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Abstract
In this paper, we present an improved analysis for dynamic regret of strongly convex and smooth
functions. Specifically, we investigate the Online Multiple Gradient Descent (OMGD) algorithm
proposed by Zhang et al. (2017). The original analysis shows that the dynamic regret of OMGD is
at most O(min{PT ,ST }), where PT and ST are path-length and squared path-length that measures
the cumulative movement of minimizers of the online functions. We demonstrate that by an improved
analysis, the dynamic regret of OMGD can be improved to O(min{PT ,ST ,VT }), where VT is
the function variation of the online functions. Note that the quantities of PT ,ST ,VT essentially
reflect different aspects of environmental non-stationarity—they are not comparable in general and
are favored in different scenarios. Therefore, the dynamic regret presented in this paper actually
achieves a best-of-three-worlds guarantee and is strictly tighter than previous results.
Keywords: Online Learning, Dynamic Regret, Strong Convexity, Smoothness, Gradient Descent

1. Introduction

In the development of online convex optimization, there are plenty of works devoted to designing
online algorithms for minimizing static regret (Hazan, 2016), defined as

S-RegretT =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x), (1)

which is the difference between the cumulative loss of the online algorithm and that of the best
strategy in hindsight. When environment variables are stationary, minimizing static regret will lead
to an algorithm that behaves well over the iterations. However, such a claim may not hold when
environments are non-stationary and changing with time. To cope with non-stationary environments
where the optimal decisions of online functions can be drifting over time, a more stringent measure—
dynamic regret—is proposed and draws much attentions in recent years (Zinkevich, 2003; Hall and
Willett, 2013; Besbes et al., 2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Yang et al., 2016;
Zhang et al., 2017, 2018b; Baby and Wang, 2019; Zhang et al., 2020a,b), defined as

D-RegretT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (2)

where x∗t ∈ arg minx∈X ft(x) is the minimizer of the online function. Dynamic regret enforces the
player to compete with a time-varying comparator sequence, and thus is particularly favored in online
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learning in non-stationary environments. The notion of dynamic regret is also referred to as tracking
regret or shifting regret in the setting of prediction with expert advice (Herbster and Warmuth, 1998,
2001; Bousquet and Warmuth, 2002; Wei et al., 2016; Zheng et al., 2019).

It is known that in the worst case, a sub-linear dynamic regret is not attainable unless imposing
certain regularities of the comparator sequence or the function sequence (Besbes et al., 2015;
Jadbabaie et al., 2015). There are mainly three kinds of regularities used in the literature (Zinkevich,
2003; Besbes et al., 2015; Zhang et al., 2017).

• Path-length (Zinkevich, 2003): the variation of optimizers

PT =
T∑
t=2

‖x∗t−1 − x∗t ‖2,

• Squared path-length (Zhang et al., 2017): the squared variation of optimizers

ST =
T∑
t=2

‖x∗t−1 − x∗t ‖22,

• Function variation (Besbes et al., 2015): the variation over consecutive function values

VT =
T∑
t=2

sup
x∈X
|ft−1(x)− ft(x)|,

When the path-lengthPT is known in advance, dynamic regret of Online Gradient Descent (OGD)
is at most O(

√
T (1 + PT )) (Zinkevich, 2003; Yang et al., 2016) for convex functions. For strongly

convex and smooth functions, Mokhtari et al. (2016) first show that an O(PT ) dynamic regret is
achievable; later, Zhang et al. (2017) propose Online Multiple Gradient Descent (OMGD) and
prove an O(min{PT ,ST }) dynamic regret. Yang et al. (2016) disclose that the O(PT ) rate is
also attainable for convex and smooth functions, provided that all the minimizers x∗t ’s lie in the
interior of the feasible set X . Besides, Besbes et al. (2015) show that OGD with a restarting strategy
attains an O(T 2/3V1/3T ) dynamic regret when the function variation VT is available ahead of time.
Later, Baby and Wang (2019) improve the rate to O(T 1/3V2/3T ) for 1-dimensional square loss by
trend filtering techniques. We finally remark that another strengthened form of dynamic regret is
recently studied (Zhang et al., 2018a; Zhao et al., 2020a,b) which supports to compete with any
sequence of changing comparators rather than the optimizers of online functions only.

In this paper, we focus on the dynamic regret measure (2) of online convex optimization for
strongly convex and smooth functions. Specifically, we assume that the online functions f1, . . . , fT
are λ-strongly convex and L-smooth, namely, for all t = 1, . . . , T ,

• λ-strong convexity: for any x,y ∈ X , the following condition holds

ft(y) ≥ ft(x) +∇ft(x)T(y − x) +
λ

2
‖y − x‖22.

• L-smoothness: for any x,y ∈ X , the following condition holds

ft(y) ≤ ft(x) +∇ft(x)T(y − x) +
L

2
‖y − x‖22.
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To minimize the dynamic regret of strongly convex and smooth functions, Zhang et al. (2017)
propose an algorithm called Online Multiple Gradient Descent (OMGD) and prove that under certain
mild assumptions, OMGD enjoys the following dynamic regret

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ O(min{PT ,ST }). (3)

In this paper, we present an improved analysis and demonstrate that the dynamic regret of OMGD
can be also bounded by the function variation term VT . As a result, we actually show that the
dynamic regret of OMGD is bounded by the minimization of path-length, squared path-length and
function variation, namely,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ O(min{PT ,ST ,VT }). (4)

As shown in the work of Jadbabaie et al. (2015), these three kinds of regularities PT ,ST ,VT
are generally incomparable and are favored in different scenarios. Therefore, the dynamic regret
bound (4) presented in this paper actually achieves a best-of-three-worlds guarantee, and is strictly
tighter than the bound (3) of Zhang et al. (2017).

2. Algorithm: Online Multiple Gradient Descent

We first introduce the Online Gradient Descent (OGD) algorithm (Zinkevich, 2003), which starts
from any x1 ∈ X and performs the following update at each iteration:

xt+1 = ΠX [xt − η∇ft(xt)],

where η > 0 is the step size, and ΠX [·] denotes Euclidean projection onto the nearest point in X .
To minimize the dynamic regret of strongly convex and smooth functions, Zhang et al. (2017)

propose a variant of OGD, called Online Multiple Gradient Descent (OMGD). The algorithm
performs gradient descent multiple times at each iteration. Specifically, at iteration t, given the
current decision xt, OMGD will produce a sequence of z1t , . . . , z

K
t , z

K+1
t , where K is the number

of inner iterations, a constant independent from the time horizon T . The inner iterations start from
z1t = xt and then perform the following update procedure,

zk+1
t = ΠX [zkt − η∇ft(zkt )],

where k = 1, . . . ,K is the index of inner loop. The decision xt+1 is set as the output of the inner
iterations zK+1

t , i.e., xt+1 = zK+1
t . The procedures of OMGD are summarized in Algorithm 1.

3. Dynamic Regret Analysis

In this section, we provide dynamic regret analysis for the OMGD algorithm. We first restate the
(squared) path-length bounds of Zhang et al. (2017) in Section 3.1 and then prove the function
variation bounds in Section 3.2. Finally, in Section 3.3 we present comparisons between various
regularities and show the advantage of our results.

Before presenting the theoretical analysis, we state the following standard assumption adopted in
the work of Zhang et al. (2017) and this work.
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Algorithm 1 Online Multiple Gradient Descent (OMGD) (Zhang et al., 2017)
Input: number of inner iterations K and step size η
1: Let x1 be any point in X
2: for t = 1, . . . , T do
3: Submit xt and receive the loss ft : X 7→ R
4: z1t = xt
5: for k = 1, . . . ,K do
6:

zk+1
t = ΠX [zkt − η∇ft(zkt )]

7: end for
8: xt+1 = zK+1

t

9: end for

Assumption 1. Suppose the following conditions hold for each online function ft : X 7→ R:

• The online function ft is λ-strongly convex and L-smooth over X ;

• The gradients are bounded by G, i.e., ‖∇ft(x)‖2 ≤ G for any x ∈ X .

3.1. (Squared) Path-length Bounds

Zhang et al. (2017) prove that the dynamic regret of OMGD can be bounded by the path-length and
squared path-length. We restate their results as follows.

Theorem 1 (Theorem 2 of Zhang et al. (2017)). Under Assumption 1, by setting the step size
η ≤ 1/L and the number of inner iterations K = d1/η+λ2λ ln 4e in Algorithm 1, for any constant
α > 0, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ min


2GPT + 2G‖x1 − x∗1‖2,

1

2α

T∑
t=1

‖∇ft(x∗t )‖22 + 2(L+ α)ST + (L+ α)‖x1 − x∗1‖22.

(5)

Furthermore, suppose
∑T

t=1‖∇ft(x∗t )‖22 = O(ST ), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ O

(
min{PT ,ST }

)
. (6)

In particular, if x∗t belongs to the relative interior of X (i.e., ∇ft(x∗t ) = 0) for all t ∈ [T ], the
dynamic regret bound in (5), as α→ 0, implies

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ min

{
2GPT + 2G‖x1 − x∗1‖2, 2LST + L‖x1 − x∗1‖22

}
.
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3.2. Function Variation Bounds

In this part, we show that by an improved analysis, the dynamic regret of OMGD can be further
bounded by the function variation VT , as demonstrated in the following theorem.

Theorem 2. Under Assumption 1, by setting the step size η = 1/L, and the number of inner
iterations K = d4(L+λ)λ ln 4e in Algorithm 1, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ 2VT + 2

(
f1(x1)− fT (xT+1)

)
. (7)

Furthermore, suppose
∑T

t=1‖∇ft(x∗t )‖22 = O(ST ), from Theorem 1 and (7), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ O

(
min{PT ,ST ,VT }

)
.

In particular, if x∗t belongs to the relative interior of X (i.e., ∇ft(x∗t ) = 0) for all t ∈ [T ], the
dynamic regret bounds in (5) and (7), as α→ 0, imply

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ min

{
2GPT + 2G‖x1 − x∗1‖2, 2LST + L‖x1 − x∗1‖22,

2VT + 2
(
f1(x1)− fT (xT+1)

)}
.

Remark 1. Notice that above settings of step size η = 1/L and the number of inner iterations
K = d4(L+λ)λ ln 4e also satisfy the condition of Theorem 1 (namely, η ≤ 1/L and K ≥ dL+λ2λ ln 4e
hold simultaneously), so the dynamic regret is also bounded by the path-length bounds in (6).

To prove Theorem 2, we introduce the following key lemma due to Nesterov (2013).

Lemma 1. Assume that the function f : X 7→ R is λ-strongly convex and L-smooth, and denote by
x∗ the optimizer, i.e., x∗ = arg minx∈X f(x). Let

v = ΠX

[
u− 1

L
∇f(u)

]
. (8)

Then, we have
f(v)− f(x∗) ≤ γ

(
f(u)− f(x∗)

)
, (9)

where

γ =


1
2 , if 3λ ≥ 2L

1− λ
4(L−λ) , otherwise.

Proof [of Lemma 1] Notice that the update procedure in (8) is equivalent to

v = arg min
x∈X

{
f(u) + 〈∇f(u),x− u〉+

L

2
‖x− u‖22

}
. (10)
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Then, we have

f(v) ≤ f(u) + 〈∇f(u),v − u〉+
L

2
‖v − u‖22 (by L-smoothness)

= min
x∈X

{
f(u) + 〈∇f(u),x− u〉+

L

2
‖x− u‖22

}
(due to update procedure in (10))

≤ min
x∈X

{
f(x)− λ

2
‖x− u‖22 +

L

2
‖x− u‖22

)
(by λ-strong convexity)

≤ min
x=αx∗+(1−α)u,α∈[0,1]

{
f(x) +

L− λ
2
‖x− u‖22

}
= min

α∈[0,1]

{
f (αx∗ + (1− α)u) +

L− λ
2
‖αx∗ + (1− α)u− u‖22

}
≤ min

α∈[0,1]

{
αf(x∗) + (1− α)f(u) +

L− λ
2

α2‖x∗ − u‖22
}

= min
α∈[0,1]

{
f(u)− α (f(u)− f(x∗)) +

L− λ
2

α2‖x∗ − u‖22
}

≤ min
α∈[0,1]

{
f(u)− α (f(u)− f(x∗)) +

L− λ
2

2

λ
α2 (f(u)− f(x∗))

}
= min

α∈[0,1]

{
f(u) +

(
L− λ
λ

α2 − α
)(

f(u)− f(x∗)
)}

.

The last inequality is true because f(x)−f(x∗) ≥ λ
2‖x−x∗‖22 holds for all x ∈ X due to the strong

convexity (Nesterov, 2018, Theorem 2.1.8). Therefore, if λ
2(L−λ) ≥ 1, then we set α = 1 and obtain

f(v)− f(x∗) ≤ L− λ
λ

(f(u)− f(x∗)) ≤ 1

2
(f(u)− f(x∗)) .

Otherwise, we set α = λ
2(L−λ) , and obtain

f(v)− f(x∗) ≤
(

1− λ

4(L− λ)

)
(f(u)− f(x∗)) .

This ends the proof of Lemma 1.

Based on Lemma 1, we now present the proof of Theorem 2.

Proof [of Theorem 2] From Lemma 1, we know that

ft(xt+1)− ft(x∗t ) = ft(z
K+1
t )− ft(x∗t )

(9)
≤ γK (ft(xt)− ft(x∗t )) ≤

1

4
(ft(xt)− ft(x∗t )) . (11)

The last inequality holds due to the following facts. From the setting of the inner iteration K =

d4(L+λ)λ ln 4e, on one hand, it is clear that γK ≤ 1
4 holds when γ = 1

2 . On the other hand, when

γ = 1− λ
4(L−λ) , we have

(
1− λ

4(L−λ)

)K
≤ exp

(
− λK

4(L−λ)

)
≤ 1

4 .
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Therefore, we can upper bound the dynamic regret as follows.

T∑
t=1

ft(xt)− ft(x∗t ) ≤ f1(x1)− f1(x∗1) +
T∑
t=2

ft(xt)− ft−1(xt) + ft−1(xt)− ft(x∗t )

≤ f1(x1)− f1(x∗1) + VT +
T∑
t=2

ft−1(xt)− ft(x∗t )

= f1(x1)− fT (xT+1) + VT +
T−1∑
t=1

ft(xt+1)− ft(x∗t )

(11)
≤ f1(x1)− fT (xT+1) + VT +

1

4

T−1∑
t=1

ft(xt)− ft(x∗t ).

(12)

Thus, by rearranging above terms, we prove the statement in Theorem 2.

3.3. Comparisons of Path-length and Function Variation

As demonstrated by Jadbabaie et al. (2015), the path-length and function variation are not comparable
in general. Let us consider the following two instances.

Instance 1 (Online linear optimization over a d-dimensional simplex). Consider the online linear
optimization problem, the feasible set X is set as ∆d = {x | x ∈ Rd, xi ≥ 0,

∑d
i=1 xi = 1} and the

online functions are ft(x) = 〈wt,x〉, where

wt =

{
[ 1T , 0, 0, . . . , 0]T when t is odd
[0, 1

T , 0, . . . , 0]T when t is even

Then, x∗t = [1, 0, 0, . . . , 0]T when t is odd and x∗t = [0, 1, 0, . . . , 0]T when t is even. So we have

PT = ST = Θ(T ), VT = Θ(1).

Instance 2 (Online linear optimization over a 2-dimensional simplex, or prediction with two-expert
advice). Let the feasible set X be as ∆2 = {x | x ∈ R2, xi ≥ 0, x1 + x2 = 1}, and the online
functions be ft(x) = 〈wt,x〉, where

wt =

{
[−1

2 , 0]T when t is odd
[0, 12 ]T when t is even

Then, we know that the optimal decision is fixed as the first expert, that is, x∗t = [1, 0]T. Thus,

PT = ST = 0, VT = Θ(T ).

From above two instances, we conclude that function variation and (squared) path-length are not
comparable in general. Our analysis shows that OMGD actually enjoys an O(min{PT ,ST ,VT })
dynamic regret guarantee, which achieves the best of three worlds and thus strictly improves the
previous result of O(min{PT ,ST }) by Zhang et al. (2017).
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4. Discussion

In this section, we discuss some aspects of our results.

4.1. Relationship between Squared Path-length and Function Variation

We further discuss the relationship between ST and VT providing that the online functions are
λ-strongly convex. Denote by x∗t = arg minx∈X ft(x) and x∗t−1 = arg minx∈X ft−1(x). Indeed,

‖x∗t − x∗t−1‖22 ≤
1

λ

(
ft−1(x

∗
t )− ft−1(x∗t−1)

)
=

1

λ

(
ft−1(x

∗
t )− ft(x∗t ) + ft(x

∗
t )− ft−1(x∗t−1)

)
≤ 1

λ

(
ft−1(x

∗
t )− ft(x∗t ) + ft(x

∗
t−1)− ft−1(x∗t−1)

)
≤ 2

λ
sup
x∈X
|ft(x)− ft−1(x)|.

Summing over all iterations yields ST ≤ 2VT /λ. However, the right-hand side exhibits an explicit
dependency on the strong convexity modulus λ, which could be very large when λ is small. Our
analysis shows that the undesirable dependency can be eliminated by multiple gradient descent per
round, such that the dynamic regret can be upper bounded by VT + 2(f1(x1)− fT (xT+1)) without
the 1/λ factor, as demonstrated in Theorem 2.

4.2. Extensions to Non-strongly Convex Functions

When the online functions are not strongly convex, we discover that the following greedy strategy
also enjoys nice dynamic regret guarantees. The greedy strategy picks one of the minimizers of the
last online function as the current decision, namely,

xt+1 = arg min
x∈X

ft(x). (13)

Since the online function ft is not guaranteed to be strongly convex, it may have multiple minimizers.
Denote by X ∗t the set of all its minimizers, then the greedy strategy can choose an arbitrary one from
X ∗t as the current decision. In essence, this greedy strategy can be regarded as a version of OMGD
with a sufficiently large number of inner iterations.

The following theorem demonstrates the greedy strategy enjoys an O(min{P̄T , S̄T ,VT }) dy-
namic regret. Note that the definitions of (squared) path-length terms are slightly different from
previous ones to handle the potential non-uniqueness of minimizers. The proof is in Appendix A.

Theorem 3. Under Assumption 1 except for the strong convexity condition (i.e., it is allowed that
λ = 0), suppose

∑T
t=1‖∇ft(x∗t )‖22 = O(S̄T ), then the greedy strategy (13) satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ O

(
min{P̄T , S̄T ,VT }

)
,

where P̄T = max{x∗
t∈X ∗

t }Tt=1

∑T
t=2‖x∗t−1−x∗t ‖2 is the path-length, S̄T = max{x∗

t∈X ∗
t }Tt=1

∑T
t=2‖x∗t−1−

x∗t ‖22 is the squared path-length, and VT =
∑T

t=2 supx∈X |ft−1(x)− ft(x)| is the function variation.

8
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Note that the smoothness condition is only used in deriving the squared path-length bound, which
is not necessary for the path-length bound and the function variation bound.

Remark 2. We further elucidate the connection between the greedy strategy and OMGD. Both
methods decide the current decision xt+1 based on the available online function ft. The greedy
strategy selects xt+1 = x∗t ∈ arg minx∈X ft(x) as the minimizer directly, while OMGD is a first-
order method performing multiple gradient descent zk+1

t = ΠX [zkt − η∇ft(zkt )] for k = 1, . . . ,K
with z1t = xt and xt+1 = zK+1

t . Thus, OMGD can be regarded as a high-quality approximation
of the greedy strategy via a finite number of inner gradient descent, providing that online functions
are strongly convex. We note that the initialization of z1t = xt is necessary for achieving a constant
number of inner iterations (in our setting, K = d4(L/λ+ 1) ln 4e as shown in Theorem 2).

Remark 3. It is worth noting that in the analysis of OMGD the strong convexity is only necessitated
by the function-value decay lemma (Lemma 1) in our analysis. Thus, it would be possible to relax
the strong convexity condition by some other properties that allow a similar function-value decay
property exhibited in (9), with the purpose of accommodating broader class of problems.

5. Conclusion

In this paper, we investigate an existing online algorithm (Online Multiple Gradient Descent, OMGD)
proposed by Zhang et al. (2017) for dynamic regret minimization of strongly convex and smooth
functions. Under certain mild assumptions, OMGD was shown to attain O(min{PT ,ST }) dynamic
regret, wherePT and ST are path-length and squared path-length, respectively. This paper contributes
to an improved analysis and proves an O(min{PT ,ST ,VT }) dynamic regret without modifying the
algorithm, where VT is the function variation. The key technique used to realize the improvement is
a careful usage of function-value decay lemma. Since different regularities PT ,ST ,VT are generally
not comparable and are favored in different scenarios, our presented dynamic regret achieves a
best-of-three-worlds guarantee and is strictly tighter than previous results.

Many recent works consider control and dynamical systems in non-stationary environments (Goel
and Wierman, 2019; Li et al., 2019; Shi et al., 2020; Zhao et al., 2021). As a matter of fact, online
learning plays an important role in modern computational control theory, especially the online
non-stochastic control problem introduced by Agarwal et al. (2019). We believe that the dynamic
regret minimization results developed in this paper could be of interest for further development of
online control in non-stationary environments.
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Appendix A. Proof of Theorem 3

Proof [of Theorem 3] We first consider the path-length bound. Note that the path-length dynamic
regret for this greedy strategy was firstly proved by Yang et al. (2016). Below we restate their proof.

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) = f1(x1)− f1(x∗1) +

T∑
t=2

ft(x
∗
t−1)−

T∑
t=1

ft(x
∗
t )

≤ f1(x1)− f1(x∗1) +G
T∑
t=2

‖x∗t−1 − x∗t ‖2

≤ f1(x1)− f1(x∗1) +GP̄T = O(P̄T ).

Next, we prove the squared path-length bound.

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) = f1(x1)− f1(x∗1) +

T∑
t=2

ft(x
∗
t−1)−

T∑
t=1

ft(x
∗
t )

≤ f1(x1)− f1(x∗1) +

T∑
t=2

(
∇ft(x∗t )T(x∗t−1 − x∗t ) +

L

2
‖x∗t−1 − x∗t ‖22

)

≤ f1(x1)− f1(x∗1) +
1

2

T∑
t=2

‖∇ft(x∗t )‖22 +
L+ 1

2

T∑
t=2

‖x∗t−1 − x∗t ‖22

≤ O(S̄T ),

where the first inequality exploits L-smoothness condition and the last inequality makes use of the
assumption that

∑T
t=1‖∇ft(x∗t )‖22 = O(S̄T ).

We finally prove the function variation bound. Note that the function variation dynamic regret for
this greedy strategy was firstly mentioned by Jadbabaie et al. (2015) in the paragraph under Eq. (5)
of their paper. Following the derivation of (12), we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) = f1(x1)− f1(x∗1) +

T∑
t=2

ft(x
∗
t−1)−

T∑
t=1

ft(x
∗
t )

≤f1(x1)− fT (x∗T ) +

T∑
t=2

(
ft(x

∗
t−1)− ft−1(x∗t−1)

)
≤ f1(x1)− f1(x∗1) +

T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)| = O(VT ).

Combining above three upper bounds of dynamic regret ends the proof.
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