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Abstract Ubiquitous data are increasingly expanding in large volumes due to human activi-
ties, and grouping them into appropriate clusters is an important and yet challenging problem.
Existing matrix factorization techniques have shown their significant power in solving this
problem, e.g., nonnegative matrix factorization, concept factorization. Recently, one state-
of-the-art method called locality-constrained concept factorization is put forward, but its
locality constraint does not well reveal the intrinsic data structure since it only requires the
concept to be as close to the original data points as possible. To address this issue, we present
a graph-based local concept coordinate factorization (GLCF) method, which respects the
intrinsic structure of the data through manifold kernel learning in the warped Reproduc-
ing Kernel Hilbert Space. Besides, a generalized update algorithm is developed to handle
data matrices containing both positive and negative entries. Since GLCF is essentially based
on the local coordinate coding and concept factorization, it inherits many advantageous
properties, such as the locality and sparsity of the data representation. Moreover, it can bet-
ter encode the locally geometrical structure via graph Laplacian in the manifold adaptive
kernel. Therefore, a more compact and better structured representation can be obtained in
the low-dimensional data space. Extensive experiments on several image and gene expres-
sion databases suggest the superiority of the proposed method in comparison with some
alternatives.
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1 Introduction

An increasing number of data have emerged in our daily life during the past decades, and
it is foreseeable that their quantities will sharply rise up to a much higher level in the near
future. To deal with these data with high dimensions usually brings about a big challenge.
To this end, there have existed many techniques to solve this issue. Among them, matrix
factorization techniques have attracted lots of attention in pattern recognition, data mining,
computer vision, etc. In this work, we focus on this very topic. Our basic goal is to learn a
better structured data representation, thus alleviating clustering [4] or classification tasks [15].
Generally, a given matrix can be decomposed into two or more components, whose product
is expected to be a good approximation to the original matrix. One component is regarded
as the vector space spanned by the basis vectors that reflect the semantic data structure, and
the others are coefficient vectors encoded by linear combinations of basis vectors.

In many real-world applications, we want to project the original data onto a much lower-
dimensional data space, in which the dimension is fundamentally dominated by that of the
bases vectors. Principally, there are many methods capable of achieving this goal, such as
principal component analysis Abdi and Williams (2010) [1,15], nonnegative matrix factor-
ization (NMF) Gong and Zhang (2012) [12,19,28], concept factorization (CF) [35], and
locality-constrained concept factorization (LCF) [25]. The obtained data representation is
more compact with less redundancy, which is beneficial for the learning algorithms, e.g.,
linear regression, clustering, or classification. Due to its property of reducing dimensions,
matrix factorization techniques are closely related with dimensionality reduction [18] and
subspace learning [33] in the field of data mining.

However, most of these methods do not respect the manifold geometrical structure, which
can be encoded by graph Laplacian [2,3] in the data space. Specially, LCF is one state-of-
the-art algorithm proposed very recently [25], which imposes the locality constraints on the
traditional concept factorization. On the one hand, this locality constraint only requires the
concept to be as close to the original data points as possible, and each sample is approximated
by the linear combination with its salient data points, which fails to reveal the intrinsic data
structure. On the other hand, the update rules of LCF do not adapt to data matrices with
negative entries, which limits its applicability. To address these issues, we in this paper
present a novel matrix factorization algorithm, called graph-based local concept coordinate
factorization (GLCF). Extensive experiments on several real-world databases validate the
effectiveness of the proposed GLCF approach.

It is worth highlighting the contributions of this work as follows.

– Our proposed method considers the manifold geometrical structure in local concept coor-
dinate factorization via graph-based kernel learning in the warped Reproducing Kernel
Hilbert Space (RKHS), which can reflects the underlying geometry of the data.

– A more generalized multiplicative update algorithm for GLCF is developed, so as to handle
arbitrary input data matrix, i.e., regardless of its entries being positive or negative.

– Since GLCF is essentially based on the local coordinate coding and concept factorization,
it naturally inherits many advantageous properties. More importantly, through taking into
account the intrinsical data structure via graph-based kernel learning in the kernel space,
GLCF not only enhances the local coordinate coding ability but also provides better
structured data representation, which facilitates the succeeding learning tasks.

The remainder of this paper is organized as follows. Section 2 briefly reviews some related
work toward matrix factorization and manifold learning. Section 3 introduces the proposed
GLCF approach involving the manifold kernel learning, and a generalized update algorithm
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Graph-based local concept coordinate factorization 105

is also presented. Experimental results are reported in Sect. 4 with detailed analysis. Finally,
we provide some concluding remarks in Sect. 5.

2 Related work

In this section, we review some related matrix factorization approaches in the first part and
manifold learning methods in the second part.

Given one specific pattern or input data matrix, it is believed that either of them reside on
a data space with much lower dimensions. In other words, an observation can be regarded as
a linear or nonlinear combination of just a few hidden or latent variables. The well-known
nonnegative matrix factorization (NMF) technique often yields a sparse data representation
[19], which is encoded by merely a small fraction of components. Its extended version concept
factorization (CF) [21,35] is different from NMF, since each base of CF is simply a linear
combination of all data points, each of which is the linear combination of the data centers.
Previous studies have shown that NMF learns a parts-based representation allowing only
additive combinations, and CF is capable of revealing the desired semantic concepts on any
data regardless of the signs (i.e., it works on both positive and negative data). To this end,
many extensions or refinements on NMF and CF have emerged, such as convex NMF [32],
quadratic NMF [37], robust NMF [39], efficient NMF methods using the gradient method
[13], discriminative concept factorization [17], and sparse concept coding [8]. As mentioned
earlier, the intrinsic dimension is usually much smaller than that of the original data, and
many existing matrix factorization methods (e.g., NMF and CF) often give rise to a compact
representation and a sparse coding of the data [5,16]. In [6,9], authors employed the locality
preserving property in nonnegative matrix factorization, which uses the Euclidean distance
[6] or KL-divergence [9] to evaluate the similarity on the hidden topics. Ding et al. [11]
introduced an orthogonal nonnegative matrix-factorization-based clustering method, which
makes use of the orthogonal constraints to give more rigorous clustering interpretations.
A recently developed learning method named local coordinate coding has attracted great
attention, in which a nonlinear function can be approximated by a global linear function
based on local coding [38]. In particular, each data point is locally approximated by a linear
combination of nearby anchor points and the linear weights constitute its local coordinate
coding. Liu et al. [25] proposed locality-constrained concept factorization (LCF), which
considers the locality constraints in revealing the underlying concepts. But, LCF suffers from
some major drawbacks. First, LCF does not consider the manifold geometrical structure in the
data space and its locality constraints fail to reveal the intrinsic data structure well. Second,
it can only handle nonnegative data in its current form since its update rules fail to handle the
data matrix with negative entries. Motivated by this, we propose a novel graph-based local
concept coordinate factorization method, which considers the manifold geometrical structure
in the kernel space via graph-based learning. Moreover, a more generalized update algorithm
that can deal with both positive and negative data entries is developed in our work.

In recent years, much attention has been paid on the situation that data points are drawn
from sampling a probability distribution, which supports on or near to a submanifold of the
ambient Euclidean space [3,22,40]. Here, a submanifold with d dimensions refers to a sub-
set of a m-dimensional Euclidean space. Actually, it is difficult to fill the human-generated
text documents uniformly in high-dimensional Euclidean spaces, which inspires researchers
to consider the intrinsic manifold structure when deriving the new low-dimensional data
space. To consider the underlying manifold geometry, there are a number of manifold learn-
ing methods, such as Laplacian eigenmap [2] and locally linear embedding [27]. All these
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algorithms share a common characteristic that the nearby points tend to have similar labels,
which is often called local invariance [14]. Graph-based manifold learning methods have
received wide acceptance and gained huge success in various applications, such as cluster-
ing [5,6], categorization [7], and ranking [10,34]. In [7], active learning is performed in the
manifold kernel space, and the most representative and informative data points are selected
by minimizing the expected error. In [6], the graph structure is considered as a regularizer in
nonnegative matrix factorization. In [10,34], the manifold structure of the data space is well
respected when ranking data points.

3 Our GLCF approach

This section is primarily devoted to our graph-based local concept coordinate factorization
approach. First, we briefly describe manifold kernel learning, which reveals the semantic
structure in the warped RKHS. Then, the objective functions for KLCF and GLCF are both
introduced with a generalized update algorithm. Finally, we summarize the main procedures
of GLCF and provide an analysis on its computational complexity.

3.1 Manifold kernel learning

Let X be a compact domain on a manifold, then a complete Hilbert space H of functions
X → R with the inner product 〈·, ·〉H is a RKHS if the point evaluation functionals are
bounded by

| f (x)| ≤ C‖ f ‖H,

where C is a constant, x ∈ X is a m dimensional data vector, f ∈ H. Notice that RKHS here
is appropriately warped by a general scheme when applied a manifold or Euclidean space.
If we deform the norm ‖ · ‖H, it gives rise to a new RKHS H̃ with k̃(·, ·) as its kernel. Let V
be a linear space containing a positive semi-definite inner product in its quadratic form, and
S : H → V be a bounded linear operator. Define H̃ as the spaces of serial functions from
original H with a modified inner product, which has been proved to be a RKHS as well [30].
The mathematical formulation is

〈 f, g〉H̃ = 〈 f, g〉H + 〈S f, Sg〉V . (1)

Given data points (x1, . . . , xn), define S : H → R
n to be the evaluation map S( f ) =

( f (x1), . . . , f (xn)), f = ( f (x1), . . . , f (xn)) ∈ V , and g = (g(x1), . . . , g(xn)) ∈ V . Let M
be a symmetric and positive semi-definite matrix, then we have

‖S f ‖2V = f t Mf, 〈S f, Sg〉V = 〈f, g〉 = f t Mg.

For the data vector x, we define

kx = (k(x, x1), . . . , k(x, xn))T ,

and then the reproducing kernel in H̃ is expressed by

k̃(x, z) = k(x, z)− kT
x · (I+MK)−1 ·M · kz, (2)

where the vectors kx and kz contain a group of kernel functions (e.g., linear kernel, Gaussian
kernel), and they are virtually corresponding to f and g in the V space.
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Without the loss of generality, we assume nq data points are utilized to derive the linear
space V , then it is readily to rewrite the above formulation in its matrix form as shown by

K̃H̃ = KH −KT
Hqn

(IHq +MHq KHq )
−1MHq KHqn , (3)

where the matrices KH ∈ R
n×n , KHqn ∈ R

nq×n , and KHq ∈ R
nq×nq are all in H. Here, I is

an identity matrix with the same size of KHqn . We refer to K̃H̃ ∈ R
n×n as the kernel matrix

in the warped RKHS.

3.2 The objective function

Our proposed GLCF method is fundamentally based on the manifold learning [3,7] and local
coordinate coding [38].

Given n input data points, each of them is treated as a column vector with m dimensions,
and these entries form a whole data matrix denoted by X ∈ R

m×n . Concept factorization is
aimed to find two data matrices W ∈ R

n×p and V ∈ R
n×p , whose entries are nonnegative.

The much lower intrinsic dimensions can be estimated from the underlying concepts in the
data space. Each concept is a linear combination of the entire data points, and each data
point is a linear combination of all the concepts. Thus, the original data representation can
be approximately written in the following form [35]:

X ≈ XWVT . (4)

In concrete, the concept coordinate coding can be defined as a concept pair (γ, C), where
C is a set of anchor points with d dimensions, and γ is a map of x ∈ R

d to [γv(x)]v∈C ∈ R
|C |

such that
∑

v γv(x) = 1. It induces the following physical approximation of x in R
d : γ (x) =

∑
v∈C γv(x)v. The corresponding concept coding norm is ‖x‖γ =

√∑
v∈C γv(x)2. It has

been proved that the complexity of local coordinate coding depends on the intrinsic manifold
dimensionality if the data lie on a manifold [38].

For the local concept coordinate coding system, the bases vectors in U =WX are modeled
as the anchor points, and each row of the coefficient matrix V contains the corresponding
coordinates for each data point. We assume each original data point is sufficiently close to
only a small number of anchor points. When the locally sparse constraints are enforced on
the traditional concept factorization, it gives rise to minimizing the objective function of LCF
[25], as shown by

JLC F = ‖X− XWVT ‖2 + λ

n∑

i=1

p∑

k=1

|vik |‖
n∑

j=1

w jkx j − xi‖2, (5)

where the two coefficient matrices W and V are nonnegative, the term λ ≥ 0 is a smoothing
parameter that controls the regularization.

After a series of linear algebra operations (e.g., the property ‖A‖2 = Tr(AT A), Tr(AB) =
Tr(BA)), we get

R1 = ‖X− XWVT ‖2
= Tr

(
(X− XWVT )T (X− XWVT )

)

= Tr
(
(I−WVT )T XT X(I−WVT )

)
, (6)
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where I is an identity matrix.

R2 =
n∑

i=1

p∑

k=1

|vik |‖
n∑

j=1

w jkx j − xi‖2

=
n∑

i=1

‖(xi 1T − XW)�
1
2
i ‖2

=
n∑

i=1

Tr
(
(xi 1T − XW)�i(xi 1T − XW)T )

=
n∑

i=1

Tr(xi 1T �i1xT
i − 2 · xi 1T �iXWT + XW�iWT XT )

=
n∑

i=1

Tr(1T �i1xT
i xi − 2 · 1T �iWT XT xi +W�iWT XT X), (7)

where 1 is a column vector with all ones, �i = diag(|vi1|, . . . , |vi p|) ∈ R
p×p .

In the above formulations, XT X, XT xi and xT
i xi are forms of standard kernels, of which

each entry is nothing but the inner product between the data points [35], which can be
denoted by a mercer kernel K(·, ·) = 〈φ(·), φ(·)〉. Now we assume the data are mapped into
the high-dimensional space RKHS using some mapping function φ(·). For each data point,
it is denoted by x→ φ(x) and all the data points form a whole φ(X). Thus, the kernel LCF
aims to minimize

JK LC F = Tr
(
(I−WVT )T 〈φ(X),�(X)〉(I −WVT )

)+ λ

n∑

i=1

Tr(1T �i1〈φ(xi ), φ(xi )〉

− 2 · 1T �iWT 〈φ(X), φ(xi )〉 +W�iWT 〈φ(X), φ(X)〉)

= Tr
(
(I−WVT )T K(X, X)(I −WVT )

)+ λ

n∑

i=1

Tr
(
1T �i1K(xi , xi )

− 2 · 1T �iWT K(X, xi )+W�iWT K(X, X)
)
. (8)

To extract the latent concepts consistent with the manifold geometry, it is natural to take
advantage of the manifold adaptive kernel [30] for the KLCF. As mentioned above, manifold
structure can be discovered using the graph Laplacian associated with the data points; hence,
we use it to encode the geometrical structure of the data. Assume data points are modeled
as a nearest neighbor graph G with n nodes, and an edge with the assigned weight is put
between two nearby nodes. The weight matrix S on the graph can be designed in multiple
ways, among of which a simple one is to adopt the binary weights (i.e., the weight takes
1 if the two vertices are connected with each other). Then, we build this sparse matrix S
according to

Si j =
{

1, if xi ∈ N (x j ) or x j ∈ N (xi );
0, otherwise,

(9)

where N (x) denotes the k nearest neighbors of the data point x. The graph Laplacian is
defined as L = D− S, where D is a diagonal matrix with elements Di i =∑

j Si j . This way,
we can substitute M with a graph Laplacian L. So for convenience, we utilize all available
data points to derive the linear space V in the warped RKHS (i.e., nq = n), and compact
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Eq. (3) into its concise form

K̃M = K −KT (I+ LK)−1LK, (10)

where K̃M indicates that this kernel matrix is in a manifold RKHS. In practice, to control
the role of the graph Laplacian, it is sensible to associate a constant γ with L (i.e., γ L). In
this work, we take the default value γ = 1, which means the graph Laplacian remains still
in H̃.

Substituting the manifold adaptive kernel K̃M into the Eq. (8), we obtain the objective
function of the proposed GLCF approach formulated as

JGLC F = Tr
(
(I−WVT )T K̃M(:,:)(I−WVT )

)+ λ

n∑

i=1

Tr
(
1T �i1K̃M(i,i)

− 2 · 1T �iWT K̃M(:,i) +W�iWT K̃M(:,:)
)
. (11)

3.3 Generalized update algorithm

Assume that all elements of the manifold kernel K̃M are nonnegative, it can readily obtain the
multiplicative update rules using the Karush–Kuhn–Tucker (KKT) conditions and Lagrangian
multipliers as follows (details can be referred to [25])

w jk ← w jk
(K̃M(:,:)V+ λ

∑N
i=1 K̃M(:,i)1T �i) jk

(K̃M(:,:)WVT V+ λ
∑N

i=1 K̃M(:,:)W�i) jk
(12)

vki ← vki
2(λ+ 1)(K̃M(:,:))ki W

(2VWT K̃M(:,:)W+ λA+ λB)ki
, (13)

where A = [a, . . . , a] ∈ R
n×p, a = diag(K̃M), B = [b, . . . , b]T ∈ R

n×p, b =
diag(WT K̃MW). Similar to LCF, it is true that our objective function JGLC F is nonincreas-
ing and invariant if and only if W and V are both at a stationary point under these update rules.
However, in many real situations, the manifold kernel matrix might have negative entries,
which make the above update rules fail. It is really desirable to design a generalized update
algorithm that can handle arbitrary components of the kernel matrix. To address this issue, we
resort to a powerful theorem proposed in [29] and deduce our generalized update algorithm
following the fashion in [5].

Denote a nonnegative vector with m components by z, a symmetric positive definite matrix
by H, any vector with the same dimension as z by b, we consider a function in the nonnegative
quadratic formulation [29] like

f (z) = 1

2
zT Hz+ bT z, (14)

then it is easy to derive the solution z∗ that minimizes this function by the following iterative
update rule

zi ← zi

⎡

⎣
−bi +

√
b2

i + 4(H+z)i (H−z)i

2(H+z)i

⎤

⎦ , (15)

where H+ and H− are both nonnegative matrices satisfying H = H+ −H− with the entries
specified by
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110 P. Li et al.

H+i j =
{

Hi j , if Hi j > 0,

0 , otherwise.
H−i j =

{ |Hi j |, if Hi j < 0,

0 , otherwise.

It can be observed that the objective of GLCF in Eq. (11) is a quadratic formulation of W
or V, respectively, when the other is fixed. Thus, we can intuitively apply the above update
principle in Eq. (15) into our GLCF approach, requiring the H and b be identified. Following
the deductions in [35], we can derive the generalized update algorithm for our GLCF method.
To be more concise, we simply substitute K̃M with K.

To yield the update rules for W, the variable V should be fixed. Take the first-order and
second-order derivatives w.r.t. W, we could, respectively, obtain the variable z and the matrix
H for the multiplicative update rule of W. Similarly, the multiplicative update rule for V can
be obtained when fixing W. To achieve the consistency with H in Eq. (15), the kernel matrix
K is also decomposed into two nonnegative parts shown by

K+i j =
{

Ki j , if Ki j > 0,

0 , otherwise.
K−i j =

{ |Ki j |, if Ki j < 0,

0 , otherwise.

First, we fix the matrix V, and take the first-order derivative of the quadratic form J (W)

(i.e., the objective function of GLCF) with respect to W at W = 0, leading to

∂ J

∂w jk

∣
∣
∣
∣
W=0
= −2(KV) jk − 2λ

(
N∑

i=1

K(:,i)1T �i

)

jk

. (16)

Then, taking the second-order derivative of J (W) w.r.t. W, we have

∂2 J

∂w jk∂wmn
= 2K jm(VT V)nk + 2λ

N∑

i=1

K jm(�i)nk . (17)

So the generalized update rule for W can be expressed by

w jk ← w jk

−(Rw) jk +
√

(Rw)2
jk + 4P+jkP−jk

2P+jk

, (18)

where Rw = −KV − λ
∑N

i=1 K(:,i)1T �i ∈ R
n×p, P+ = K+WVT V + λ

∑N
i=1 K+W�i ∈

R
n×p, P− = K−WVT V+ λ

∑N
i=1 K−W�i ∈ R

n×p.
Similarly, when the matrix W is held on, we take the first-order and second-order deriva-

tives of the quadratic form J (V) with regard to V, leading to

∂ J

∂vki

∣
∣
∣
∣
V=0
= −2(λ+ 1)(KW)ki + λ(A+ B)ki . (19)

∂2 J

∂vki∂vmn
= 2δni (WT KW)km, (20)

where δni equals 1 if i = n and equals 0 otherwise. In consequence, the generalized update
rule for V can be given by

vki ← vki

−(Rv)ki +
√

(Rv)
2
ki + 4Q+ki Q

−
ki

2Q+ki

, (21)

where Rv = −(λ + 1)KW + (1/2)λ(A + B) ∈ R
n×p, Q+ = VWT K+W ∈ R

n×p, Q− =
VWT K−W ∈ R

n×p.

123



Graph-based local concept coordinate factorization 111

Algorithm 1 Graph-based local concept coordinate factorization (GLCF)
Input:

An m-dimensional data matrix X with n instances, the number of learned bases p, the number of nearest
neighbors k, the tradeoff parameter λ.

Output:
Two coefficient matrices W and V.

1: Initialize: Generate W and V with random data rescaled to [0,1].
2: Encode the data geometrical structure. The locally geometrical structure in the data space is encoded by

Laplacian graph, i.e., L = D− S. The weight matrix S is yielded in the manner of Eq. (9) with k nearest
neighbors.

3: Graph-based kernel learning. Learn the manifold adaptive kernel K̃M in the warped RKHS using
Eq. (10).

4: Learn the coefficient matrices. Update the two coefficient matrices W and V using the generalized
multiplicative algorithm in Eqs. (18) and (21) respectively.

5: Repeat the update process until convergence.

3.4 The graph-based local concept coordinate factorization algorithm

In summary, our proposed graph-based local concept coordinate factorization (GLCF) algo-
rithm mainly consists of three components, i.e., encoding the data geometry using graph
Laplacian, learning the manifold adaptive kernel, and updating the coefficient matrices W
and V. Detailed descriptions can be found in Algorithm 1. Through this algorithm, a new
low-dimensional data space spanned by the atoms of the coefficient matrix V can be easily
captured, so as to facilitate the tasks of clustering or classification.

Here, we give some brief analysis on the time complexity of the proposed GLCF algorithm.
First, it needs O(n2k) to construct the k nearest neighbor graph for graph Laplacian. Second,
it requires O(n2) to build the data-dependent kernel matrix K. Third, the manifold adaptive
kernel costs O(n3). Fourth, updating W and V desires O(n2 p). If the algorithm converges
in t iterations, the total computational complexity is O(n2k + n2 + n3 + tn2 p). Since p
is often a very small number to ensure the local preserving property of GLCF and it often
requires only a few iterations for convergence, the overall cost using big O is O(n3). If we
utilize nq(k < nq < n) data points to derive the linear space V in the warped RKHS, the
computational complexity can be further reduced to O(n2nq). Extensive experiments were
conducted on several databases to show its effectiveness in the following section.

4 Experiments

In this section, we investigate the clustering performance of the proposed method on several
image and gene expression data. First, we give the descriptions about the data sets, evaluation
metrics, and parameter settings. Then, the clustering results of GLCF in comparison with
six different algorithms are reported with some interesting analysis. Finally, we conduct
the model selection, explore the convergence property, and show some visualizations of the
clustering results.

4.1 Data corpora

We employ three image databases and six gene expression data sets [41] in the experiments.
Some samples of the image databases are given in Fig. 1. Descriptions of them are given
stated as below.
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112 P. Li et al.

Fig. 1 Sample images from the image databases. a ORL; b Yale; c Caltech

The ORL facial data1 contain 400 images referring to 40 subjects, and each subject has
10 images under different situations, such as varied lighting and different expressions (i.e.,
open/closed eyes, yes/not smiling). The Yale database is constructed at the Yale Center for
Computer Vision and Control.2 It contains 165 gray scale images involving 15 distinctive
individuals. Each individual subject has 11 images with different facial expressions or con-
figurations (i.e., center-light, left-light, right-light, with/without glasses, happy, sad, normal,
surprised, wink, and sleepy). For ORL and Yale, original images were all normalized in scale
and orientation to make the two eyes be aligned at the same horizontal position. In this test,
we employ the cropped images with 64×64 pixels, and each pixel has 256 gray levels. Thus,
every facial image is represented by a 4096-dimensional vector.

The Caltech image database is a subset of Caltech1013 with top most 15 categories except
the BACKGROUND Google. Each category contains 88 to 800 images. The size of each
image is roughly 300×200 pixels. Since the low-level pixels cannot well reflect the image,
we extract five kinds of features from each image using a common feature extraction toolkit,4

including color histogram/moments, edge histogram, gabor wavelets transform, local binary

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
3 http://www.vision.caltech.edu/Image-Datasets/Caltech101/.
4 http://appsrv.cse.cuhk.edu.hk/~jkzhu/felib.html.
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Table 1 Statistics of the data sets Data sets Type Samples Features Classes negfea

ORL face 400 4,096 40 N

Yale face 165 4,096 10 N

Caltech image 3,855 809 15 Y

genALL gene 248 4,184 6 N

genGCM gene 198 5,334 14 Y

genHBC gene 22 3,226 3 N

genLYM gene 62 4,026 3 Y

genMLL gene 72 4,194 3 Y

genNCI gene 60 1,123 9 Y

pattern, and GIST [42]. Thus, each image can be represented by a 809-dimensional feature
vector. Note that the obtained feature vectors contain a few negative entries.

Gene expression refers to the production level of protein molecules defined by a gene
[41] and becomes of vital importance in genetics and molecular biology. Usually, gene
expression data contain a large number of genes, leading to sparse features. Thus, to obtain
a low-dimensional data representation of the gene data makes much sense. In this test, we
examine six kinds of gene expression data, including genALL (it covers six subtypes of
acute lymphoblastic leukemia), genGCM (it consists of 198 human tumor samples of fifteen
types), genHBC (it involves 22 hereditary breast cancer samples), genLYM (it has three
most prevalent adult lymphoid malignancies), genMLL (it contains three leukemia classes),
and genNCI (it spans nine classes and is used to examine the variation in gene expression).
Details can be referred to [41]. Among them, two data sets are nonnegative, while the rest
ones contain negative features.

The statistics of these data are shown in Table 1, where “negfea” denotes there exist
negative entries in the feature vector space.

4.2 Parameter settings

For all the data sets except KM, we applied the traditional k-means in the new transformed
space and repeated 20 times with different randomly initial centers. The clustering results
were recorded in terms of the minimum objective function value. As a preprocessing step,
the samples in the ORL and Yale databases are normalized to unit Euclidean length. No
more processing are conducted on the remaining data sets, because their features have been
extracted from the original data and normalization might deteriorate the clustering perfor-
mance on them.

For the graph-based methods, the number of nearest neighbor was empirically set to 5
to achieve the local consistency. For EGD, we adopted the code provided by the author
in [31]. There are some parameters in GNMF, LCF, and GLCF, and we search the para-
meters in a broad range from 10−3 to 103. The results of the optimal parameters were
recorded. In particular, to have an overview of the performances on different number of clus-
ters on the data, we randomly selected {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} splits from ORL and
{2, 4, 6, 8, 10, 12, 14} splits from Yale to examine the clustering performance of the com-
pared algorithms. For all methods, we repeated 20 test runs to obtain the averaged results. In
particular, we observe that the compared methods yield more favorable results on ORL and
Yale when k equals 1. The reported results could be better if the parameters are further tuned
in a sensible grid for the data sets.
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4.3 Evaluation metrics

We use two popular evaluation metrics to examine the clustering performance, i.e., the accu-
racy (AC) and the normalized mutual information (NMI) [6,20,23,25,35]. Usually, the clus-
tering result is evaluated by comparing the obtained cluster label of each sample with its
groundtruth label. Given an image xi , let ai and gi be the obtained cluster label and the label
provided by the corpus in respective, then AC is defined as

AC =
∑n

i=1 δ(gi , map(ai ))

n
, (22)

where we denote n by the total number of images in the corpus, δ(·, ·) is a delta function
that equals one if the two entries are the same and equals zero otherwise. The permutation
mapping function map(ai ) maps each obtained cluster label ai to the equivalent label in the
corpus. The Kuhn–Munkres algorithm [26] can be used to find the best mapping.

For NMI, let C and C ′ denote the sets of clusters from the ground truth and the algorithms,
respectively, then the mutual information between them is expressed by [24,36]

MI(C, C ′) =
∑

ci∈C,c′j∈C ′
p(ci , c′j ) · log2

p(ci , c′j )
p(ci ) · p(c′j )

, (23)

where p(ci ) and p(c′j ) are assigned by the probabilities that a sample arbitrarily selected
from the database belongs to the clusters ci and c′j , respectively. And p(ci , c′j ) is the joint
probability that the arbitrarily chosen sample belongs to the cluster ci and c′j at the same
time. To simplify comparisons among different cluster sets, we use the normalized mutual
information NMI, which is formulated as

NMI(C, C ′) = MI(C, C ′)
max(H(C), H(C ′))

, (24)

where H(C) and H(C ′) denote the entropies of the cluster sets C and C ′, respectively.
Obviously, NMI(C, C ′) takes values ranging from zero to one. In particular, if the clusters in
the two sets are identical, NMI takes one; if the two sets are completely independent, NMI
becomes zero.

4.4 Performance comparisons

In the experiments, we investigate seven algorithms, including a k-means baseline, an empir-
ical geodesic distance method, and five matrix-factorization-based clustering techniques.
They are listed as follows:

– Traditional k-means clustering method (KM). It performs clustering in the original data
space.

– Empirical geodesic distance (EGD). Here, we adopt the ISOMAP [31] to derive the
transformed space, where the geodesic distances on a weighted graph are incorporated
with metric multidimensional scaling.

– Nonnegative matrix factorization (NMF) [28]. It is one of the most popular matrix factor-
ization techniques for nonnegative data points.

– Graph-regularized nonnegative matrix factorization (GNMF) [6], which preserves the
locally geometrical information through a regularizer.

– Concept factorization (CF) [35], which is an extension of NMF.
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– CF with the locality constraint (LCF) [25]. This is a state-of-the-art variant of CF.
– Graph-based local concept coordinate factorization (GLCF), which is our newly proposed

method.

As mentioned in the preceding part, clustering was performed in the low-dimensional
space derived from the embedding method and the matrix factorization approaches.

4.5 Results

The clustering results of the compared algorithms on ORL and Yale are, respectively, shown
in Tables 2 and 3. The drawings in Fig. 2 depict the corresponding comparison curves in
terms of clustering accuracy. Notice that the number of clusters in Fig. 2 is actually p, i.e.,
the number of classes involved in the test data split. With the increase of the number of classes,
it becomes more difficult to conduct clustering for the compared algorithms. Tables 4 and 5
show the comparison results of different algorithms on Caltech and six gene expression
data sets in terms of the averaged results and the standard deviations. The best results are
boldfaced. The paired t-tests were conducted at the significance level of 0.05 on Caltech and
six gene expression data as indicated by “•”.

Observed from these tables and figures, several interesting points can be summarized in
the following.

– The proposed GLCF method systematically outperforms other methods. This is mainly
attributed to the fact that the local coordinate coding and the locally geometrical structure
are both well respected so as to strengthen the sparsity of the new data representation and
the local consistency of the underlying concepts. Moreover, manifold kernel learning is
performed in the warped RKHS to better extract the latent concepts.

– EGD and GNMF perform better than NMF, CF, and LCF. This is because that both of them
take advantage of the manifold information, which improves the clustering performance.
Particularly, EGD employs the geodesic distance information on a weighted graph and
GNMF employs the locally geometrical structure of the data space.

– Compared to EGD and GNMF, the superimposed local coordinate constraint is enforced
on each concept for GLCF to preserve the local manifold structure and to obtain a sparse
low-dimensional data representation. Moreover, the manifold kernel learning in the warped
RKHS can better adapt to some data distributions with nonlinear correlations. Hence,
GLCF is expected to achieve more promising results as supported by the records in the
tables.

– Compared to NMF and GNMF, GLCF can handle negative entries in the input data space
as shown in Tables 4 and 5. Since in many real-world applications, the extracted features
cannot be guaranteed to be nonnegative, especially in the biology field, it is a significant
advantage of GLCF to deal with the negative data in some situations. Therefore, it justifies
the wide applicability and good interpretability of the developed GLCF method.

– GNMF consistently improves the performance of NMF, which suggest the efficacy of the
manifold regularizer. In most cases, LCF outperforms CF, which demonstrates that the
locality constraint imposed on concept factorization indeed takes effect.

Note that the results of NMF, CF, and LCF on ORL and Yale are better than those in [25],
this might be due to the reason that we use the cropped images of 64×64 pixels, while the
latter uses the images of 32×32 pixels with less image information. Moreover, since it has
been shown that SparseNMF [16] performs worse than LCF in [25], we do not report its
results here.
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Fig. 2 Clustering performance comparison of different algorithms in terms of accuracy. a ORL; b Yale

4.6 Model selection

For our GLCF algorithm, there are two parameters: the trade-off parameter λ and the number
of nearest neighbors k. As mentioned earlier, we fix k = 1 for ORL and Yale while k = 5 for
the rest data. Thus, here we only explore the influences of λ on the clustering performance.
Take ORL and Yale for example, we randomly choose six clusters from them for testing.

In detail, we fix the number of nearest neighbors to be 1 and search the optimal para-
meter from a wide range of [10−3, 103]. Specially, the grid between 0 and 1 is divided into
smaller bins so as to capture better parameters for λ. Besides, we conduct the model selec-
tion for LCF under the same settings. Selection results are drawn by curves in Fig. 3. As
vividly depicted in these figures, GLCF performs favorably well when λ is no more than
0.5 and it deteriorates sharply when λ is over 1. Similar behaviors can be observed on other
data sets. In summary, the trade-off parameter λ plays a crucial role in the proposed GLCF
algorithm.

4.7 Convergence study

As we know, the generalized update rules lead to the two coefficient matrices W and
V. It has been shown the optimization of the objection function JGLC F can be solved
through iteratively updating these rules. For the purpose of examining the convergence,
we have conducted some tests on ORL and Yale for NMF, CF, LCF, and GLCF. GNMF
behaves similarly as NMF, so we do not depict its curves. Their convergence curves
are depicted in Fig. 4 for ORL and Yale. In these figures, the horizontal axis represents
the number of iterations, while the vertical axis denotes the log value of the objective
function.

As can be seen from the graphs, these algorithms have fast convergence rates, since the
local minima can be achieved after a very few iterations using the update rules. These methods
have similar observations on the rest data sets.

4.8 Visual clustering results

To demonstrate the advantages of GLCF intuitively, we illustrate the clustering results of
NMF, CF, LCF, and GLCF in terms of 3D graphs. Take ORL and Yale for example, we ran-
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Fig. 3 Clustering performance of GLCF with the different λ. a ORL; b Yale. In each subfigure, the left panel
reflects the clustering accuracy, and the right panel denotes the normalized mutual information
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Fig. 4 Convergence performances of different algorithms. a NMF; b CF; c LCF; d GLCF. The left panel in
each subfigure denotes the result on ORL, and the right panel in each subfigure denotes the result on Yale

domly select three classes from them, respectively. The visualizations of the clustering results
are displayed in Fig. 5. In these graphs, the three clusters are remarked by different colorful
shapes and we also highlight the centroid using one cross with a circle. As vividly shown in
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Fig. 5 Visual clustering results of different algorithms for randomly selected three clusters. a NMF; b CF;
c LCF; d GLCF. The left panel in each subfigure denotes the result on ORL, and the right panel in each
subfigure denotes the result on Yale

these figures, the data points within the same cluster are more compact and concentrated by
GLCF and also those within different clusters are scattered far away, which further justifies
the advantages of our method.
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5 Conclusion

In this paper, we present a novel matrix factorization method called graph-based local concept
coordinate factorization (GLCF). It aims to preserve the locally geometrical structure via
graph Laplacian in the warped RKHS and ensure the sparseness of the new representations
by adding the local coordinate constraints. The obtained new data representation can better
preserve the manifold structure in the low-dimensional data subspace spanned by the atoms of
the coefficient matrix V. Furthermore, it makes the learned bases vector closer to the concept
centers, and each data point is a linear combination of only a few components. We develop
a generalized multiplicative update rules to optimize the objective function, and it has been
shown this optimization framework is able to handle negative entries in the data matrix from
both the theoretical and empirical viewpoints. A number of experiments were conducted on
several image and gene expression databases. Results have validated the effectiveness of the
proposed GLCF approach.
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