tions better and thus achieve superior performance [Ding et
al., 2014; Zhang and Li, 2014; Wang et al., 2015; Luo et al.,
2018]. Semantic Correlation Maximization (SCM) [Zhang
and Li, 2014] reduces the modality gap by utilizing label in-
formation to learn a modality-specific transformation, and
preserves the maximal correlation between modalities. Collec-
tive Matrix Factorization Hashing (CMFH) [Ding et al., 2014]
employs the latent factor model to learn hash codes by collec-
tive matrix factorization from different modalities. Semantic
Topic Multimodal Hashing (STMH) [Wang et al., 2015] uti-
lizes latent semantic information among different modalities
to learn hash codes. Supervised Discrete Manifold-Embedded
Cross-Modality Hashing (SDMCH) [Luo et al., 2018] gener-
ates binary hash codes by exploiting the non-linear manifold
structure of data and constructs the correlations among hetero-
geneous multiple modalities with semantic information.

The above methods utilize hand-crafted features to gen-
erate hash codes, which might not be optimally compatible
with the hash-code learning procedure. With the advances of
deep learning, more and more deep supervised CMH work
has been proposed. Deep methods [Jiang and Li, 2017;
Li et al., 2018; Shi et al., 2019; Zhan et al., 2020] integrate fea-
ture learning and hash-code learning into a unified architecture
with promising performance. Deep Cross-modality Hashing
(DCMH) [Jiang and Li, 2017] is the first deep framework that
performs feature learning and hash-code learning simultane-
ously. Self-Supervised Adversarial Hashing (SSAH) [Li et
al., 2018] incorporates a self-supervised semantic network
coupled with multi-label information, and carries out adver-
sarial learning to maximize the semantic relevance and feature
distribution consistency between different modalities. Equally-
Guided Discriminative Hashing (EGDH) [Shi et al., 2019]
takes semantic structure and discriminability into considera-
tion to learn better hash functions and hash codes. Supervised
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Figure 2: The overall framework of our proposed DUCMH on Image and Text (Tags) modalities. DUCMH is the first deep method that
employs data alignment with the image-text paired data to achieve unified hash functions and codes simultaneously. Data alignment reduces the
modality gap better than the representation alignment previous work uses. Feature learning part includes an auxiliary image to text mapping
fi2t(·) and a unified hash function hy(·) mapping texts to hash codes. Hash code learning part employs different losses to learn unified hash
codes and further improve search performance.

Hierarchical Deep Hashing (SHDCH) [Zhan et al., 2020] ex-
plores the power of hierarchical labels to further boost the
learning procedure.

While previous methods achieve success in performance by
representation alignment, they ignore image-text pairs at hand,
and never leverage that information to reduce the modality gap
by data alignment or derive unified hash functions and codes
simultaneously. To the best of our knowledge, DUCMH is the
first deep method to employ data alignment by fully utilizing
the image-text paired data for better reducing the modality gap
and deriving unified hash functions and codes simultaneously.

3 DUCMH
In this section, we present the details about our deep unified
cross-modality hashing (DUCMH) method, including model
formulation and learning algorithm. DUCMH, shown in Fig-
ure 2, is an end-to-end learning framework consisting two
parts: the feature learning part and the hash-code learning part.
We employ asymmetric learning to alternatively update each
part and data alignment to bridge the modality gap.

3.1 Problem and Notation
Scalars are defined by lowercase letters, such as w. Vectors
and matrices are denoted by boldface lowercase letters and up-
percase letters, e.g., w and W . The i-th element of w and i-th
row, j-column element of W are represented by subscripts as
wi and Wij . Besides, W∗j and Wi∗ represent the j-th column
and i-th row of matrix W , while W̃∗j and W̃i∗ represent the
matrices of matrix W without j-th column and i-th row.

Without loss of generality, we focus on CMH using image-
text paired data. Assume that we have n training data points,
in which each instance has two modalities of features, i.e.,
image and text. O = {oi}ni=1 is a cross-modality dataset
with n instance, while for i-th instance oi = (xi,yi, li), xi,
yi, and li = [li,1, . . . , li,clsnum] are the corresponding image,
text and label, and clsnum is the number of classes. If oi

belongs to the j-th class, li,j = 1, otherwise li,j = 0. Besides,
we denote L = [l1, . . . , ln] ∈ {0, 1}n×clsnum. The similarity

matrix S ∈ {−1,+1}n×n is generated by labels. We let
Sij = 1 if oi and oj are semantically similar, in another word,
share at least one label, otherwise Sij = −1.

Given the above training information O and S, the goal of
cross-modality hashing is to learn two hash functions hx(·) ∈
{−1,+1}c for the image modality and hy(·) ∈ {−1,+1}c
for the text modality, where c is code length. Meanwhile,
the similarity-preserving hash codes B = [b>1 , . . . , b

>
n ]> ∈

{−1,+1}n×c should also be derived. Two hash functions are
used for generating hash codes of the unseen data points while
hash codes should preserve the cross-modality similarity in S.
Specifically, when Sij = 1, the Hamming distance between
the binary codes bi and bj should be small. Otherwise, the
distance should be large.

3.2 Our Model – Learning by Paired Data
Feature Learning – Unified Hash Functions
As aforementioned, previous work [Li et al., 2018; Shi et
al., 2019] usually employs representation alignment, which
only reduces the modality gap in some intermediate procedure
of algorithms. On the other side, as the image-text pairs of
database are at hand, it is possible to employ data alignment to
directly bridge the modality gap by learning a mapping from
image to text or from text to image.

DUCMH chooses to learn the mapping fi2t(·) from image
to text. There are two reasons: first, it is easier to learn the
mapping from image to text than another, as the image always
contains more information, such as spatial information and
styles, which are hard to be pictured by a sentence. Second,
images might be influenced a lot by the lights, angles, and
other conditions, while texts are more steady and the light, an-
gle, spatial information of an image can be easily represented
by a simple word. That mapping fi2t(·) can be learned under
the supervision of image-text pairs.

With the mapping fi2t(·), we can represent an image x as
a text fi2t(x). By employing an alignment loss presented in
the following section, the modality gap between image and
text can be better reduced than the representation alignment
previous work employs.
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For the real text y and predicted text fi2t(x), we use a
unified hash function hy(·) mapping them to hash codes as,

bx =sign(hx(x)) = sign(hy(fi2t(x))) ,

by =sign(hy(y)) .

To generate discrete binary hash codes, the sign function
sign(·) is attached after the last layer of our unified hash func-
tion hy(·). However, as the gradients of sign(·) are 0 at most
of points, we use tanh(·) instead to better train the unified
hash function hy(·) and the image to text mapping fi2t(·).

Hash Code Learning – Unified Hash Codes
In this section, we present our objective function. As unified
hash codes B should preserve semantic information and also
be capable of classification, we design three corresponding
losses shown below. Besides, to bridge the modality gap, we
also employ an alignment loss to align different modalities for
better search performance.

First, DUCMH leverages image-text pairs {(xi,yi)}ni=1 to
learn a precise image to text mapping fi2t(·) for data align-
ment. Thus, to fully bridge the modality gap on the database
points, we use alignment loss to model the modality gap,
which is shown below,

`align = ε
n∑

i=1

‖fi2t(xi)− yi‖2 , (1)

where ε is a hyper-parameter.
Second, as the learned database hash codes and the hash

codes generated by the hashing function should preserve se-
mantic similarity, we employ the similarity loss [Zhang and Li,
2014]. Similarity loss requires that for any two hash codes, if
they are semantically similar, the Hamming distance between
them should be 0. Otherwise the Hamming distance should be
c. Therefore, this loss we minimize is as:

`sim =

n∑
i=1

n∑
j=1

∥∥hx(xi)b
>
j − cSij

∥∥2

+
n∑

i=1

n∑
j=1

∥∥hy(yi)b
>
j − cSij

∥∥2

+ α
n∑

i=1

n∑
j=1

∥∥hx(xi)hy(yj)
> − cSij

∥∥2
,

(2)

where α is a hyper-parameter, bi and bj are the hash codes
of i-th and j-th data point learned by the alternative learning
algorithm shown in the following section.

Third, as the hash space is small, i.e., 2c points, we expect
hash codes are able to preserve discriminative semantic infor-
mation and recover labels with simple transformations. We
use h∗(·)W and bW to represent the predicted label recov-
ered from hash codes, where W ∈ Rc×clsnum. To simplify
the formulation of this loss, we employ Mean Squared Error to
measure the label information contained in hash codes. Now,
the classification loss is defined as follows:

`cls =α
n∑

i=1

(
‖hx(xi)W − li‖2 + ‖hy(yi)W − li‖2

)
+ α

n∑
i=1

‖biW − li‖2 + ‖W‖2F ,
(3)

where α is a hyper-parameter defined above.
Last but not the least, as we replace sign(·) with tanh(·)

after the last layer of our unified hash function hy(·) for bet-
ter performance, hash functions is still expected to generate
discrete hash codes. Intuitively, the quantization loss [Jiang
and Li, 2017] is as:

`quan = ρ
n∑

i=1

(
‖hx(xi)− bi‖2 + ‖hy(yi)− bi‖2

)
, (4)

where ρ is a hyper-parameter.
Now, by minimizing four losses, our objective function can

be formulated as:
min

Θ,B,W
` = `align + `sim + `cls + `quan , (5)

where Θ is the parameter of the unified hash function hy(·)
and the image to text mapping fi2t(·). Hyper-parameters ε, α
and ρ are empirically set to 5000, 50 and 200 for scaling the
order of each loss.

3.3 Optimization
In this part, we present an alternative learning algorithm to
learn Θ, B and W in Eq. (5), which means we update one pa-
rameter with others fixed. This algorithm is also summarized
in Algorithm 1, while details are presented below.

Normally, we are only given database points O and the pair-
wise supervised information S between them. To accelerate
the training procedure, we can learn hash-codes and hash func-
tions by sampling a subset of O as the query set Otrain for
training, i.e., Otrain ⊆ O in each step. Thus, the training com-
plexity can be reduced toO(nm) fromO(n2), whereO hides
variables irrelevant to the size of dataset, m and n represent
the size of datasets O and Otrain.

Learn Θ with B and W fixed
When B and W are fixed, we learn and update the parameter
Θ by back-propagation algorithm.

Learn B with Θ and W fixed
To simplify the calculation, when fixing Θ and W , we rewrite
Eq. (5) in the matrix form as:

min
B

` =‖V B> − cS‖2F + ‖TB> − cS‖2F

+ ρ
(
‖V −B‖2F + ‖T −B‖2F

)
+ α‖BW − L‖2F + const ,

where const is the constant independent of B,
V = [hx(x1)>, . . . , hx(xn)>]> ∈ Rn×c , T =
[hy(y1)>, . . . , hy(yn)>]> ∈ Rn×c.

With little algebra, we can derive,

min
B

` =‖V B>‖2F + ‖TB>‖2F + α‖BW‖2F

− 2ctr
(
BV >S

)
− 2ctr

(
BT>S

)
− 2αtr

(
BWL>

)
− 2ρtr

(
B(T + V )>

)
+ const

=tr(B(Q+R)) + const ,

where Q = V >BV > + T>BT> + αWW>B> and R =
−2cV >S − 2cT>S − 2αWL> − 2ρ(T + V )>, and tr(·) is
the trace of a matrix.
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Algorithm 1 The alternative learning algorithm
Input: O = {oi}ni=1 : n data points. S ∈ {−1,+1}n×n is
the similarity matrix. c is the target binary code length. Mini-
batch size batchsize, sample size m and iteration number
Tout, Tin.
Output: Θ is the parameter of the networks hy(·) and fi2t(·).
B is the binary hash codes for data points.
Initialization: initialize Θ, B, and W .

1: for to = 1→ Tout do
2: Generate training set Otrian ⊆ O and Strian by ran-

domly indexing.
3: for ti = 1→ Tin do
4: for batch = 1→ m/batchsize do
5: Construct the mini-batchObatch

trian by randomly sam-
ple batchsize points from Otrian.

6: Calculate the binary hash codes of mini-batch
Obatch

trian by inferencing.
7: Calculate the gradient by the chain rule and update

Θ← Θ− η ∂`
∂Θ by back propagation.

8: end for
9: end for

10: for k = 1→ c do
11: Update B∗k as Eq. (7).
12: end for
13: Update W as Eq. (8).
14: end for
15: return Θ and B.

As this problem is NP-hard, to ease this problem, inspired
by SDH [Shen et al., 2015], we update one bit a time using the
discrete cyclic coordinate descent method. We alternatively
update a column of B with other columns fixed. Hence, this
bit by bit problem at bit k becomes:

min
B∗k

` = tr(B∗k(Qk∗ +Rk∗)) + const , (6)

where Qk∗ = V >∗kB̃∗kṼ
>
∗k + T>∗kB̃∗kT̃

>
∗k + αWk∗W̃

>
k∗B̃

>
∗k,

Rk∗ = −2cV >∗kS − 2cT>∗kS − 2αWk∗L
> − 2ρ(T∗k + V∗k)>.

Next, the optimal solution of problem (6) is as follows:

B∗k = −sign(Qk∗ +Rk∗)
> . (7)

Learn W with Θ and B fixed
When fixing Θ and B, we rewrite Eq. (5) as:

min
W

` =α
(
‖VW − L‖2F + ‖TW − L‖2F

)
+ α‖BW − L‖2F + ‖W‖2F + const ,

where const is the constant independent of W . It is easy to
solve W by the regularized least squares problem, while the
closed-form solution is as:

W = P−1(αV + αT + αB)>L , (8)

where P = (αV >V + αT>T + αB>B + I) and I is the
diagonal with elements being 1.

4 Experiment
In this section, we carry out experiments to empirically evalu-
ate the performance of DUCMH on three image-text bench-
marks, and then compare it to state-of-the-art approaches.

4.1 Datasets and Evaluation Protocols
Three datasets, MIRFLICKR-25K [Huiskes and Lew, 2008],
IAPR TC-12 [Escalante et al., 2010], and NUS-WIDE [Chua
et al., 2009] are used for evaluation. MIRFLICKR-25K con-
sists of 25,000 images collected from Flickr website. Each
image is associated with several textual tags and annotated by
one of the 24 unique labels. We select the points which have
at least 20 textual tags for experiments. The text is represented
by a 1386-dimensional bag-of-words (BOW) vector. IAPR
TC-12 consists of 20,000 image-text (images-sentences) pairs
which are annotated using 255 labels. The text for each point
is represented as a 2912-dimensional BOW vector from sen-
tences following DCMH [Jiang and Li, 2017]. NUS-WIDE
contains 260,648 web images with textual tags. It is a multi-
label dataset where each point is annotated with one or multi-
ple labels from 81 concept labels. We select 195,834 image-
text pairs that belong to the 21 most frequent concepts. The
text for each point is represented as a 1000-dimensional BOW
vector. For MIRFLICKR-25K and IAPR TC-12, 2,000 data
points are randomly sampled as the test (query) set, while for
NUS-WIDE, 2,100 data points are selected. The remaining
points as the retrieval set (database).

The retrieval performance is evaluated by one of the most
widely used criteria, Mean Average Precision (mAP), which
is the average of average precision for all the queries. All the
data are reported with average values running five times.

4.2 Implementation Details and Comparison
Methods

Our DUCMH method is implemented based on Py-
Torch [Paszke et al., 2019] with eight NVIDIA V100 GPUs
and optimized by the mini-batch SGD with the size of 64 and
weight decay. The learning rate is initialized as 0.0001 for
the image to text mapping fi2t(·) and 0.004 for the unified
hash function hy(·). For two neural network architectures, we
use the following model: Image to text mapping fi2t(·): It is
based on CNN-F neural networks [Chatfield et al., 2014]. We
reserve the first seven layers, which are the same as those in
CNN-F. Following this, a middle full-connected layer with 512
nodes and final full-connected layer which has nodes equal
to the number of tags are framed. The unified hash function
hy(·): It is built by a two convolutional layers followed by
the tanh(·) activation. The first convolutional layer, followed
by the ReLu activation and dropout with 0.5, has the input
channel, output channel, kernel size and stride of 1, 10240,
(the number of tags, 1) and (1, 1). The second convolutional
layer has the input channel, output channel, kernel size and
stride of 10240, c, (1, 1) and (1, 1).

We compare our method with several state-of-the-art
(SOTA) hashing methods, including shallow methods, i.e.,
CCA [Hotelling, 1992], CMFH [Ding et al., 2014],
SCM [Zhang and Li, 2014], STMH [Wang et al., 2015],
SDMCH [Luo et al., 2018], and deep supervised methods,
i.e., DCMH [Jiang and Li, 2017], SSAH [Li et al., 2018],
EGDH [Shi et al., 2019], SHDCH [Zhan et al., 2020]. For
our method and other deep hashing methods, the raw image
is resized to 224 × 224 pixels as inputs, and the text inputs
are BoW vectors. For traditional shallow methods, we ex-
tract 4096-dimensional deep features by the CNN-F model
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Task Method MIRFLICKR-25K IAPR TC-12 NUS-WIDE
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

T→ I

CCA 0.5714 0.5733 0.5700 0.3489 0.3481 0.3491 0.3614 0.3498 0.3386
CMFH 0.6365 0.6399 0.6429 0.4168 0.4212 0.4277 0.5031 0.5187 0.5225
SCM 0.6939 0.7012 0.7060 0.3453 0.3410 0.3470 0.5344 0.5412 0.5484
STMH 0.6074 0.6153 0.6217 0.3687 0.3897 0.4044 0.4471 0.4677 0.4780
SDMCH 0.7692 0.7832 0.8102 0.5501 0.5660 0.5829 0.7307 0.7462 0.7659
DCMH 0.7827 0.7900 0.7932 0.5185 0.5378 0.5468 0.6389 0.6511 0.6571
SSAH 0.7818 0.7916 0.8006 0.5427 0.5515 0.5845 0.6384 0.6492 0.6489
EGDH 0.7351 0.7598 0.7816 0.5256 0.5405 0.5599 0.6317 0.6462 0.6494
SHDCH 0.7744 0.8001 0.8130 0.5716 0.6011 0.6109 0.6248 0.6793 0.6902
DUCMH 0.8379 0.8424 0.8455 0.6007 0.6579 0.6880 0.7507 0.7715 0.7880

I→ T

CCA 0.5718 0.5690 0.5661 0.3422 0.3367 0.3391 0.3578 0.3681 0.3587
CMFH 0.6377 0.6418 0.6451 0.4189 0.4234 0.4251 0.4900 0.5053 0.5097
SCM 0.6851 0.6921 0.7003 0.3692 0.3666 0.3802 0.5409 0.5485 0.5553
STMH 0.6132 0.6219 0.6274 0.3775 0.4002 0.4130 0.4710 0.4684 0.4942
SDMCH 0.6883 0.7089 0.7210 0.4839 0.4828 0.4951 0.6296 0.6235 0.6393
DCMH 0.7410 0.7465 0.7485 0.4526 0.4732 0.4844 0.5903 0.6031 0.6093
SSAH 0.7789 0.7912 0.7990 0.5393 0.5682 0.5812 0.6401 0.6671 0.6700
EGDH 0.7695 0.7823 0.7854 0.5294 0.5321 0.5639 0.6159 0.6389 0.6331
SHDCH 0.7788 0.7885 0.7881 0.5731 0.5703 0.5907 0.6604 0.6631 0.6703
DUCMH 0.8684 0.8756 0.8760 0.6392 0.6908 0.7104 0.6957 0.7041 0.7061

Table 1: Comparison of mAP w.r.t. different number of bits on three datasets, MIRFLICKR-25K, IAPR TC-12 and NUS-WIDE. Best in bold.

Task Method 16 bits 32 bits 64 bits

T→ I DUCMH with tags 0.6007 0.6579 0.6880
DUCMH with stcs 0.5824 0.5909 0.6140

I→ T DUCMH with tags 0.6392 0.6908 0.7104
DUCMH with stcs 0.6106 0.6479 0.6659

Table 2: Comparison of mAP w.r.t. different number of bits on IAPR
TC-12. “stcs” represents sentences.

pre-trained on ImageNet to conduct fair comparisons. Besides,
for all the SOTA methods, we employ the hyper-parameters
introduced in their papers.

4.3 Results on Image and Text (Tags)
Following the experiment settings of previous work [Ding et
al., 2014; Jiang and Li, 2017; Li et al., 2018; Shi et al., 2019],
we first test the power of data alignment between text (tags)
and image modalities.

The mAP searching results are presented in Table 1. In
all datasets and two tasks, i.e., text to image (T → I) and
image to text (I → T), our proposed DUCMH outperforms
all the methods with the power of data alignment and unified
hash functions and codes. Specifically, in MIRFLICKR-25K,
DUCMH outperforms SOTAs by 0.0461, 0.0423, 0.0325 of
16, 32, and 64 bits on the task of T→ I, respectively, while
on the task of I → T, our DUCMH outperforms SOTAs by
0.0895, 0.0844, 0.0770 of 16, 32, and 64 bits. Similar results
can be found in other datasets on two tasks.

4.4 Results on Image and Text (Sentences)
As the original data of text modality in IAPR TC-12 are sen-
tences, we conduct experiments on IAPR TC-12 to test the

power of data alignment between text (sentences) and image
modalities. We replace the image to text mapping fi2t(·) with
a classical image caption method, i.e., show and tell [Vinyals
et al., 2015], and the unified hash function hy(·) with a classi-
cal sentence classification method, i.e., TextCNN [Kim, 2014]
(represented by “DUCMH with stcs” in Table 2). We still use
the hyper-parameters introduced in the original papers, while
other hyper-parameters ε, α and ρ are still the same.

The results are shown in Table 2. As tags are pure semantic
information without noises extracted from sentences and learn-
ing to predict conceptual tags is much easier than learning
to caption images, it is reasonable that the model using tags
(“DUCMH with tags” in Table 2) outperforms the model using
sentences (“DUCMH with stcs” in Table 2).

5 Conclusion
In this paper, we presented a novel cross-modality hashing
method named DUCMH. DUCMH was the first deep method
that learned unified hash functions and hash codes simulta-
neously. The key contribution was leveraging the power of
data alignment and image-text data pairs at hand to better re-
duce modality gap than the representation alignment previous
work employed. Extensive experiments showed the superiority
of our method over several state-of-the-art hashing methods.
In the future, we would like to explore the potential of data
alignment on the task of paired unsupervised and unpaired
supervised cross-modality hashing.
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