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Abstract Clustering is one of the basic tasks in data mining and machine learning which
aims at discovering hidden structure in the data. Formany real-world applications, there often
exist many different yet meaningful clusterings while most of existing clustering methods
only produce a single clustering. To address this limitation, multiple clustering, which tries to
generate clusterings that are high quality and different from each other, has emerged recently.
In this paper, we propose a novel alternative clustering method that generates non-redundant
multiple clusterings sequentially. The algorithm is built upon nonnegative matrix factoriza-
tion, and we take advantage of the nonnegative property to enforce the non-redundancy.
Specifically, we design a quadratic term to measure the redundancy between the reference
clustering and the new clustering, and incorporate it into the objective. The optimization
problem takes on a very simple form, and can be solved efficiently by multiplicative updat-
ing rules. Experimental results demonstrate that the proposed algorithm is comparable to or
outperforms existing multiple clustering methods.

Keywords Multiple clustering · Alternative clustering · Nonnegative Matrix Factorization ·
Multiplicative updating

1 Introduction

Clustering, one of the most fundamental tasks in knowledge discovery, plays an important
role in investigating the inherent and hidden structures of data (Jain et al. 1999). The goal
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Fig. 1 People can be clustered by different criteria

of clustering is to partition the data points into groups such that those within each group are
similar to each other. In the era of big data, clustering can be used as a pre-processing step
to deal with large-scale datasets. After clustering, a big dataset becomes a number of small
ones, which facilitates subsequent tasks such as summarization and visualization.

Literatures on clustering are vast, andmost of them focus on producing a single clustering.
However, for many real-world datasets, there often exist different ways to partition them. For
example, people can be clustered by inherent properties like country, gender, etc, or by their
current state, like health status and profession, as indicated in Fig. 1. It is clear that there exist
multiple clusterings of people and each of them has reasonable explanations. Similarly, in
bio-informatics, proteins can be clustered by their structures or functions. Thus, for a given
dataset, there may exist different ways in which we can divide it into different groups and
each of them reflects different aspects of the data. So, it would be helpful if we can present
multiple clusterings to users. In addition, these clusterings are required to be not only high
quality, but also different from each other.

To get multiple clusterings, the most straightforward approaches include (i) running a
clustering algorithm multiple times, using different parameters, (ii) running different clus-
tering algorithms, and (iii) a combination of the above methods (Jain et al. 1999). However
their results are unstable and the clusterings may be similar to each other because they do not
take the existing clusterings into account. To overcome this drawback, there are two general
strategies proposed by researchers to generate multiple non-redundant clusterings (Jain et al.
1999). The first one tries to simultaneously generate multiple clusterings which are required
to be different from each other (e.g., Caruana et al. 2006; Dasgupta and Ng 2010). Although
in theory these can find the globally optimal solution, the optimization problem is difficult
to be solved and in practice most of them can only generate two clusterings simultaneously.
The second one generates multiple clustering in a greedy way such that multiple clusterings
are produced sequentially and the new clustering is required to be different from the previous
clusterings (e.g., Gondek and Hofmann 2003; Bae and Bailey 2006). The second kind of
clustering methods are also refereed to as alternative clustering. Compared with the first
strategy, alternative clustering methods are much more efficient and can generate a large
number of different clusterings.

In this paper, we propose a novel alternative clustering method based on Nonnegative
Matrix Factorization (NMF) (Lee and Seung 1999). NMF aims at finding two nonnegative
matrices U and V whose product is an approximation of the original matrix X . The major
difference between NMF and other matrix factorization methods, such as SVD, are the
nonnegative constraints on U and V . Although NMF has been applied to generate a single
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clustering (Xu et al. 2003; Cai et al. 2011), to the best of our knowledge, this is the first work
that investigates NMF in the context of multiple clustering. By exploiting the nonnegative
property, we introduce a regularization term, that measures the redundancy between the
reference (or previous) clustering(s) and the new clustering, into the objective of NMF. This
regularization term is the inner product of the similarity matrices of different clusterings, and
can be formulated as a simple quadratic function. The resulting optimization problem is also
very simple and can be solved efficiently by two multiplicative updating rules. In this way,
the quality of the clustering is guaranteed by the cost function of NMF, and the diversity is
ensured by the regularization term. Experimental results on real-life datasets demonstrate the
effectiveness of our proposed algorithm for multiple clustering.

The rest of the paper is organized as follows. Section 2 discusses relatedwork on producing
multiple clusterings. Section 3 describes the basic NMF algorithm and our clustering algo-
rithm.We present our experimental results on real-life datasets in Sect. 4 and the conclusions
are in Sect. 5.

2 Related work

Although the problem of multiple clustering is relatively young, there already exist many
multiple clustering methods and we can simply divide them into two categories: unsuper-
vised multiple clustering and semi-supervised multiple clustering (Dang and Bailey 2015).
Algorithms belonging to the first category identify multiple clusterings without reference
to any existing clusterings. In contrast, algorithms in the second category generate multiple
clusterings sequentially with reference to existing clusterings.

2.1 Unsupervised multiple clustering

Caruana et al. (2006) propose an approach called Meta Clustering which is simple and easy
to implement. It assigns different weights which agree with the Zipf distribution, to features
and applies k-means algorithm in the new feature space. Multiple clusterings are generated
by random initializations of centroids in different feature spaces, but these clusterings may
be similar to each other. Dasgupta and Ng (2010) use spectral clustering to generate multiple
clusterings. They treat each eigenvector of the normalized Laplacian matrix as a clustering
dimension, perform clustering in each dimension, and obtain multiple clusterings which tend
to be dissimilar with each other as eigenvectors are orthogonal to each other.

In order to find the globally optimal multiple clustering solution, Jain et al. (2008), Dang
andBailey (2010) andNiu et al. (2010) try to generate two ormore clusterings simultaneously
without any background knowledge. The objective function of Jain et al. (2008) is the sum of
the error term of k-means method and pairwise dissimilarity terms of the clusterings. It uses
the sumof the dot products of the representative vectors and themean vectors,which belong to
different clusterings, to quantify the dissimilarity between each pair of the clusterings. Dang
and Bailey (2010) propose a different approach called CAMI which aims to generate two
dissimilar clusterings simultaneously in the original data space. Formulating the clustering
problem under mixture models, CAMI maximizes the log-likelihood term which accounts
for the clustering quality andminimizes the mutual information between twomixture models
which accounts for the dissimilarity between the two clusterings. The approach proposed by
Niu et al. (2010) transforms the data into independent subspaces and then uses the spectral
clustering method to generate clusterings in these subspaces. The independence between
different subspaces is quantified by the Hilbert-Schmidt Independence Criterion (HSIC)
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(Gretton et al. 2005). The overall objective function consists of the relaxed spectral clustering
objective terms in each subspace and the HSIC terms between the subspaces.

2.2 Semi-supervised multiple clustering

Many alternative clustering methods generate alternative clusterings in a sequential manner,
e.g., Gondek and Hofmann (2003), Bae and Bailey (2006), Cui et al. (2007), Davidson and
Qi (2008), Dang and Bailey (2014), Dang and Bailey (2015), Hu et al. (2015). They are
semi-supervised in the sense that they require one or more existing clusterings as input and
find an alternative clustering that is uncorrelated to the given ones.

COALA, which is proposed by Bae and Bailey (2006), generates a set of pairwise cannot-
link constraints from the given clustering. It attempts to find a different clustering by making
a tradeoff between satisfying these cannot-link constraints and ensuring high quality within
an agglomerative clustering process. Hu et al. (2015) propose a method called MSC, that
requires the clustering results are insensitive to noise and dissimilar with each other. The
authors prove that the larger the eigengap of the normalized Laplacian matrix, the more
stable the clustering is. This method uses a simplex constraint to generate different sparse
weights to the features and then uses spectral clustering to producemultiple stable clusterings.

Information theoretic principles are also used in the generation of alternative clusterings.
Gondek and Hofmann (2003) propose an approach called CIB which can be summarized as
follows. Let X and Y be two random variables denoting data objects and features, respec-
tively. CIB attempts to find a clustering C such that the shared information between X and C
is minimized, while at the same time the shared information between Y and C is maximized
conditioning on the information provided by the variable Z which represents provided class
labels. Dang and Bailey (2015) propose a framework named MACL for uncovering multi-
ple alternative clusterings. This framework seeks for a novel clustering conditioning on all
previous known clusterings. It combines the maximum likelihood principle and the mutual
information. The clustering quality is guaranteed by the likelihood maximization over the
data and the dissimilarity is ensured by the minimization over the information shared by each
pair clusterings.

Some researchers consider the generation of alternative clusterings from the feature space
perspective. They use a data space S to characterize the existing clustering(s) and try to find
a new feature space which is either orthogonal to S, or independent from S. Once the novel
feature space is constructed, any clustering algorithm can be used in this space to generate
an alternative clustering. Cui et al. (2007) present a projection-based framework to generate
alternative clusterings. The key idea is projecting the data into a space that is orthogonal to
the given one and then partition the data into different clusters in the new subspace. Davidson
and Qi (2008) propose a subspace multiple clustering method named ADFT which is based
on distance matrix learning. It’s also a linear transformation method. However, instead of
characterizing the known clustering according to the mean vectors or a feature subset, it
uses instance must-link and cannot-link constraints to learn a distance function (Xing et al.
2003). Then it makes use of this distance function to get a transformation matrix which gives
different weights to the features. Compared with the work of Cui et al. (2007), it can be used
even in the case that the data dimension is smaller than the number of clusters, while the
algorithm of Cui et al. (2007) can’t.

In Dang and Bailey (2014), there are two algorithms that generate multiple clusterings in
different subspaces. The first algorithm called RPCA tries to learn a subspace that preserves
the global variance property and is independent from the reference clustering. It also uses
the HSIC to measure the correlation between different subspaces. This method is suitable for
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applications where the boundaries between clusters are linear or close to linear functions. The
second algorithm called RegGB tries to deal with the nonlinear case. Its objective function is
the same as Laplacian Eigenmap (Belkin and Niyogi 2001). But it incorporates a constraint
which requires the new data space to be orthogonal to the subspace S characterizing the
reference clustering. The subspace S that characterizes the reference clustering is learned by
kernel discriminant analysis (KDA) (Baudat and Anouar 2000).

In this paper, we propose a novel multiple clustering method named Multiple NMF
(MNMF). It is also a semi-supervised clustering method (i.e., this method seeks alterna-
tive clusterings in sequence conditioning on all the previous clusterings). Based on NMF, we
transform the data into different subspaces, and introduce a regularization term to remove
redundancy. As a result, the novel clustering generated by our algorithm is different from all
the previous clusterings.

3 Our algorithm

In this section, we will introduce our method—MNMF in detail. We use the basic NMF
objective function as the measurement of the clustering quality and design a regularization
term to quantify the redundancy between different clusterings. Then, we propose an efficient
algorithm to solve the optimization problem. We start with the basic NMF.

3.1 NMF

Given a nonnegative matrix, NMF factorizes it into the product of two nonnegative matrices
(Lee and Seung 1999). Let X = [x1, x2, . . . , xN ] ∈ R

M×N be a data matrix, where each
column is an instance. Denote the two new nonnegative matrices byU = [uik] ∈ R

M×K and
V = [v jk] ∈ R

N×K , respectively. Then, we have

X ≈ UV�

Generally speaking, the rank of the two matrices U and V is much smaller than the rank of
the matrix X , i.e., K � min(M, N ).

To measure the quality of the approximation, we need a cost function that quantifies the
difference between X and UV�. The most popular function is the sum of squared errors, or
the Frobenius norm of X −UV�, and the associated optimization problem is given by

min
U,V≥0

Jsse =
∥
∥
∥X −UV�

∥
∥
∥

2

F
=

∑

i, j

(

xi j −
K

∑

k=1

uikv jk

)2

(1)

Lee and Seung (2001) present an iterative algorithm which optimizes the above problem in
the following way

uik ← uik
(XV )ik

(UV�V )ik
, v jk ← v jk

(X�U ) jk

(VU�U ) jk
.

It has been proved that the objective function value is nonincreasing under the multiplicative
updating rules (Lee and Seung 2001).
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For the fact that K � min(M, N ), NMF can be treated as a technique of dimension
reduction. And we can view the approximation column by column as follows

x j ≈
K

∑

k=1

ukv jk

where uk is the k-th column vector ofU . Thus, each data point x j is approximated by a linear
combination of the columns ofU , with the coefficient given in the k-th row of V . Therefore,
U can be regarded as a basis consisting of nonnegative vectors and each row in V is a new
representation of an instance with respect to U . For the purpose of clustering, we can set K
to be the number of clusters and assign xi to cluster ci = argmax

k
vik .

The most important difference between NMF and the other matrix factorization methods,
like SVD, is the nonnegative constraints onU and V which only allow additive combinations
among different basis vectors. For this reason, it is believed that NMF can learn a part-based
representation which reveals the inherent structure of the original data.

3.2 Multiple NMF

Suppose, there exists a clustering C1 which partition the original data into different groups.
How can we make use of it to generate a new clustering, which is on one hand different from
C1 and on the other hand has high quality?

First, from the reference clustering C1, we can extract a similarity matrix S ∈ R
N×N

between N data points. Specifically, we have

Si j =
{

1, if xi and x j are in the same cluster
0, otherwise

(2)

Then, the similarity matrix S can be used to guide the generation of the new clustering.
Next, we discuss how to modify the standard NMF to exploit this additional information.
Our goal is to generate a new clustering C2 by NMF. As discussed in Sect. 3.1, column
vectors of U consist of a set of basis vectors of the new subspace, and rows of V provide
new presentations of data points.

Define

W = VV� ∈ R
N×N

whereWi j is the inner product of the i-th row and the j-th row of V . Since V is nonnegative,
Wi j ≥ 0 represents the similarity between new representations of xi and x j . Because the
new clustering C2 is also derived from V , we can useW to approximate the similarity matrix
of C2. Note that in the ideal case that V is an indicator matrix, W is equal to the similarity
matrix of C2.

Given two similarity matrices S and W , we measure the redundancy between C1 and C2

as the inner produce of S and W , i.e.,

〈S,W 〉 =
N

∑

i, j=1

Wi j Si j

In order to minimize the redundancy, we want the value of
∑

i j Wi j Si j to be as small as
possible. From the property of trace operation, we can formulate the above quantity as a
simple quadratic term
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R =
N

∑

i, j

Wi j Si j = tr(W�S) = tr(VV�S) = tr(V�SV ) (3)

By minimizing R, we expect that if two data points xi and x j are in the same cluster in
the reference clustering C1 (i.e., Si j = 1), they would be in different clusters in the new
clustering C2. Then, we incorporate R as a regularization term into Eq. (1), and obtain the
objective function of Multiple NMF as follows:

min
U,V≥0

φ =
∥
∥
∥X −UV�

∥
∥
∥

2

F
+ λ tr(V�SV ). (4)

In the above equation, the regularization parameter λ > 0 controls the trade off between
the clustering quality and the dissimilarity between different clusterings. By minimizing φ,
we can get an alternative clustering C2 with respect to the reference clustering C1. Although
the objective functionφ is not convex inU and V jointly, it is convex in them separately. Thus,
a local minima can be found by optimizingU and V alternatively, similar to the optimization
of the basic NMF. In the mathematical form, our optimization problem is similar to that of
graph regularized NMF (GNMF) (Cai et al. 2011), and thus we can borrow techniques of
GNMF to optimize it.

The objective function φ in Eq. (4) can be rewritten as follows:

φ = tr((X −UV�)(X −UV�)�) + λ tr(V�SV )

= tr(XX�) − 2 tr(XVU�) + tr(UV�VU�) + λ tr(V�SV )

There are two nonnegative constraints that U ≥ 0 and V ≥ 0. In order to eliminate the
constraints, we derive the Lagrange function of φ. Let A = [aik] ∈ R

M×K and B = [b jk] ∈
R
N×K be the matrices of dual variables. The Lagrange function L is

L = tr(XX�) − 2 tr(XVU�) + tr(UV�VU�)

+ λ tr(V�SV ) + tr(AU�) + tr(BV�)

The partial derivatives of L with respect to U and V are:

∂L

∂U
= −2XV + 2UV�V + A

∂L

∂V
= −2X�U + 2VU�U + 2λSV + B

From theKKTconditions that Aikuik = 0 and Bjkv jk = 0,we obtain the following equations
for uik and v jk :

−(XV )ikuik + (UV�V )ikuik = 0

−(X�U ) jkv jk + (VU�U ) jkv jk + λ(SV ) jkv jk = 0

leading to the following multiplicative updating rules:

uik ← uik
(XV )ik

(UV�V )ik
(5)

v jk ← v jk
(X�U ) jk

(VU�U + λSV ) jk
(6)

For these two updating rules, we have the following theorem.
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Algorithm 1Multiple NMF
Input: Data matrix X , cluster number k, parameter λ, a reference clustering C1, threshold ε

Output: Alternative clustering C2
1: Initialize matrix U and V randomly;
2: Calculate S by Eq. (2);
3: while the difference between successive objectives ≥ ε do
4: Update U by Eq. (5);

Update V by Eq. (6);
Normalize U and V by Eq. (7);

5: end while
6: for each instance xi do
7: ci = argmaxk vik ;
8: end for
9: return C2 = {c1, . . . , cN };

Theorem 1 The objective function φ in Eq. (4) is nonincreasing under the updating rules in
Eqs. (5) and (6).

The proof is given in the next section. The analysis essentially follows that of NMF and
GNMF (Lee and Seung 2001; Cai et al. 2011). We note that the above theorem cannot
guarantee the final solution is a stationary point. To obtain a stronger theoretical guarantee,
one can adopt the technique of Lin (2007) to modify the updating rule.

In practice, to prevent elements of V being unbounded, we will normalize the columns
of U to make them of unit length (Xu et al. 2003). The matrix V also needs to be adjusted
accordingly. The normalization steps are as follows

uik ← uik
√

∑

i u
2
ik

, v jk ← v jk

√
∑

i

v2ik (7)

After obtaining the new representation V of the data, we get an alternative clustering by
either assigning the instance xi to the cluster max

k
vik or applying any clustering method like

k-means to V . Given a reference clusteringC1, the whole process of generating an alternative
clustering C2 by MNMF is summarized in Algorithm 1.

When λ = 0, the two updating rules are the same as NMF, and the algorithm reduces
to the traditional clustering by NMF. In addition, our multiple clustering method can also
be extended to deal with the case that we need to generate more than two clusterings. Each
time we obtain a clustering Ci , we get the corresponding similarity matrix Si . Then, we can
simply calculate the accumulated similarity matrix by S = ∑

i Si , and use S to generate
another clustering.

3.3 Proof of Theorem 1

The objective function φ of MNMF in Eq. (4) is bounded from below by zero. In order to
prove the algorithm converges to a stable state, we need to show that φ is non-increasing
under the updating rules in Eqs. (5) and (6). Since the second term of φ is only related to V ,
we have exactly the same updating rule for U in MNMF as in the original NMF. Thus, we
can use the convergence proof of NMF to show that φ is non-increasing under the update
rule in Eq. (5). Please see Lee and Seung (2001) for details.
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Then, we need to prove that φ is non-increasing under the updating step in Eq. (6). We
follow the similar procedure described in Cai et al. (2011). Define

F(V ) = φ(U, V ) =
∥
∥
∥X −UV�

∥
∥
∥

2

F
+ λ tr(V�SV )

We will construct an auxiliary function which satisfies the following conditions:

G(v, vt ) ≥ F(v), G(v, v) = F(v).

Lemma 1 If G satisfies the conditions above, then F is non-increasing under the updating
rule:

vt+1 = argmin
v

G(v, vt ) (8)

Proof

F(vt+1) ≤ G(vt+1, vt ) ≤ G(vt , vt ) = F(vt )

Considering any element vab in V , we use Fab to denote the part of φ which is only
relevant to vab. It is easy to check that

F
′
ab =

(
∂φ

∂V

)

ab
= (−2X�U + 2VU�U + 2λSV )ab (9)

F
′′
ab = 2(U�U )ab + 2λSaa (10)

Since our updating rule is essentially element-wise, it is sufficient to show that each Fab is
non-increasing under the updating step in Eq. (8).

Lemma 2
G(v, vtab) = Fab(v

t
ab) + F

′
ab(v

t
ab)(v − vtab)

+ (VU�U )ab + λ(SV )ab

vtab
(v − vtab)

2
(11)

is an auxiliary function for Fab which satisfies the conditions in Lemma 1.

Proof Obviously, G(v, v) = Fab(v). So we only need to prove that G(v, vtab) ≥ Fab(v). To
do this, we use the Taylor series expansion of Fab(v):

Fab(v) = Fab(v
t
ab) + F

′
ab(v

t
ab)(v − vtab) + [(U�U )bb + λSaa](v − vtab)

2

Compared with Eq. (11), we observe that G(v, vtab) ≥ Fab(v) is equivalent to

(VU�U )ab + λ(SV )ab

vtab
≥ (U�U )bb + λSaa (12)

We have

(VU�U )ab =
k

∑

l=1

vtal(U
�U )lb ≥ vtab(U

�U )bb

and

λ(SV )ab = λ

M
∑

j=1

Sajv
t
jb ≥ λSaav

t
ab.

As a result, Eq. (12) holds and we have G(v, vtab) ≥ Fab(v) �
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We can now demonstrate the convergence of Theorem 1:

Proof Replacing G(v, vtab) in Eq. (8) with Eq. (11), then we get the updating rule for vab:

vt+1
ab = vtab − vtab

F
′
ab(v

t
ab)

2(VU�U )ab + 2λ(SV )ab
= vtab

(X�U )ab

(VU�U + λSV )ab
.

Since Eq. (11) is an auxiliary function, Fab is nonincreasing under this updating rule. �
In summary,we conclude that the objective functionφ is non-increasing under the updating

rules in Eqs. (5) and (6). Furthermore, the convergence analysis of GNMF (Yang et al. 2014)
implies our algorithm still converges under the additional normalization steps.

4 Experiment

In this section, we present experimental comparisons of our algorithm, multiple NMF against
the following methods: COALA (Bae and Bailey 2006), two methods from Cui et al. (2007)
denoted by Algo1 and Algo2, ADFT (Davidson and Qi 2008), SC (Dasgupta and Ng 2010),
two subspace methods from Dang and Bailey (2014) denoted by RPCA and RegGB, and
MSC (Hu et al. 2015). The parameters of different methods are set to be the default values
that the authors suggested in their papers. We run each algorithm (except for COALA) ten
times and the average values are reported. Because COALA is an hierarchical method and
there is no randomness in the agglomerative clustering process, we just run it once.We choose
three datasets from the UCI KDD repository (Asuncion and Newman 2007), i.e., Pen digit
dataset, CMUFace and Semeion handwritten dataset, and a text dataset—Webkb dataset to
conduct the experiments.

4.1 Clustering measurements

The clustering results are evaluated by the quality and the dissimilarity of the clusterings.
For clustering quality, we use the Dunn Index denoted as DI , which measures the minimum
distance between clusters normalized by the maximum cluster diameter. Mathematically, the

Dunn Index is defined by: DI (C) = mini �= j {δ(ci ,c j )}
x1≤l≤k {�(cl )} with δ : C × C → R

+
0 is the distance

between different clusters and� : C → R
+
0 is the diameter of one of the clusters. The bigger

the Dunn Index is, the higher the quality of the clustering is.
For measuring the dissimilarity between alternative clusterings, there exist a large number

of measurements. In our experiments, we choose Rand Index (RI) (Rand 1971), Adjusted
Rand Index (AR) (Hubert and Arabie 1985), Jaccard Index (JI) (Hamers et al. 1989), Mutual
Information (MI) and Normalized Mutual Information (NMI) (Meilă 2007) to measure the
dissimilarity between different clusterings. Notice that different from the Dunn Index, all
these dissimilarity measurements are desired to be smaller, which indicates higher dissimi-
larity between clusterings.

4.2 Impact of parameter λ

Before showing the capability of MNMF to generate multiple clusterings, we need to choose
a proper value of λ which controls the trade off between the quality and dissimilarity of
the clusterings generated by MNMF. We apply MNMF to CMUFace and Webkb with the
varying value of λ from 0 to 0.2. To compare the impact of different values of λ, we use Dunn
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Fig. 2 Quality and dissimilarity given by Dunn Index and Jaccard Index as the value of λ changes

Index as the quality measurement and Jaccard Index as the dissimilarity measurement which
is the same as Bae and Bailey (2006). Fig. 2a shows that the quality of the novelly generated
clustering decreases as the value of λ increases and Fig. 2b shows that the dissimilarity of
the novelly generated clustering increases as the value of λ increases. However, we hope the
quality of the novel clustering to be high and the dissimilarity of the novel clustering also
to be high, which means that we need a big Dunn Index value and a small Jaccard Index
value. The behaviors of the curves imply that we need to make a trade off between these two
measurement. From Fig. 2, we can see that λ = 0.1 could be a good choice, so we choose
0.1 as the default value of λ in the following experiments.

4.3 Pen digit dataset

Pen digit dataset obtained from the UCI KDD repository consists of handwritten digits
recorded on a pen-based pressure sensitive tablet. Each instance corresponds to a single digit
from 0 to 9 and has 16 attributes, which represent the 8 two-dimensional positions of the pen
as the digit is being written. Each pair of co-ordinates is sampled as the digit is being written.
Users are free to write the digits in any form that they are accustomed to. Certainly, the most
prominent partition over this dataset is the one based on the ten digits. Nonetheless, for the
purpose of generating multiple clusterings, we just take care of the ways that the digits have
been written rather than which digit the instances belong to. And we will illustrate how our
algorithm can interpret the ways that the digits have been written, analogous to the result in
Davidson and Qi (2008).

We set the cluster number k to be 2 and run k-means on the original pen dataset to obtain
the first clustering C1. Each group’s centroids are shown in Fig. 3. As seen from the first
clustering C1, the writing style of the digits seems to follow clockwise trend with slightly
constant speed but having a slow speed for initial strokes and increasingly high speed for later
strokes. Notice the time interval between any two adjacent points is the same, so a shorter
distance between two adjacent points indicates a slower writing speed and inversely, a longer
one reveals a faster speed of strokes’ writing.

With the reference clustering C1, we apply our algorithm to generate an alternative clus-
tering C2. The centroids of each cluster are shown in Fig. 4. The writing style of the digits
in clustering C2 also seems to follow clockwise trend, but the distribution of the speed is
quite different from clustering C1. In Fig. 4a, the writers start with a slow speed and increase
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Fig. 3 Reference clustering C1
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Fig. 4 One alternative clustering C2 generated by MNMF

Table 1 One alternative
clustering on the Pen digit dataset

Bold values indicate the best
performance of each column

Method RI AR MI NMI JI DI

MNMF 0.5007 0.0021 0.0003 0.0004 0.3634 0.1476

Algo1 0.5040 0.0030 0.0086 0.0089 0.3689 0.1542

Algo2 0.5114 0.0099 0.0065 0.0068 0.3899 0.1444

ADFT 0.5131 0.1020 0.1639 0.3093 0.1455 0.1431

RPCA 0.6791 0.3542 0.3494 0.3513 0.5859 0.1505

RegGB 0.6825 0.3516 0.3022 0.3206 0.5790 0.1257

MSC 0.5806 0.1270 0.1342 0.1624 0.4982 0.1072

SC 0.9930 0.5002 0.4330 0.4781 0.9930 0.0029

writing speed greatly in the following stroke. Then the writers decrease the writing speed
slowly until finishing writing the digits. In Fig. 4b, the writers start with a high speed and
then decrease the writing speed slowly until the last stroke.

Quantitative results are provided in Table 1. We omit the result of COALA because it is
very slow on this dataset. From this table, we can see that our method ranks first on most
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Fig. 5 MNMF’s clustering result on the CMUFace dataset. a Cluster means of the reference clustering. b
Cluster means of the alternative clustering generated by MNMF

of the dissimilarity measurements and ranks third on the quality measurement. Overall, our
algorithm performs the best on the Pen digit dataset, which shows the strong capability of
our method to generate no-redundant multiple clusterings.

4.4 CMUFace dataset

CMUFace dataset, which is also obtained from the UCI KDD repository, consists of images
from 20 people taken with various features such as facial expressions (neutral, happy, sad,
angry), head positions (left, right, or straight), and eye states (open or with sunglass). Each
person has 32 images captured in every combination of these features. For this dataset, images
can be partitioned by different ways easily (by individual, pose, etc). But the clustering result
might be affected by the chosen number of clusters k. For example, if we set k = 20, the
clustering algorithm tends to partition these images according to individuals. On the other
hand, if we set k = 3, the clustering algorithm will partition the dataset based on head
positions. In order to alleviate the effect of k on the alternative clustering result, we follow
the setting of Dang and Bailey (2014) and randomly select 3 people along with all their
images to create a smaller dataset. So, this subset can be partitioned into 3 clusters either by
individuals or by head positions.

We use the partition based on individuals as the reference clustering and apply MNMF to
find an alternative clustering of the dataset. For visualization purpose, we show the cluster
means for each clustering inFig. 5.While pictures in Fig. 5a correspond to the clustering based
on different persons, the pictures in Fig. 5b correspond to the clustering based on different
head positions. In Fig. 5b, the person in different pictures has different head positions. The
person in the left image looks to his left while the person in the medium image looks to his
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Table 2 One alternative
clustering on the CMUFace
dataset

Bold values indicate the best
performance of each column

Method RI AR MI NMI JI DI

MNMF 0.5550 0.0106 0.0096 0.0096 0.1907 0.0776

COALA 0.7939 0.5478 0.5817 0.6860 0.5446 0.0055

Algo1 0.5266 0.0154 0.0639 0.0713 0.2374 0.0312

Algo2 0.5419 0.0533 0.1068 0.1231 0.2544 0.0418

ADFT 0.7248 0.4496 0.5794 0.6583 0.5004 0.0158

RPCA 0.7272 0.4554 0.5794 0.6612 0.5048 0.0118

RegGB 0.5711 0.2017 0.3319 0.3980 0.3737 0.0134

MSC 0.7083 0.4251 0.4880 0.5325 0.5631 0.0293

SC 0.7432 0.4820 0.6367 0.6640 0.5828 0.0371

right and the person in the right image looks forward. This alternative clustering provides a
different yet meaningful interpretation about the data.

To make a comparison on this dataset, we report the dissimilarity and quality of the
alternative clusterings generated by all the methods in Table 2. Because SC and MSC
can’t make use of the reference clustering, we simply apply them to generate two clus-
terings and report the dissimilarity and quality of the two clusterings. From this table, we
can see our method achieves the best performance in the all the measurement except Rand
Index in which our method ranks third. It proves that our method performs better than the
others both on the dissimilarity measurement and the quality measurement. The result con-
firms the strong capability of MNMF to generate multiple non-redundant and meaningful
clusterings.

4.5 Webkb dataset

Webkb dataset is a text dataset and the documents in Webkb are webpages collected by
theWorldWide Knowledge Base project of the CMU text learning group (Cardoso-Cachopo
2007). These pageswere collected from computer science departments of various universities
in 1997, manually classified into four different classes: student, faculty, course, and project.
We extract 1000 features by TF-IDF for this document dataset. We use the given label as the
reference label. This clustering is based upon where the document are collected. We apply
our algorithm on this dataset to find the main topics.

To visualize the generated clustering, we need to identify the most informative words
that characterise each cluster. Following the method in Dasgupta and Ng (2010), we rank

them by their weighted log-likelihood ratio (WLLR): P(wi |π j ) · log P(wi |π j )

P(wi |¬π j )
, where wi

denotes the i-th feature and π j denotes the j-th cluster. In addition, each probability is
add-one smoothed. Informally, wi will have a high rank with regard to π j if it appears
frequently in π j and infrequently in ¬π j . After ranking the correlated features, we select the
top 10 words to represent the corresponding cluster. The result is shown in Fig. 6. In each
clustering, the first row is the words we extracted to describe the clusters. From the alternative
clustering, we can see that there are four main topics in the documents: software, hardware,
military and research. It is not surprising that these documents mainly talk about computers
and research since the documents come from the computer science departments of several
universities.
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Fig. 6 MNMF’s clustering result on the Webkb dataset

Table 3 One alternative
Clustering on the Webkb dataset

Bold values indicate the best
performance of each column

Method RI AR MI NMI JI DI

MNMF 0.6031 0.0344 0.0328 0.0335 0.1854 0.0225

COALA 0.2887 0.0000 0.0010 0.0120 0.2876 0.0000

Algo1 0.5569 0.0058 0.0124 0.0137 0.1948 0.0057

Algo2 0.5570 0.0071 0.0073 0.0079 0.1921 0.0074

ADFT 0.5685 0.1887 0.2053 0.2131 0.3097 0.0162

RPCA 0.6791 0.2228 0.3300 0.3348 0.2895 0.0165

RegGB 0.4315 0.0044 0.0154 0.0261 0.2489 0.0003

MSC 0.8612 0.2200 0.1694 0.2360 0.8577 0.0000

SC 0.9262 0.7278 0.7070 0.7609 0.9164 0.0000

To make a comparison with the other methods, quantitative results are given in Table 3.
For the same reason, we simply apply SC and MSC to generate two clusterings and report
the dissimilarity and quality of the two clusterings. Although COALA seems to have higher
dissimilarity between the clusterings than ourmethods, the quality of it is the worst. Although
our method does’t preform better than all the others, it achieves a good performance both in
the dissimilarity measurement and quality measurement. Thus, MNMF can be used to find
multiple clusterings on text corpus.

4.6 Semeion handwritten digit dataset

Semeion handwritten digit dataset is also obtained from the UCI KDD repository, consists
of 1593 data samples, where each sample has 256 features. The samples come from around
80 people and the features are stretched in a rectangular box 16 × 16 in a gray scale of 256
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Table 4 One alternative
clustering on the Semeion
handwritten digit dataset

Bold values indicate the best
performance of each column

Method RI AR MI NMI JI DI

MNMF 0.8206 0.0005 0.0109 0.0113 0.0524 0.0067

COALA 0.4019 0.0083 0.1033 0.1763 0.0981 0.0001

Algo1 0.8259 0.0584 0.1424 0.1433 0.0842 0.0038

Algo2 0.8287 0.0585 0.1322 0.1368 0.0833 0.0047

ADFT 0.8859 0.3716 0.5175 0.5184 0.2812 0.0044

RPCA 0.8395 0.1565 0.3025 0.3265 0.1401 0.0023

RegGB 0.8862 0.4414 0.5867 0.6202 0.3375 0.0015

MSC 0.8703 0.4325 0.5646 0.5740 0.3397 0.0013

SC 0.4557 0.0014 0.0085 0.0201 0.1091 0.0012

Table 5 Two alternative clusterings on the Semeion handwritten digit dataset

Method JI12 JI13 JI23 NMI12 NMI13 NMI23 DI2 DI3

MNMF 0.0558 0.0872 0.0924 0.0154 0.0367 0.0295 0.0046 0.0005

COALA 0.0981 0.0815 0.2438 0.1763 0.1095 0.4466 0.0000 0.0000

Algo1 0.0880 0.0737 0.0632 0.1562 0.0928 0.0406 0.0035 0.0029

Algo2 0.0816 0.0765 0.0669 0.1316 0.1043 0.0564 0.0037 0.0025

ADFT 0.2928 0.3114 0.3904 0.5366 0.5419 0.6294 0.0033 0.0037

RPCA 0.1409 0.1373 0.5769 0.3264 0.3173 0.8041 0.0027 0.0023

RegGB 0.3363 0.3627 0.6237 0.6202 0.6363 0.8250 0.0011 0.0023

MSC 0.2565 0.1760 0.1962 0.5305 0.3745 0.4167 0.0012 0.0010

SC 0.1117 0.0977 0.1644 0.0142 0.0112 0.3122 0.0013 0.0028

JIi j stands for the JI between Ci and C j clusterings. The same interpretation is applied to NMIi j and DIi
Bold values indicate the best performance of each column

values. This is also a dataset of handwritten digits, but each observation in it comprises a digit
image, rather than the co-ordinates of the pen. Since it has been labeled by different digits,
we just use the given label as the reference clustering to generate alternative clusterings.

First, we only generate one alternative clustering on Semeion handwritten digit dataset
and the experimental result is in Table 4. We can see that our method MNMF has the highest
Dunn Index, and most of the dissimilarity measurements are the smallest among them.

Then, we use each method to generate two alternative clusterings on this dataset and
compare the dissimilarity and the quality between each pair of the different clusterings.
In this experiment, we use JI and NMI to measure the dissimilarity between clusterings
and the result is shown in Table 5. Recall that COALA and ADFT cannot discover multiple
alternative clusterings. For these algorithms, the results related toC3 in Table 5, are computed
by providing clustering C2 as the reference clustering. Such methods have the risk that the
similarity between C1 and C3 may be much higher than the others. However, our method can
generate a novel clustering with the reference of all the existing clusterings and can avoid
this case. For SC and MSC which can’t make use of the given label, we just use them to
generate three clusterings. From this table, there are 3 measurements on which our method
ranks first and 2 measurements on which our method ranks second, which shows that our
method can perform better than the others.
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5 Conclusion

Clustering is one of the fundamental techniques of data analysis. In this paper, we propose
a novel method named MNMF to generate multiple clusterings that are both of high quality
and different from each other. It is based upon NMF and we incorporate the inner product of
similarity matrices corresponding to different clusterings as a regularization term to the orig-
inal cost function. This regularization term is meaningful due to the nonnegative constraint,
and can enforce a newly-generated clustering to be different from the reference clustering.
In order to solve this problem, we design two multiplicative updating rules. Our approach is
effective, with a computational complexity of O(t (mnk + n2)) where t denotes the number
of iterations, m denotes the dimension, n denotes the number of samples and k denotes the
rank ofU and V . In addition, the experimental results have shown the appealing performance
of MNMF when dealing with the text document datasets and image datasets.

In the experiments, we use Dunn Index as the quality measurement. Although Dunn Index
has been effective for measuring quality, it is known to be sensitive to outliers and prefers
compact and well-separated clusters (Bezdek and Pal 1998). In the future, we would like to
investigate other unsupervised measurements for validating quality. Another future work is
to design stopping criterion for multiple clusterings. In addition, it is also interesting to study
whether the nonnegative constraints can be relaxed (Ding et al. 2010).

Acknowledgments This work was partially supported by the NSFC (61603177, 61422304), JiangsuFS
(BK20160658), and the Collaborative Innovation Center of Novel Software Technology and Industrializa-
tion of Nanjing University.

References

Asuncion, A., & Newman, D. (2007). UCI machine learning repository.
Bae, E., & Bailey, J. (2006). Coala: A novel approach for the extraction of an alternate clustering of high

quality and high dissimilarity. In International Conference on Data Mining, (pp. 53–62).
Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Compu-

tation, 12(10), 2385–2404.
Belkin, A., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering.

Advances in Neural Information Processing Systems, 14, 585–591.
Bezdek, J. C., & Pal, N. R. (1998). Some new indexes of cluster validity. IEEE Transactions on Systems, Man,

and Cybernetics, Part B, 28(3), 301–315.
Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized nonnegative matrix factorization for data

representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1548–1560.
Cardoso-Cachopo, A. (2007). Improving methods for single-label text categorization. PdD Thesis, Instituto

Superior Tecnico, Universidade Tecnica de Lisboa.
Caruana, R., Elhawary, M.F., Nguyen, N., & Smith, C. (2006). Meta clustering. In International Conference

on Data Mining, (pp. 107–118).
Cui, Y., Fern, X.Z., Dy, J.G. (2007). Non-redundant multi-view clustering via orthogonalization. In Interna-

tional Conference on Data Mining, (pp. 133–142).
Dang, X.H., & Bailey, J. (2010). Generation of alternative clusterings using the CAMI approach. In Interna-

tional Conference on Data Mining, (pp. 118–129).
Dang, X. H., & Bailey, J. (2014). Generating multiple alternative clusterings via globally optimal subspaces.

Data Mining and Knowledge Discovery, 28(3), 569–592.
Dang, X. H., & Bailey, J. (2015). A framework to uncover multiple alternative clusterings.Machine Learning,

98(1–2), 7–30.
Dasgupta, S., & Ng, V. (2010). Mining clustering dimensions. In International Conference onMachine Learn-

ing, (pp. 263–270).
Davidson, I., & Qi, Z. (2008). Finding alternative clusterings using constraints. In International Conference

on Data Mining, (pp. 773–778).

123



712 Mach Learn (2017) 106:695–712

Ding, C. H. Q., Li, T., & Jordan, M. I. (2010). Convex and semi-nonnegative matrix factorizations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.

Gondek,D.,&Hofmann,T. (2003).Conditional information bottleneck clustering. In InternationalConference
on Data Mining, (pp. 36–42).

Gretton, A., Bousquet, O., Smola, A.J., Schölkopf, B. (2005). Measuring statistical dependence with hilbert-
schmidt norms. In International conference on Algorithmic Learning Theory, (pp. 63–77).

Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R., et al. (1989). Similarity mea-
sures in scientometric research: The jaccard index versus salton’s cosine formula. Information Processing
and Management, 25(3), 315–318.

Hu, J., Qian, Q., Pei, J., Jin, R., & Zhu, S. (2015). Finding multiple stable clusterings. In International
Conference on Data Mining, (pp. 171–180).

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3),

264–323.
Jain, P., Meka, R., & Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings.

Statistical Analysis and Data Mining, 1(3), 195–210.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature,

401(6755), 788–791.
Lee, D.D., & Seung, H.S. (2001). Algorithms for non-negative matrix factorization. In Advances in Neural

Information Processing Systems, (pp. 556–562).
Lin, C. (2007). On the convergence of multiplicative update algorithms for nonnegative matrix factorization.

IEEE Trans Neural Networks, 18(6), 1589–1596.
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